## FINAL Preliminary Assessment Report Joint Forces Headquarters, Rapid City, South Dakota

Perfluorooctane-Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites ARNG Installations, Nationwide

June 2020

#### Prepared for:



Army National Guard Bureau 111 S. George Mason Drive Arlington, VA 22204

**UNCLASSIFIED** 

#### **Table of Contents**

| Exe | ecutive Summary                       | 1  |  |  |  |
|-----|---------------------------------------|----|--|--|--|
| 1.  | Introduction                          | 3  |  |  |  |
|     | 1.1 Authority and Purpose             | 3  |  |  |  |
|     | 1.2 Preliminary Assessment Methods    |    |  |  |  |
|     | 1.3 Report Organization               |    |  |  |  |
|     | 1.4 Facility Location and Description | 4  |  |  |  |
|     | 1.5 Facility Environmental Setting    | 4  |  |  |  |
|     | 1.5.1 Geology                         | 5  |  |  |  |
|     | 1.5.2 Hydrogeology                    | 5  |  |  |  |
|     | 1.5.3 Hydrology                       | 6  |  |  |  |
|     | 1.5.4 Climate                         | 6  |  |  |  |
|     | 1.5.5 Current and Future Land Use     | 6  |  |  |  |
| 2.  | Fire Training Areas                   | 10 |  |  |  |
| 3.  | Non-Fire Training Areas               | 11 |  |  |  |
|     | 3.1 Building 105                      | 11 |  |  |  |
| 4.  | Emergency Response Areas              | 13 |  |  |  |
| 5.  | Adjacent Sources                      | 14 |  |  |  |
|     | 5.1 Car Washes                        | 14 |  |  |  |
| 6.  | Preliminary Conceptual Site Model     | 16 |  |  |  |
| 7.  | Conclusions                           |    |  |  |  |
|     | 7.1 Findings                          | 17 |  |  |  |
|     | 7.2 Uncertainties                     | 17 |  |  |  |
|     | 7.3 Potential Future Actions          | 18 |  |  |  |
| 8.  | References                            | 20 |  |  |  |

PFAS Preliminary Assessment Report Joint Forces Headquarters Rapid City, South Dakota

#### **Tables**

Table 7-1: No Suspected Release Areas Table 7-2: Uncertainties

#### **Figures**

| Figure ES-1 | Summary of Findings     |
|-------------|-------------------------|
| Figure 1-1  | Facility Location       |
| Figure 1-2  | Groundwater Features    |
| Figure 1-3  | Surface Water Features  |
| Figure 3-1  | Non-Fire Training Areas |
| Figure 5-1  | Adjacent Sources        |
| Figure 7-1  | Summary of Findings     |

#### **Appendices**

Appendix A **Data Resources** Appendix B **Preliminary Assessment Documentation** B.1 Interview Records B.2 Visual Site Inspection Checklists B.3 Conceptual Site Model Information Appendix C Photographic Log

#### **Acronyms and Abbreviations**

°F degrees Fahrenheit

AASF Army Aviation Support Facility
AECOM Technical Services, Inc.

AFB Air Force Base

AFFF Army Aviation Support Facility

AOI Area of Interest

ARNG Army National Guard

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CFR Code of Federal Regulations

EDR™ Environmental Data Resources, Inc.™

FTA fire training area

ft feet

JFHQ Joint Forces Headquarter
PA Preliminary Assessment

PFAS per- and poly-fluoroalkyl substances

PFOA perfluorooctanoic acid

PFOS perfluorooctanesulfonic acid

SDARNG South Dakota Army National Guard

SI Site Inspection US United States

USACE United States Army Corps of Engineers

USEPA United States Environmental Protection Agency

#### **Executive Summary**

The Army National Guard (ARNG) is performing Preliminary Assessments (PAs) and Site Inspections (SIs) for Perfluorooctanesulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) Impacted Sites at ARNG Facilities Nationwide. A PA for per- and polyfluoroalkyl substances (PFAS)-containing materials was completed for Joint Forces Headquarters (JFHQ; also referred to as the "facility") in Rapid City, South Dakota, to assess potential PFAS release areas and exposure pathways to receptors. The JFHQ is constructed on a parcel of land owned by the South Dakota ARNG (SDARNG) since 1933. The performance of this PA included the following tasks:

- Reviewed available administrative record documents and Environmental Data Resources, Inc. (EDR)™ report packages to obtain information relevant to potential PFAS releases, such as: drinking water well locations, historical aerial photographs, Sanborn maps, and environmental compliance actions in the area surrounding the facility;
- Conducted a site visit 10 September 2019 and completed visual site inspections at locations where PFAS-containing materials were suspected of being stored, used, or disposed;
- Interviewed current SDARNG personnel, SDARNG environmental managers, and operations staff
- Completed visual site inspections at known or suspected potential PFAS release locations and documented with photographs

No Areas of Interest (AOIs) related to potential PFAS releases were identified at JFHQ during the PA. The summary of PA findings is shown on **Figure ES-1**.

Based on the documented absence of the use/release of PFAS-containing materials at JFHQ, evidence does not support current or former SDARNG activities having contributed to PFAS contamination in soil, groundwater, surface water, or sediment at the facility or adjacent areas. However, potential off-facility PFAS release areas exist upgradient of the JFHQ and it is unknown whether or not the off-facility sources affect the facility. The facility will not move forward in the Comprehensive Environmental Response, Compensation, and Liability Act process. PFAS analyses performed in 2016 had method detection limits that were higher than currently achievable. Based on the US Environmental Protection Agency (USEPA) Unregulated Contaminant Monitoring Rule 3 data, it was indicated that no PFAS were detected in a public water system above the USEPA Lifetime Health Advisory within 20 miles of the facility. Thus, it is possible that low concentrations of PFAS were not detected during the UCMR3 but might be detected if analyzed today.



#### 1. Introduction

#### 1.1 Authority and Purpose

The Army National Guard (ARNG)-Installations & Environment Division is the lead agency in performing *Preliminary Assessments (PAs) and Site Inspections (SIs) for Perfluorooctanesulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) at Impacted Sites at ARNG Facilities Nationwide.* This work is supported by the United States (US) Army Corps of Engineers (USACE) Baltimore District and their contractor AECOM Technical Services, Inc. (AECOM) under Contract Number W912DR-12-D-0014, Task Order W912DR17F0192, issued 11 August 2017.

The ARNG is assessing potential effects on human health related to processes at facilities that used per- and poly-fluoroalkyl substances (PFAS), primarily in the form of aqueous film forming foam (AFFF) released as part of firefighting activities, although other PFAS sources are possible. In addition, the ARNG is assessing businesses or operations adjacent to the ARNG facility (not under the control of ARNG) that could potentially be responsible for a PFAS release.

PFAS are classified as emerging environmental contaminants that are garnering increasing regulatory interest due to their potential risks to human health and the environment. PFAS formulations contain highly diverse mixtures of compounds. Thus, the fate of PFAS compounds in the environment varies. The regulatory framework at both federal and state levels continues to evolve. The US Environmental Protection Agency (USEPA) issued Drinking Water Health Advisories for PFOA and PFOS in May 2016, but there are currently no promulgated national standards regulating PFAS in drinking water. In the absence of federal maximum contaminant levels, some states have adopted their own drinking water standards for PFAS. The State of South Dakota does not currently have drinking water standards for PFAS.

This report presents the findings of a PA for PFAS-containing materials at the Joint Forces Headquarters (JFHQ; also referred to as the "facility") in Rapid City, South Dakota, in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, the National Oil and Hazardous Substances Pollution Contingency Plan (40 Code of Federal Regulations [CFR] Part 300), and Army requirements and guidance.

This PA documents locations where PFAS may have been released into the environment at the JFHQ. The term PFAS will be used throughout this report to encompass all PFAS chemicals being evaluated, including PFOS and PFOA, which are key components of AFFF.

#### 1.2 Preliminary Assessment Methods

The performance of this PA included the following tasks:

- Reviewed available administrative record documents and Environmental Data Resources, Inc. (EDR)™ report packages to obtain information relevant to potential PFAS releases, such as: drinking water well locations, historical aerial photographs, Sanborn maps, and environmental compliance actions in the area surrounding the facility;
- Conducted a site visit on 10 September 2019 and completed visual site inspections (VSIs) at locations where PFAS-containing materials were suspected of being stored, used, or disposed;
- Interviewed current South Dakota ARNG (SDARNG) personnel, SDARNG environmental managers, and operations staff

 Completed visual site inspections at known or suspected potential PFAS release locations and documented with photographs

#### 1.3 Report Organization

This report has been prepared in accordance with the USEPA *Guidance for Performing Preliminary Assessments under CERCLA* (USEPA 1991). The report sections and descriptions of each are:

- **Section 1 Introduction:** identifies the project purpose and authority and describes the facility location, environmental setting, and methods used to complete the PA
- Section 2 Fire Training Areas: describes the fire training areas (FTAs) at the facility identified during the site visit
- **Section 3 Non-Fire Training Areas:** describes other locations of potential PFAS releases at the facility identified during the site visit
- Section 4 Emergency Response Areas: describes areas of potential PFAS release at the facility, specifically in response to emergency situations
- Section 5 Adjacent Sources: describes sources of potential PFAS release adjacent to the facility that are not under the control of ARNG
- Section 6 Preliminary Conceptual Site Model: describes the pathways of PFAS transport and receptors for the Areas of Interest (AOIs) and the facility
- Section 7 –Conclusions: summarizes the data findings and presents the conclusions of the PA
- Section 8 References: provides the references used to develop this document
- Appendix A Data Resources
- **Appendix B** Preliminary Assessment Documentation
- Appendix C Photographic Log

#### 1.4 Facility Location and Description

The JFHQ is located in Pennington County, approximately 13 miles southwest of Ellsworth Air Force Base (AFB) and approximately 13 miles northwest of Rapid City Regional Airport (**Figure 1-1**). The JFHQ is located within Camp Rapid National Guard Armory boundaries. The facility is accessible from Corning Avenue from the north and Hazel Avenue from the south.

The AASF was constructed in 1933 on a parcel of land, approximately 84.4-acres, owned by the SDARNG. See **Appendix A** for real estate documents. The current JFHQ facilities include utility buildings, administrative buildings, and classrooms.

#### 1.5 Facility Environmental Setting

The JFHQ lies within the Black Hills region, which is characterized as an isolated eroded mountain region, ancient rock removal by stream erosion produces this mountain setting. From a distance the rounded hilltops, well-forested slopes, and deep valleys present a dark appearance, giving them their name. The Rapid Creek is the main stream channel near the facility.

#### 1.5.1 Geology

JFHQ lies within the eastern side of the Black Hills, on an elliptically shaped crescentic asymmetrical double plunging anticline created by the tectonic movement during the Laramide Orogeny. During the movement, the tectonic plates uplifted crystalline rocks along with exposing the overlying Mesozoic and Paleozoic rock. Beneath the complex lies Precambrian-age crystalline basement rocks that are overlain by Cambrian through Lower Cretaceous deposits of dolomite, limestone, and sandstone (Aerostar, 2019).

The surface geology of the JFHQ and the immediate surrounding area is comprised of quaternary alluvial deposits that range from 20 feet (ft) to 40 ft in depth (South Dakota Geological Survey, 1989). Beneath the alluvium is the Triassic aged Spearfish Formation, which ranges from approximately 250 ft to 400 ft and contains layers of shale and siltstone with large lenses and beds of gypsum scattered throughout. Under the Spearfish Formation is approximately 40 ft of Permian aged, red and purple limestone, which makes up the Minnekahta Limestone (South Dakota Geological Survey, 1965). Next is the Opeche Shale, which consists of 100 ft of red shales and siltstones with discontinuous beds of gypsum at the base of the formation (Fahrenbach, 2001). Underlying the shale is the Minnelusa formation, which is approximately 500 ft thick and Pennsylvanian in age. The Minnelusa formation is made up of sandstone, shales, limestones and dolomites that range in colors from reds to pinks, purples and yellows (South Dakota Geological Survey, 1965), Located below the Minnelusa is the Pahasapa Limestone. This formation was deposited in the Mississippian and is about 300 ft thick. It is comprised of white limestone and dolomite layers with void spaces and fractures throughout (South Dakota Geological Survey, 1989). Beneath the Pahasapa Limestone is the Devonian aged Englewood Limestone followed by the Ordovician aged Deadwood Formation and finally the Precambrian aged basement rocks (Fahrenbach, 2001).

#### 1.5.2 Hydrogeology

The JFHQ is in the Black Hills area, which is an important recharge area for aquifers within the northern Great Plains. JFHQ is within the Williston Basin, which flows into the Madison and Minnelusa aquifers. These aquifers are a part of the Paleozoic group, which occurs in areas that have high altitude and in uplifts like the Laramide Orogeny in the Black Hills. The Madison aquifer, also known as the Mississippian aquifer, has a siltstone, sandstone, limestone, and dolomite base. The water found in this location is typically in outcrop areas and flows to the recharge areas to the northeast. The discharge location occurs as a result of upward leakage to the lower Cretaceous aquifer located in central South Dakota. The Minnelusa aquifer has a limestone and sandstone base, and the aquifer moves from areas of recharge to the northeast much like the Madison aquifer does. A portion of the water will discharge upward by leakage into the lower Cretaceous aquifer. Sandstone composes the lower Cretaceous aquifer and is confined by shale except in areas where uplift can be found. Over one-half of the water found in these areas is moderately saline and can be described as briny in many parts. The salination of this water occurs from upward leakage of mineralized water from the Paleozoic aquifers (US Geological Survey, 2002).

One domestic water well and one irrigation well are located within the boundary of the JFHQ; however, four domestic, one commercial/business, one municipal, five monitoring, and one unknown well exist within 1 mile of the facility (**Figure 1-2**). Drinking water for the facility is supplied by the Rapid City Water Division, which uses the Jackson Springs Gallery and the Girl Scouts Gallery as infiltration galleries along the Rapid Creek alluvium. Water is also drawn from the Minnelusa and Madison aquifers through eight wells. Surface water collects in the Rapid Creek, which collects water from the Deerfield and Pactola Reservoirs. This surface water

supplies water for treatment to the Mountain View and Jackson Springs treatment plants then used for municipal use (Rapid City Water Division, 2018).

Based on the USEPA Unregulated Contaminant Monitoring Rule 3 data, it was indicated that no PFAS were detected in a public water system above the USEPA Health Advisory within 20 miles of the facility. PFAS analyses performed in 2016 had method detection limits that were higher than currently achievable. Thus, it is possible that low concentrations of PFAS were not detected during the UCMR3 but might be detected if analyzed today.

#### 1.5.3 Hydrology

JFHQ has a streamflow that is influenced depending on the climate at the time and the geologic conditions. The base flow in Rapid City comes from the higher altitudes surrounding the city and occurs from events of high precipitation. Many of the surrounding streams have headwater springs that originate from the Paleozoic carbonate rocks. These streams generally flow eastward over the Precambrian rocks of the crystalline core and typically lose flow as the Paleozoic rock dissipates out of the Black Hills (US Geological Survey, 2002).

The surface water flow at the facility is primarily to the southeast towards Rapid Creek (**Figure 1-3**).

#### 1.5.4 Climate

The climate at JFHQ consists of four clearly separated seasons, with warm and clear summers and dry, freezing, cloudy, windy winters. Temperatures vary from average highs of 59.1 degrees Fahrenheit (°F) to average lows of 33.5 °F. The average annual temperature is 46.3 °F. Average precipitation is 18.32 inches of rain (World Climate, 2019).

#### 1.5.5 Current and Future Land Use

JFHQ is a controlled access facility with public roads. The facility consists of utility buildings, administration buildings, and classrooms. Exterior features are vehicle parking areas and roads. Infrastructure improvements, land acquisitions, land use controls, and reasonably anticipated future land use is not expected to change from the current land use.







or Graphics\MXD\SD\JFHQ\_SD\_Figures\Fig\_1-3\_JFHQ\_SD\_Surface\_water.mxd

#### 2. Fire Training Areas

No FTAs were identified within the facility during the PA through interviews or document review. Fire training exercises for the SDARNG are conducted at Ellsworth AFB.

#### 3. Non-Fire Training Areas

In addition to FTAs, the PA evaluated areas where PFAS-containing materials may have been broadly used, stored, or disposed. This may include buildings with fire suppression systems, paint booths, AFFF storage areas, and areas of compliance demonstrations. Information on these features obtained during the PA are included in **Appendices A** and **B**. One non-FTA was identified within the JFHQ facility during the PA through interviews or document review. A description of the non-FTA is presented below and shown on **Figure 3-1**. Interview records and photographs are included in **Appendix B** and **Appendix C**, respectively.

#### 3.1 Building 105

Building 105 is located on the west side of the facility and the geographical coordinates are 44°4'49.79"N and 103°16'11.04"W. Building 105 houses two crash rescue firetrucks that are used for fire training exercises off-facility. One firetruck is used as a water tender that only has the capability to hold and dispense water. The other firetruck is a ladder truck with the capability to hold and dispense AFFF or other fire suppressant material; however, the ladder firetruck has never been filled with AFFF. The firetrucks are stored in Building 105 to provide mission support during deployment. If AFFF is required to support the mission, the ladder firetruck would be filled and rinsed at the deployment destination or in "theater." As a result, bulk AFFF has never been stored at the facility.

AFFF fire extinguishers have never been present at JFHQ. The current fire extinguishers are Class B fire extinguishers. There are no hangars, fire stations or other facilities at JFHQ that would have used or stored AFFF.



#### 4. Emergency Response Areas

No emergency response areas were identified within the JFHQ facility during the PA through interviews or document review. Rapid City Fire Department provides fire emergency services for the JFHQ.

#### 5. Adjacent Sources

Two off-site PFAS sources adjacent to the JFHQ were identified during the PA through interviews (**Appendix B**), online research, and the Environmental Data Resource Report (**Appendix A**). **Figure 5-1** presents the location of potential adjacent source areas.

#### 5.1 Car Washes

During PA interviews, several local interviewees noted two car washes located along the north boundary of JFHQ. There was some conjecture that the wax, and other products typically used at car washes have the potential to contain PFAS. More specifically, the waxes that provide a waterproof layer or barrier. The groundwater flows to the south and the two car washes are upgradient of JFHQ and it is unknown whether or not the off-facility sources affect the facility.



or Graphics\MXD\SD\JFHQ\_SD\_Figures\Fig\_5-1\_JFHQ\_SD\_Adjacent\_Sources.mxd

#### 6. Preliminary Conceptual Site Model

Based on the PA findings, no release areas were identified as AOIs at JFHQ. A conceptual site model identifies three components necessary for potentially complete exposure pathways related to a site: (1) source, (2) pathway, and (3) receptor. If any of these elements are missing, the pathway is considered incomplete. Based on the findings of this PA, there are no PFAS sources that originate at JFHQ or from activities associated with SDARNG activities.

#### 7. Conclusions

This report presents a summary of available information gathered during the PA on the use and storage of AFFF and other PFAS-related activities at the JFHQ. The PA findings are based on the information presented in **Appendix A** and **Appendix B**.

#### 7.1 Findings

The following area, which was discussed in **Section 3**, were determined to have no suspected release (**Table 7-1**).

**Table 7-1: No Suspected Release Areas** 

| No Suspected<br>Release Area | Used by | Rationale for No Suspected Release Determination                                                                                                                                                                                                                                           |
|------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Building 105                 | SDARNG  | Building 105 houses two firetrucks. One firetruck is capable of only holding water, and the other firetruck has the capability to hold AFFF; however, has never been filled with AFFF. Also, firetrucks were filled only while deployed and were emptied before returning to Building 105. |

#### 7.2 Uncertainties

A number of information sources were investigated during this PA to determine the potential for PFAS-containing materials to have been present, used, or released at the facility. Historically, documentation of PFAS use was not required because PFAS were considered benign. Therefore, records were not typically kept by the facility or available during the PA on the use of PFAS in training, firefighting, or other non-traditional activities, or on its disposition.

The conclusions of this PA are based on all available information, including: previous environmental reports, EDRs™, observations made during the VSI, and interviews. Interviews of personnel with direct knowledge of a facility generally provided the most useful insights regarding a facility's historical and current PFAS-containing materials. Sometimes, the provided information was vague or conflicted with other sources. Gathered information has a degree of uncertainty due to the absence of written documentation, the limited number of personnel with direct knowledge due to staffing changes, the time passed since PFAS were first used (1989 to present), and a reliance on personal recollection. Inaccuracies may arise in potential PFAS release locations, dates of release, volume of releases, and the concentration of AFFF used. There is also a possibility the PA has missed a source of PFAS, as the science of how PFAS may enter the environment continually evolves.

In order to minimize the level of uncertainty, readily available data regarding the use and potential storage of PFAS were reviewed, retired and current personnel were interviewed, multiple persons were interviewed for the same potential source area, and the facility was visually inspected. **Table 7-2** summarizes the uncertainties associated with the PA.

**Table 7-2: Uncertainties** 

| Potential Adjacent<br>Sources | Source of Uncertainty                                          |
|-------------------------------|----------------------------------------------------------------|
| Car Washes                    | It is unknown if the products used at car washes contain PFAS. |

#### 7.3 Potential Future Actions

Based on the documented absence (2005-present) of the use or release of PFAS-containing materials at JFHQ, no AOIs were identified during the PA. Evidence does not indicate that current or former ARNG activities contributed PFAS contamination to soil, groundwater, surface water, or sediment at the facility or adjacent areas. JFHQ will not move forward in the CERCLA process.



#### 8. References

Aerostar SES LLC (Aerostar). 2019. Final Site Inspections Report of Aqueous Film Forming Form Areas at Ellsworth Air Force Base, Meade and Pennington Counties, South Dakota. November.

Fahrenbach, M.D. and Sawyer J.F. 2001. *Geologic Map of the Rapid City West Quadrangle, South Dakota*. Available at: <a href="http://www.sdgs.usd.edu/pubs/pdf/GQ24K-01">http://www.sdgs.usd.edu/pubs/pdf/GQ24K-01</a> 20060814.pdf (Accessed 19 March 2020).

Rapid City Water Division. 2018. Annual Water Quality Report. November.

South Dakota Geological Survey. 1965. *Lithologic Log for 001N07E03CBAA* 2. Available at: <a href="http://cf.sddenr.net/lithdb/search results lith.cfm?Search1=6&search type=simple&page num=1&search=Search&input box=001N07E03CBAA%202">http://cf.sddenr.net/lithdb/search results lith.cfm?Search1=6&search type=simple&page num=1&search=Search&input box=001N07E03CBAA%202</a> (Accessed 19 March 2020).

South Dakota Geological Survey. 1989. *Lithologic Log for 001N07E03BBCC*. Available at: <a href="http://cf.sddenr.net/lithdb/search\_results\_lith.cfm?Search1=6&search\_type=simple&page\_num=1&search=Search&input\_box=001N07E03BBCC">http://cf.sddenr.net/lithdb/search\_results\_lith.cfm?Search1=6&search\_type=simple&page\_num=1&search=Search&input\_box=001N07E03BBCC</a> (Accessed 19 March 2020).

United States Environmental Protection Agency (USEPA). 1991. *Guidance for Performing Preliminary Assessments under CERCLA*. September.

United States Geological Survey. 2002. *Hydrology of the Black Hills Area, South Dakota.* November.

World Climate. 2019. Average Weather Data for Rapid City, South Dakota. Available at http://www.worldclimate.com/climate/us (Accessed 8 November 2019).

PFAS Preliminary Assessment Report Joint Forces Headquarters Rapid City, SD

### Appendix A Data Resources

Data Resources will be provided separately on CD. Data Resources for Joint Forces Headquarters.

#### Joint Forces Headquarters Leases, Licenses, and Permits

1933 Warranty Deed

#### **Joint Forces Headquarters Documentation**

- 2015 Final Preliminary Assessment Report for Perfluorinated Compounds at Ellsworth Air Force Base South Dakota
- 2019 Final Site Inspection Report of Aqueous Film Forming Foam Areas at Ellsworth Air Force Base Meade and Pennington Counties, South Dakota

#### **EDR Report**

• 2019 Joint Forces Headquarters EDR Report

| tatutory Form 15.40           | 2M-9-31 2456-News Printing Co., Aberdeen, S. D. |
|-------------------------------|-------------------------------------------------|
|                               |                                                 |
| tle, Trustee for the South Da | kota National Guard.                            |

| William                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A. Hazle, Trust                         | tee for the Sou                         | th Dakota Nation                        | al Guard,                               | *                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                         |                                         |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         | South Dakota                            |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         | ate of South Dak                        |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                                         |                                         | _, grantee, of                          |
| Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | erre, South Dal                         | zo ta                                   |                                         | <u> </u>                                | P. O., the                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         | ennington                               |                                         |                                         |
| Beginning at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the Northwest C                         | orner Section                           | 3, Township 1 no                        | rth. Range 7 ea                         | st of the                               |
| Black Hills Mer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cidian, South D                         | akota, thence                           | south along the                         | west line of sa                         | id Section                              |
| 3-1115.0 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | thence south                            | 74 degrees and                          | 40 minutes east                         | , 1539.0 feet,                          | thence                                  |
| south 34 degree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es and 10 minut                         | es east, 373.2                          | feet to a point                         | on the north s                          | ide of                                  |
| right of way of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | highway known                           | as Indian Sch                           | ool and Tourist                         | Park Road; then                         | ce north                                |
| 51 degrees and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 05 minutes eas                          | t, 805.3 feet                           | along north side                        | of said right                           | of way.                                 |
| thence due east                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 286.7 feet al                           | ong north side                          | of said right o                         | f way, thence d                         | ue north                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         | place of beginn                         |                                         |                                         |
| SOF DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                         |                                         |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                                         |                                         |                                         |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30 14                                   |                                         |                                         | - *                                     |                                         |
| 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***                                     |                                         |                                         | *************************************** | NF                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                                         | *************************************** |                                         |
| 100 . TY . 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43                                      | *************************************** |                                         | *************************************** | *************************************** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | ***********************                 |                                         |                                         |                                         |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | *************************************** | ************************************    |                                         | ********                                |
| A STATE OF THE STA | *************************************** |                                         |                                         |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1) A                                   |                                         |                                         |                                         | *************************************** |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | •                                       |                                         |                                         | :                                       |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                     |                                         | *************************************** |                                         | *************************************** |
| Dated this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8th de                                  | ay of Mi                                | arch 18                                 | 33                                      |                                         |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2017 E                                  | . · · · · ·                             | Willian                                 | _a Itag                                 | 6                                       |
| * 3 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.                                     | RECORDED                                | William, A.                             | the South Dako                          | )                                       |
| A PERSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N.                                      | INDEXED                                 | National                                |                                         | ,                                       |
| STATE OF Sou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | th Dako ta                              | SCHOOL ON SING                          | THE DAKOTA, COUNTY OF                   | PENNINGTON-SS                           | Deed 1911                               |
| County of Pen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | SS. FILES THIS T                        | DAY OF May 106/A                        | DEPUTY                                  | FEES S                                  |
| On this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8th day                                 | of March                                |                                         | year 19 33 , befor                      | e ma nanconalla                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         | South Dakota Na                         |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |                                         |                                         | ,                                       |
| known to me to be t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | he personwho                            | is desc                                 | ribed in and who ex                     | ecuted the within i                     | nstrument, and                          |
| acknowledged to me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                       |                                         |                                         |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         | Flo                                     | rence On                                | est                                     |

My comm. expires Sept. 16, 1934.

Notary Public

# FINAL PRELIMINARY ASSESSMENT REPORT FOR PERFLUORINATED COMPOUNDS AT ELLSWORTH AIR FORCE BASE SOUTH DAKOTA

#### **Prepared for:**



Air Force Civil Engineer Center 2261 Hughes Avenue, Suite 155 Lackland AFB, Texas 78236-9853

Contract No. FA8903-08-D-8772 Task Order 0065 CDRL A001A

May 2015



|                                                                          | Form Ap    | Form Approved            |                         |             |                              |  |
|--------------------------------------------------------------------------|------------|--------------------------|-------------------------|-------------|------------------------------|--|
| REPORT DOCUME                                                            | OMD N      | OMP N 0704 0100          |                         |             |                              |  |
| D. 1.1'                                                                  | C : . C    |                          |                         | _ `         | o. 0704-0188                 |  |
| Public reporting for this collection instruction, searching existing dat |            |                          |                         |             |                              |  |
| of information. Send comments                                            |            |                          |                         |             |                              |  |
| suggestions for reducing this bur                                        |            |                          |                         |             |                              |  |
| 1215 Jefferson Davis Highway, S                                          |            |                          |                         |             |                              |  |
| Reduction Project (0704B0188), V                                         |            |                          | -1302, and to the Offic | e or iviana | gement and Budget, Paperwork |  |
| 1. AGENCY USE ONLY (Leave                                                |            | 2. REPORT DATE           |                         | 3 REPO      | RT TYPE AND DATES            |  |
| 1. MGENCT CSE ONET (Ecave                                                | olalik)    | 2. KEI OKI DITIE         |                         | COVE        |                              |  |
|                                                                          |            |                          |                         | COVE        |                              |  |
|                                                                          |            | May 2015                 |                         | ]           | FINAL                        |  |
| 4. TITLE AND SUBTITLE                                                    |            |                          |                         | 5. FUND     | ING NUMBERS                  |  |
|                                                                          |            |                          |                         | ~           |                              |  |
| Preliminary Assessment Report for                                        |            | inated Compounds at      |                         |             | No. FA8903-08-D-8772         |  |
| Ellsworth Air Force Base, South I                                        | Dakota     |                          |                         | Delivery    | Order No. 0065               |  |
|                                                                          |            |                          |                         |             |                              |  |
| 6. AUTHOR(S)                                                             |            |                          |                         |             |                              |  |
| 0. ACTIOK(S)                                                             |            |                          |                         |             |                              |  |
| HydroGeoLogic, Inc.                                                      |            |                          |                         |             |                              |  |
| ,                                                                        |            |                          |                         |             |                              |  |
| 7. PERFORMANCE ORGANIZA                                                  | ATION NA   | MES(S) AND ADDR          | ESS(S)                  |             | FORMANCE                     |  |
|                                                                          |            |                          |                         |             | ANIZATION REPORT             |  |
| HydroGeoLogic, Inc.                                                      |            |                          |                         | NUM         | IBER                         |  |
| 404 East Ramsey Road, S                                                  |            |                          |                         |             |                              |  |
| San Antonio, Texas 7821                                                  | AF5065     |                          |                         |             |                              |  |
| 9. SPONSORING/MONITORING                                                 | G AGENC    | V NAME(S) AND AD         | DDESS(S)                | 10 SPO      | NSORING/MONITORING           |  |
| 9. SFONSOKING/MONTIOKING                                                 | O AGENC    | I NAME(S) AND AL         | DKESS(S)                |             | NCY REPORT NUMBER            |  |
| AFCEC/EXEW                                                               |            |                          |                         | 1102        | THE THE SET THE SEE          |  |
| 2261 Hughes Avenue, Su                                                   | uite 155   |                          |                         | A001A       | A001A                        |  |
| Lackland AFB, Texas 78                                                   | 3236-9853  |                          |                         |             |                              |  |
|                                                                          |            |                          |                         |             |                              |  |
| 11. SUPPLEMENTARY NOTES                                                  |            |                          |                         |             |                              |  |
| 12a. DISTRIBUTION/AVAILAB                                                | TZ VTI IIS | ΔTEMENT                  |                         | 12h DIS     | TRIBUTION CODE               |  |
| Unlimited                                                                | JILIII 51  | AILWENI                  |                         | 120. DIS    | TRIBOTION CODE               |  |
| 13. ABSTRACT (Maximum 200                                                | words)     |                          |                         |             |                              |  |
| This is a Preliminary Assessment                                         |            | locations or locations a | nt Ellsworth Air Force  | Base where  | perfluorinated compounds     |  |
| may have been released to the env                                        |            |                          |                         |             |                              |  |
| 14. SUBJECT TERMS                                                        |            |                          |                         |             | BER OF PAGES                 |  |
|                                                                          |            |                          |                         | 16. PRIC    | E CODE                       |  |
| 17. SECURITY                                                             | 18. SEC    | URITY                    | 19. SECURITY            |             | 20. LIMITATION OF            |  |
| CLASSIFICATION OF                                                        |            | ASSIFICATION OF          | CLASSIFICAT             | ION OF      | ABSTRACT.                    |  |
| REPORT                                                                   |            | S PAGE.                  | ABSTRACT.               | 1011 01     | 11001101.                    |  |
|                                                                          | 1111       | ~ 1.1OL.                 | instituter.             |             |                              |  |
| Unclassified                                                             | τ          | Inclassified             | Unclassified            | d           | Unlimited                    |  |



#### TABLE OF CONTENTS

|     |      |        |          |              |                                            | Page |
|-----|------|--------|----------|--------------|--------------------------------------------|------|
| LIS | T OF | ACRO   | NYMS A   | AND ABBI     | REVIATIONS                                 | VII  |
| 1.0 | INT  | RODI   | CTION    |              |                                            | 1.1  |
| 1.0 | 1.1  |        |          |              |                                            |      |
|     | 1.2  |        |          |              | IVES                                       |      |
|     | 1.3  |        |          |              | ENTAL SETTING                              |      |
|     |      | 1.3.1  |          |              |                                            |      |
|     |      | 1.3.2  | U.       | •            | ing                                        |      |
|     |      | 1.3.3  |          | _            |                                            |      |
|     |      | 1.3.4  | •        |              | rs                                         |      |
|     | 1.4  | PREL   |          |              | MENT METHODS                               |      |
|     | 1.5  | REPC   | RT ORG   | ANIZATIO     | )N                                         | 1-6  |
| 2.0 | FIR  | E TRA  | INING A  | AREAS        |                                            | 2-1  |
|     | 2.1  |        |          |              | ΓRAINING AREA                              |      |
|     |      | 2.1.1  | Descrip  | tion and Op  | erational History                          | 2-1  |
|     |      | 2.1.2  |          |              | ics                                        |      |
|     |      | 2.1.3  | Pathway  | y and Envir  | onmental Hazard Assessment                 | 2-2  |
|     |      |        | 2.1.3.1  |              | ater Pathway and Targets                   |      |
|     |      |        | 2.1.3.2  | Surface W    | Vater Pathway and Targets                  | 2-3  |
|     |      |        | 2.1.3.3  |              | Air Exposure Pathways and Targets          |      |
|     | 2.2  | CURI   | RENT FIF | RE TRAINI    | NG AREA                                    | 2-4  |
|     |      | 2.2.1  | Descrip  | tion and Op  | perational History                         | 2-4  |
|     |      | 2.2.2  | Waste C  | Characterist | ics                                        | 2-4  |
|     |      | 2.2.3  | Pathway  | y and Envir  | onmental Hazard Assessment                 | 2-5  |
|     |      |        | 2.2.3.1  |              | ater Pathway and Targets                   |      |
|     |      |        | 2.2.3.2  |              | Vater Pathway and Targets                  |      |
|     |      |        | 2.2.3.3  | Soil and A   | Air Exposure Pathways and Targets          | 2-6  |
| 3.0 | NO   | N-FIRI | E TRAIN  | ING AREA     | <b>AS</b>                                  | 3-1  |
|     | 3.1  | HANG   | GARS/BU  | JILDINGS     |                                            | 3-1  |
|     |      | 3.1.1  | 70, 80,  | and 90 Row   | 'S                                         | 3-1  |
|     |      |        | 3.1.1.1  | Description  | on and Operational History                 | 3-1  |
|     |      |        | 3.1.1.2  | Waste Ch     | aracteristics                              | 3-1  |
|     |      |        | 3.1.1.3  | Pathway a    | and Environmental Hazard Assessment        | 3-3  |
|     |      |        |          | 3.1.1.3.1    | Groundwater Pathway and Targets            | 3-3  |
|     |      |        |          | 3.1.1.3.2    | Surface Water Pathway and Targets          | 3-4  |
|     |      |        |          | 3.1.1.3.3    | Soil and Air Exposure Pathways and Targets |      |
|     |      | 3.1.2  | Buildin  | g 618        |                                            |      |
|     |      |        | 3.1.2.1  | _            | on and Operational History                 |      |
|     |      |        | 3.1.2.2  |              | aracteristics                              |      |
|     |      |        | 3.1.2.3  |              | and Environmental Hazard Assessment        |      |
|     |      |        |          | 3.1.2.3.1    | Groundwater Pathway and Targets            |      |
|     |      |        |          | 3.1.2.3.2    | Surface Water Pathway and Targets          |      |
|     |      |        |          | 3.1.2.3.3    | Soil and Air Exposure Pathways and Targets |      |

|     | 3.1.3 | Building  | g 88240                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-7  |
|-----|-------|-----------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     |       |           |                           | on and Operational History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|     |       |           |                           | aracteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|     |       |           |                           | and Environmental Hazard Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     |       |           | 3.1.3.3.1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |       |           | 3.1.3.3.2                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |       |           | 3.1.3.3.3                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 3.2 | FIRE  | STATION   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| J.2 | 3.2.1 |           |                           | 1 2 (Building 7506)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     | 0.2.1 | 3.2.1.1   |                           | on and Operational History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|     |       |           |                           | aracteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|     |       |           |                           | and Environmental Hazard Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     |       |           | 3.2.1.3.1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |       |           | 3.2.1.3.2                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |       |           | 3.2.1.3.3                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | 3.2.2 | Former    |                           | e Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|     | 3.2.2 | 3.2.2.1   | U                         | on and Operational History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|     |       |           |                           | aracteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|     |       |           |                           | and Environmental Hazard Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     |       | 0.2.2.0   | 3.2.2.3.1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |       |           | 3.2.2.3.2                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|     |       |           | 3.2.2.3.3                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|     | 3.2.3 | Former    |                           | (Building 7506)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | 3.2.3 | 3.2.3.1   |                           | on and Operational History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|     |       |           |                           | aracteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|     |       | 3.2.3.2   |                           | and Environmental Hazard Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     |       | 3.2.3.3   | 3.2.3.3.1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |       |           | 3.2.3.3.1                 | , and the second |      |
|     |       |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | 224   | C         | 3.2.3.3.3<br>Fine Station | Soil and Air Exposure Pathways and Targets 1 (Building 7502)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|     | 3.2.4 |           |                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|     |       | 3.2.4.1   |                           | on and Operational History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|     |       |           |                           | aracteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|     |       | 3.2.4.3   | 3.2.4.3.1                 | and Environmental Hazard Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     |       |           |                           | Groundwater Pathway and Targets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |       |           | 3.2.4.3.2                 | <i>j E</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| 2.2 |       | a En la L | 3.2.4.3.3                 | Soil and Air Exposure Pathways and Targets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| 3.3 |       |           |                           | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|     | 3.3.1 |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |       | 3.3.1.1   |                           | on and Operational History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|     |       | 3.3.1.2   |                           | aracteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|     |       | 3.3.1.3   | •                         | and Environmental Hazard Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|     |       |           | 3.3.1.3.1                 | Groundwater Pathway and Targets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |       |           | 3.3.1.3.2                 | <b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|     |       |           | 3 3 1 3 3                 | Soil and Air Exposure Pathways and Targets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3_16 |

May 2015

|     | 3.3.2 | B-1 Cra  | sh (1988)   |                                            | 3-16 |
|-----|-------|----------|-------------|--------------------------------------------|------|
|     |       | 3.3.2.1  | Description | on and Operational History                 | 3-16 |
|     |       | 3.3.2.2  | Waste Ch    | aracteristics                              | 3-16 |
|     |       | 3.3.2.3  | Pathway a   | and Environmental Hazard Assessment        | 3-16 |
|     |       |          | 3.3.2.3.1   | Groundwater Pathway and Targets            | 3-17 |
|     |       |          | 3.3.2.3.2   | Surface Water Pathway and Targets          | 3-17 |
|     |       |          | 3.3.2.3.3   | Soil and Air Exposure Pathways and Targets | 3-18 |
|     | 3.3.3 | Delta Ta | axiway Wes  | st Crash (2000)                            | 3-18 |
|     |       | 3.3.3.1  | Description | on and Operational History                 | 3-18 |
|     |       | 3.3.3.2  | Waste Ch    | aracteristics                              | 3-18 |
|     |       | 3.3.3.3  | Pathway a   | and Environmental Hazard Assessment        | 3-18 |
|     |       |          | 3.3.3.3.1   | Groundwater Pathway and Targets            | 3-19 |
|     |       |          | 3.3.3.3.2   | Surface Water Pathway and Targets          | 3-19 |
|     |       |          | 3.3.3.3.3   | Soil and Air Exposure Pathways and Targets | 3-20 |
|     | 3.3.4 | Marten   | Crash (2003 | 3)                                         | 3-20 |
|     |       | 3.3.4.1  | Description | on and Operational History                 | 3-20 |
|     |       | 3.3.4.2  | Waste Ch    | aracteristics                              | 3-20 |
|     |       | 3.3.4.3  | Pathway a   | and Environmental Hazard Assessment        | 3-20 |
|     |       |          | 3.3.4.3.1   | Groundwater Pathway and Targets            | 3-21 |
|     |       |          | 3.3.4.3.2   | Surface Water Pathway and Targets          | 3-21 |
|     |       |          | 3.3.4.3.3   | Soil and Air Exposure Pathways and Targets | 3-22 |
|     | 3.3.5 | Crash 4  | (2001)      |                                            | 3-22 |
|     |       | 3.3.5.1  | Description | on and Operational History                 | 3-22 |
|     |       | 3.3.5.2  | Waste Ch    | aracteristics                              | 3-22 |
|     |       | 3.3.5.3  | Pathway a   | and Environmental Hazard Assessment        | 3-22 |
|     |       |          | 3.3.5.3.1   | <b>5</b>                                   |      |
|     |       |          | 3.3.5.3.2   | Surface Water Pathway and Targets          | 3-23 |
|     |       |          | 3.3.5.3.3   | Soil and Air Exposure Pathways and Targets | 3-24 |
| 3.4 | OTHE  | ER       |             |                                            | 3-24 |
|     | 3.4.1 | Hazmar   | t (Building | 1911)                                      | 3-24 |
|     |       |          | -           | on and Operational History                 |      |
|     |       |          |             | aracteristics                              |      |
|     |       | 3.4.1.3  | •           | and Environmental Hazard Assessment        |      |
|     |       |          | 3.4.1.3.1   | Groundwater Pathway and Targets            |      |
|     |       |          | 3.4.1.3.2   | Surface Water Pathway and Targets          | 3-25 |
|     |       |          | 3.4.1.3.3   | Soil and Air Exposure Pathways and Targets |      |
|     | 3.4.2 | Wastew   |             | ent Plant                                  |      |
|     |       | 3.4.2.1  |             | on and Operational History                 |      |
|     |       | 3.4.2.2  |             | aracteristics                              |      |
|     |       | 3.4.2.3  | _           | and Environmental Hazard Assessment        |      |
|     |       |          | 3.4.2.3.1   | <b>5</b>                                   |      |
|     |       |          | 3.4.2.3.2   | <b>3</b>                                   |      |
|     |       |          | 3.4.2.3.3   | 1 2                                        |      |
|     | 3.4.3 |          |             | Area                                       |      |
|     |       | 3.4.3.1  | Description | on and Operational History                 | 3-27 |
|     |       |          |             |                                            |      |

|     |      |       | 3.4.3.2  | Waste Ch    | aracteristics                              | 3-27 |
|-----|------|-------|----------|-------------|--------------------------------------------|------|
|     |      |       | 3.4.3.3  | Pathway a   | and Environmental Hazard Assessment        | 3-28 |
|     |      |       |          | 3.4.3.3.1   | Groundwater Pathway and Targets            | 3-28 |
|     |      |       |          | 3.4.3.3.2   | Surface Water Pathway and Targets          | 3-29 |
|     |      |       |          | 3.4.3.3.3   | Soil and Air Exposure Pathways and Targets | 3-29 |
|     | 3    | 3.4.4 | Alert Ap | oron        |                                            | 3-29 |
|     |      |       | 3.4.4.1  | Description | on and Operational History                 | 3-29 |
|     |      |       | 3.4.4.2  |             | aracteristics                              |      |
|     |      |       | 3.4.4.3  | Pathway a   | and Environmental Hazard Assessment        | 3-30 |
|     |      |       |          | 3.4.4.3.1   | Groundwater Pathway and Targets            | 3-30 |
|     |      |       |          | 3.4.4.3.2   | Surface Water Pathway and Targets          | 3-30 |
|     |      |       |          | 3.4.4.3.3   |                                            |      |
| 4.0 | SUM  | MAR   | Y AND C  | CONCLUS     | IONS                                       | 4-1  |
|     |      |       |          |             |                                            |      |
|     |      |       |          |             |                                            |      |
|     |      |       | 4.1.1.1  | FT001 – F   | Former Fire Training Area                  | 4-1  |
|     |      |       | 4.1.1.2  | Current Fi  | re Training Area                           | 4-1  |
|     | 4    | 4.1.2 | Non-Fir  | e Training  | Areas                                      | 4-1  |
|     |      |       | 4.1.2.1  | Hangars/E   | Buildings                                  | 4-1  |
|     |      |       | 4.1.2.2  | Fire Static | ons                                        | 4-2  |
|     |      |       | 4.1.2.3  | Emergenc    | y Response                                 | 4-2  |
|     |      |       | 4.1.2.4  | Other       |                                            | 4-2  |
|     | 4.2. | CONC  | TICION   | TC          |                                            | 4-3  |
|     | 7.2  | COITC | LUSION   | 13          | ••••••                                     |      |

#### LIST OF TABLES

| Table 1.1   | Fire Training Areas and Non-Fire Training Areas Identified for                |   |
|-------------|-------------------------------------------------------------------------------|---|
|             | Potential AFFF Releases, Ellswoth AFB, South Dakota1-                         | 2 |
| Table 4.1   | Preliminary Assessment Report Summary and Findings, Ellsworth AFB,            |   |
|             | South Dakota                                                                  | 4 |
|             | LIST OF FIGURES                                                               |   |
|             |                                                                               |   |
| Eiguro 1 1  | All Identified Locations                                                      |   |
| Figure 1.1  |                                                                               |   |
| Figure 2.1  | Locations Identified in the Southwestern Part of Ellsworth AFB, South Dakota  |   |
| Figure 3.1  | Locations Identified in the North-Central Part of Ellsworth AFB, South Dakota |   |
| Figure 3.2  | Locations Identified in the Southeastern Part of Ellsworth AFB, South Dakota  |   |
| Figure 3.3  | Locations Identified in the Northern Part of Ellsworth AFB, South Dakota      |   |
| Figure 3.4  | Locations Identified in the Central Part of Ellsworth AFB, South Dakota       |   |
| Figure 3.5  | Locations Identified in the Southern Part of Ellsworth AFB, South Dakota      |   |
| Figure 3.6  | Location of Wastewater Treatment Plant, Ellsworth AFB, South Dakota           |   |
|             | LIST OF APPENDICES                                                            |   |
|             |                                                                               |   |
| Appendix A  | Photo Documentation                                                           |   |
| Appendix B  |                                                                               |   |
| Appendix C  |                                                                               |   |
| Tippenain C | Records of Communication                                                      |   |



#### LIST OF ACRONYMS AND ABBREVIATIONS

AFB Air Force Base

AFCEC Air Force Civil Engineer Center AFFF aqueous film-forming foam

ANG Air National Guard

Base Ellsworth Air Force Base bgs below ground surface

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act of 1980

EDR Environmental Data Resources, Inc.

FTA Fire Training Area

HGL HydroGeoLogic, Inc.

OU Operable Unit

NFRAP no further remedial action planned

PA preliminary assessment
PFC perfluorinated compound
PFOA perfluorooctanoic acid
PFOS perfluorooctane sulfonate

RI Remedial Investigation

SCF SES Construction and Fuel Services, LLC

SI Site Inspection

USAF U.S. Air Force

USEPA U.S. Environmental Protection Agency

USFWS U.S. Fish and Wildlife Service UST underground storage tank

WWTP wastewater treatment plant



# FINAL PRELIMINARY ASSESSMENT REPORT FOR PERFLUORINATED COMPOUNDS ELLSWORTH AIR FORCE BASE SOUTH DAKOTA

# 1.0 INTRODUCTION

The Air Force Civil Engineer Center (AFCEC) contracted with HydroGeoLogic, Inc. (HGL) and subcontractor CH2M HILL (the HGL Team) to perform preliminary assessment (PA) activities at multiple U.S. Air Force (Air Force or USAF) and Air National Guard (ANG) Fire Training Areas (FTAs) to determine probable environmental release of perfluorinated compounds (PFCs). Specifically, HGL is completing PA activities consistent with the U.S. Environmental Protection Agency (USEPA) Guidance for Preparing Preliminary Assessments under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) (USEPA, 1991) to determine potential releases of PFCs at 82 Air Force and ANG installations from FTAs and other known and suspected PFCs or aqueous film-forming foam (AFFF) usage or storage areas. The work is being performed by HGL and its team subcontractor, CH2M HILL, under the existing 4P Architecture and Engineering Contract, Contract Number FA8903-08-D-8772, Task Order 0065.

Under authority of CERCLA and the Superfund Amendments and Reauthorization Act of 1986, CH2M HILL conducted a PA visit at Ellsworth Air Force Base (AFB) (Base) during the week of February 23, 2015. Ellsworth AFB is an active installation near Box Elder, South Dakota. The location of Ellsworth AFB and the locations identified on Ellsworth AFB during this PA visit are shown on Figure 1.1

#### 1.1 BACKGROUND

PFCs are compounds used in the formulation of AFFF, which the Air Force has used in fire training exercises, suppressing aircraft and other vehicle fires, and in aircraft hangar fire suppression systems. Although PFCs are not regulated under CERCLA or the Resource Conservation and Recovery Act, there is evidence that perfluorooctane sulfonate (PFOS) (and less so perfluorooctanoic acid [PFOA]) is a possible environmental contaminant following AFFF release. Both compounds may present potential, non-carcinogenic risks to human health and the environment (Chang et al., 2014; Porter, 2011; Rak and Vogel, 2009; USAF, 2012).

Several federal government documents confirm the initial use of AFFF by the Air Force beginning in 1970:

- Military Specification for AFFF (MIL-F-24385) formally issued in 1969
- General Accounting Office determination on sole source award protest to provide AFFF to the Navy in December 1969
- A History of USAF Fire Protection Training at Chanute Air Force Base, 1964-1976 (Coates, 1977)

Based on Air Force performance testing results on AFFF, the Air Force Director of Civil Engineering, M.G. Goddard, issued authorization in 1970 for the Air Force to procure AFFF. No usage within the Air Force is documented or suspected prior to 1970.

#### 1.2 PURPOSE AND OBJECTIVES

The objective of this PA Report is to identify locations at Ellsworth AFB where PFCs may have been released into the environment and to provide an initial assessment of possible migration pathways and receptors of potential contamination.

This PA Report documents the known FTAs, as well as additional locations where AFFF may have been released into the environment at Ellsworth AFB (Table 1.1). The purpose of the PA is to determine the potential environmental release of PFCs specifically from AFFF usage and storage. This PA Report differentiates locations that pose little or no potential threat to human health and the environment from locations that warrant further investigation.

Table 1.1
Fire Training Areas and Non-Fire Training
Areas Identified for Potential AFFF Releases
Ellsworth Air Force Base, South Dakota

| Ellsworth Air Force Base, South Dakota |  |  |  |  |  |
|----------------------------------------|--|--|--|--|--|
| Fire Training Areas                    |  |  |  |  |  |
| FT001 – Former FTA                     |  |  |  |  |  |
| Current FTA                            |  |  |  |  |  |
| Non-Fire Training Areas                |  |  |  |  |  |
| Hangars/Buildings                      |  |  |  |  |  |
| 70, 80, and 90 Rows                    |  |  |  |  |  |
| Building 618                           |  |  |  |  |  |
| Building 88240                         |  |  |  |  |  |
| Fire Stations                          |  |  |  |  |  |
| Former Fire Station 2                  |  |  |  |  |  |
| Former Fire Storage Area               |  |  |  |  |  |
| Former Fire Station (Building 7506)    |  |  |  |  |  |
| Current Fire Station (Building 7502)   |  |  |  |  |  |
| Emergency Response                     |  |  |  |  |  |
| B-52 Crash (1970)                      |  |  |  |  |  |
| B-1 Crash (1988)                       |  |  |  |  |  |
| Delta Taxiway West Crash (2000)        |  |  |  |  |  |
| Marten Crash (2003)                    |  |  |  |  |  |
| Crash 4 (2001)                         |  |  |  |  |  |
| Others                                 |  |  |  |  |  |
| Hazmart                                |  |  |  |  |  |
| Wastewater Treatment Plant (WWTP)      |  |  |  |  |  |
| Spray Nozzle Test Area                 |  |  |  |  |  |
| Alert Apron                            |  |  |  |  |  |

May 2015

#### 1.3 BASEWIDE ENVIRONMENTAL SETTING

A description of the Basewide geology, hydrogeology, and hydrology is presented in the Site Investigation Report for Site Investigations of Fire Fighting Foam Usage at Various Air Force Bases in the United States for Ellsworth Air Force Base (SES Construction and Fuel Services, LLC [SCF], 2015) and is summarized in the sections below.

# 1.3.1 Geology

Ellsworth AFB lies on the extreme eastern flank of the Black Hills uplift, a north-south trending elliptically shaped dome (125 miles long and 45 miles wide), which resulted from tectonic movement during the Laramide Orogeny. During this event, basement crystalline rocks west of Ellsworth AFB were uplifted and exposed while overlying Mesozoic and Paleozoic strata were uplifted, eroded, and deformed. These strata today crop out as hogbacks flanking the Black Hills uplift. Beneath Ellsworth AFB these strata dip moderately to the east-northeast.

The oldest and deepest rocks present in the Ellsworth AFB subsurface are Precambrian age crystalline basement rocks. Overlying the basement crystalline rocks are Cambrian through Lower Cretaceous age deposits of limestone, sandstone, and dolomite. Several of these sedimentary deposits are known aquifers in the region. Overlying the Lower Cretaceous deposits is a sequence of Upper Cretaceous age marine shales with intermittent sandstone and limestone beds. This Upper Cretaceous sequence of fine-grained marine deposits extends to the surface and is more than 1,000 feet thick below Ellsworth AFB. The uppermost of these Cretaceous age deposits is the Pierre Shale, which forms the bedrock surface at Ellsworth AFB.

The Pierre Shale at Ellsworth AFB is a dark gray to light gray, organic-rich, noncalcareous, blocky, fragmented marine shale. Bentonite beds and ironstone concretion layers more than 1 foot thick are common, as are ironstone nodules and selenite crystals on weathered faces. Bentonite beds are typically yellow and are the result of volcanism that occurred during the Laramide Orogeny. The Pierre Shale may be considerably altered by weathering and typically weathers into an orange to brown clay material overlying fractured and iron-stained shale.

The depth to weathered shale or shale bedrock is variable across Ellsworth AFB, occurring anywhere from surface outcrops to depths of approximately 40 feet. The depth to the weathered shale/bedrock contact (where both are present) is also variable across Ellsworth AFB. Generally, the Pierre Shale decreases in weathering and permeability with depth.

The location geology at Ellsworth AFB typically consists of unconsolidated materials underlain by the Pierre Shale. Unconsolidated materials can be divided into three basic categories based upon depositional history:

- Colluvial Deposits loose, heterogeneous and incoherent sediment and/or rock fragments deposited by rainwash, sheetwash, or slow, continuous downslope creep. Typified by juxtaposition of sedimentary components not normally associated with one another (for example, gravelly clay).
- Alluvial Deposits clay, silt, sand, gravel or similar unconsolidated, detrital ill material
  deposited during comparatively recent geologic time by running water as a sorted or
  semisorted deposit. These deposits are generally associated with the past or current
  drainage system of Boxelder Creek.

Residual Material – unconsolidated material that has developed in place through the
weathering of underlying consolidated rock. These materials may show relict textures
associated with the parent rock. Residual deposits resemble weathered shale and the
boundary between the two is not well defined.

The thickness of these unconsolidated materials varies widely across the installation but generally ranges from 10 to 30 feet. Toward the northern end of Ellsworth AFB, the Pierre Shale is predominantly covered by a thin veneer of soil, alluvium, or colluvium but is exposed along deeper channels and some steeper side slopes. Toward the southern end of Ellsworth AFB, older, relatively thicker, coarser alluvial deposits associated with Boxelder Creek fill the gentler, wider erosional channels, and exposures of Pierre Shale are less common.

# 1.3.2 Hydrogeologic Setting

One shallow unconfined aquifer and three confined aquifers (Inyan Kara, Minnelusa, and Madison) could be used for water supplies at Ellsworth AFB. None of the confined aquifers are in hydraulic communication with the overlying unconfined aquifer. The shallow unconfined aquifer at Ellsworth AFB is considered a federal Class II-B (potential source of drinking water) aquifer and possibly a Class II-A (discharge to surface water) aquifer. Groundwater within the shallow aquifer on the northern end of the Base flows southeast. Farther south on Ellsworth AFB, groundwater flows in a more southern direction within the shallow aquifer.

At Ellsworth AFB, the upper shallow aquifer consists of both alluvial and colluvial deposits and fractured Pierre Shale. The shallow aquifer is absent in some areas and extends in depth from only a few feet below the surface to 60 feet or less in depth in other areas. The thickness and yield of the shallow aquifer depend upon the extent of alluvial material and the thickness of water-yielding fractures in the Pierre Shale. In several areas toward the northern end of Ellsworth AFB, no groundwater-bearing zones were found, while in the southern area of the Base, alluvial sand and gravel beds and shallow fracture zones typically produce less than 2 gallons per minute to monitoring wells. The shallow, unconfined aquifer at Ellsworth AFB is present within the fractured shale horizon near the top of the Pierre Shale and the contiguous overlying deposits of unconsolidated material.

The Inyan Kara aquifer is a confined aquifer bounded by confining beds of the Pierre Shale and other relatively impermeable Upper Cretaceous strata above and Permian-Jurassic strata below. The aquifer lies about 1,900 feet beneath Ellsworth AFB and consists of 350 to 500 feet of permeable sandstone belonging to the Fall River and Lakota Formations. Groundwater flow direction is assumed based on published data; west of Ellsworth AFB, it is assumed to be toward the east-northeast based on the direction of dip.

The Minnelusa aquifer is a confined aquifer that lies beneath approximately 1,000 feet of Permian-Jurassic confining beds and above Pennsylvanian confining beds. The aquifer is a limestone unit approximately 600 feet thick and lies 3,460 feet beneath Ellsworth AFB. Groundwater flow direction is assumed to be toward the east-northeast based on the direction of dip.

The deepest aquifer used as a domestic water supply source in this region is the Madison (also known as Pahasapa) aquifer, which is beneath 240 to 450 feet of Lower Pennsylvanian confining strata. The aquifer is a limestone deposit that averages 350 feet thick and lies 4,150 feet beneath

Ellsworth AFB. Groundwater flow direction is assumed to be toward the east-northeast in the direction of dip.

Ellsworth AFB drinking water comes from off Base and is supplied by the Rapid City Municipal Distribution System (Jensen, 2015, personal communication; Appendix C). Sources of water for this system come from three infiltration galleries: Jackson Springs Gallery, Meadowbrook Gallery, and Girl Scout Gallery. Water is also drawn from the Minnelusa and Madison aquifers. In high demand times, the City also uses surface water from Rapid Creek, which originates in the Rapid Creek drainage areas west of Rapid City. This source includes the Deerfield and Pactola Reservoirs (USAF, 2008). This surface water source is upgradient of Ellsworth AFB.

Ellsworth AFB previously had several water supply wells that were used to supply the Base with drinking water. Five public water supply wells were installed in the deep bedrock aquifers of the Base but have all been abandoned/decommissioned (Pavek, 2015, personal communication; Appendix C).

Various private wells screened within the shallow aquifer may be or were historically present at off-Base locations. Two private wells were identified as being located within 1 to 2 miles of the data search location based on the Environmental Data Resources, Inc. (EDR) report; however, these wells were both noted as being inactive (EDR, 2015). Additionally, both of these wells are cross-gradient (east) or upgradient (north-northwest) of the Base, indicating no exposure potential.

# 1.3.3 Hydrologic Setting

The northern border of Ellsworth AFB is a steep northward-facing escarpment, which is drained by seven unnamed ephemeral drainages that discharge into Elk Creek, approximately 5 miles to the northeast. Surface drainage on the plateau follows the topographic slope, primarily flowing south-southeast via retention ponds, ditches, storm sewers, and ephemeral streams, eventually discharging into Boxelder Creek, 1 mile to the south. Some surface flow in the western and southwestern portions of Ellsworth AFB is southwest toward an unnamed drainage west of the Base that ultimately discharges to Boxelder Creek.

#### 1.3.4 Ecological Receptors

The following endangered species are known to inhabit Meade and Pennington Counties:

- Whooping Crane Bird
- Bald Eagle Bird
- Interior Least Tern Bird
- Black-footed Ferret Mammal

It is possible that these endangered species may be found within the boundaries of Ellsworth AFB.

# 1.4 PRELIMINARY ASSESSMENT METHODS

This PA Report was prepared in accordance with the following:

- CERCLA Guidance (U.S. Environmental Protection Agency, 1991)
- Interim Air Force Guidance (USAF, 2012a)
- U.S. Fish and Wildlife Service (USFWS) Guidance (USFWS, 2015)

The performance of this PA included the following activities:

- Reviewing information and reports in the Administrative Record.
- Reviewing documents related to Air Force use of AFFF.
- Conducting a 2-day visit to Ellsworth AFB.
- Conducting interviews with government personal in Environmental Management, the Ellsworth AFB Fire Department, and Aircraft Hangar Maintenance and Operations.
- Visiting and photographing locations where AFFF has been used or may have been used.
- Performing an environmental data records search to document nearby populations and recording water supply well information and wetlands information.

#### 1.5 REPORT ORGANIZATION

This PA Report is organized as follows:

- Section 1.0, Introduction, provides a project overview and describes the methods used to conduct the PA.
- Section 2.0, Fire Training Areas, describes the FTAs identified during the visit.
- Section 3.0, Non-Fire Training Areas, describes the non-FTAs identified during the visit.
- Section 4.0, Summary and Conclusions, summarizes and provides conclusions for both FTAs and non-FTAs.
- Section 5.0, References, lists the references cited in this report.

In addition, the following support information is appended to this report:

- Appendix A, Photo Documentation
- Appendix B, Field Documentation
- Appendix C, Records of Communication

# **FIGURE**





# 2.0 FIRE TRAINING AREAS

#### 2.1 FT001 – FORMER FIRE TRAINING AREA

# 2.1.1 Description and Operational History

Site FT001, the former FTA, is approximately 8 acres in size and is located in the southwestern segment of Ellsworth AFB (Figures 1.1 and 2.1). It is an Installation Restoration Program site and is included in Operable Unit 1 (OU 1), which includes FT001 as well as a portion of the downgradient drainages including Pond 1. FT001 is bordered to the north by the current FTA, to the south and east by unnamed drainages, and to the west by open grasslands. The geographic coordinates are 44°7′ 51.83″N and 103°5′ 56.05″W.

From 1942 to 1990, Site FT001 was the original FTA on Ellsworth AFB. Fire training activities were moved to the current FTA in 1993. No fire training activities were conducted in the interim time period. The tanks and pipelines associated with FT001 were removed at that time (USAF, 2012b). FT001 contained a shallow, unlined burn pit with a steel aircraft mockup that was set ablaze for fire training exercises. The location of the burn area within the former FTA has changed several times over the years. Aerial photographs of Ellsworth AFB dated May 28, 1952, October 8, 1954, August 25, 1962, and June 19, 1968, show numerous areas of staining presumed to be a result of fire training activities within the former training area. The training exercises conducted at the FTA involved simulation of aircraft fires and spills.

In 1995, a groundwater treatment system (Building 6908) was installed at FT001 to remediate fuels and chlorinated volatile organic compounds in groundwater. The system was located just east of FT001 (Figure 2.1). From 1995 to 2001, treated groundwater was discharged to the unnamed drainage located directly south of the site. As a result of elevated selenium in treated water, discharge to surface water was stopped in 2001 and was reinjected into groundwater via two injection trenches. However, groundwater from the southernmost injection trench was found to be daylighting into the drainages south of the site, and injection into this trench was stopped. Reinjection continued at a second infiltration trench located 1,700 feet north-northwest of Building 6908 until the pump and treatment system were turned off in November 2011 and replaced by passive treatment (in-situ reductive treatment) in accordance with the OU-11 (Basewide Groundwater) Record of Decision Amendment (USAF, 2012c).

A full description of the site and operational history is presented in previous investigation documents. The location of FT001 is shown on Figures 1.1 and 2.1.

#### 2.1.2 Waste Characteristics

Various types of fuels, oils, and chlorinated solvents were dispersed within the burn pit area and subsequently ignited and then extinguished. AFFF was used to extinguish the fires used during these training activities starting in the early 1970s until the location was closed in 1990 (Beck, 2015a, personal communication; Appendix C). Mr. Beck of the Ellsworth AFB Fire Department did not have knowledge or record logs of the quantity of AFFF used/released during fire training activities (Beck, 2015a, personal communication; Appendix C).

In the early 2000s, Pond 1 was dredged, and the dredge materials were land applied west of the current FTA (USAF, 2012b) (Figure 2.1).

#### 2.1.3 Pathway and Environmental Hazard Assessment

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows one day care facility, six schools, three hospitals, and two colleges within the potential migration area of 4 miles from any given potential release location of PFCs. No elementary schools are located on Base. The closest elementary school is located at least 1.6 miles hydrologically cross-gradient of FT001. The on-Base child development center is located approximately 1.4 miles hydrologically cross-gradient of FT001.

# 2.1.3.1 Groundwater Pathway and Targets

The Basewide geologic and hydrogeological settings are provided in Section 1.3. Groundwater at this site flows south-southeast.

Ellsworth AFB drinking water sources are all located more than 4 miles cross-gradient or upgradient of Ellsworth AFB and do not support a complete drinking water exposure pathway. The fact that Ellsworth does not use the shallow unconfined aquifer below the Base as a supply of drinking water would render this drinking water exposure pathway incomplete for Ellsworth AFB workers and residents. However, because of the relatively shallow depth to groundwater in some areas (as shallow as 10 feet below ground surface [bgs]), excavation workers could be exposed to groundwater.

One public water supply well, owned by Box Elder, is located approximately 2.3 miles east of FT001 (EDR, 2015). The well serves a population of approximately 7,800 (EDR, 2015). This is a groundwater well; although, the aquifer in which the well is zoned is unknown. However, it is likely to be installed in the deeper confined aquifer that would not be impacted by shallow groundwater migrating off Base. Additionally, this well is hydrologically cross-gradient of the current FTA.

One private groundwater public water supply well is located 1.9 miles southeast of FT001 and serves a population of 90 in Whispering Willows. The aquifer in which the well is zoned is unknown (EDR, 2015). This well is hydrologically cross-gradient of the location.

One known private well is located 1,490 feet downgradient of the site and is used to water cattle (Jensen, 2015, personal communication; Appendix C). Consequently, while ingestion of groundwater by humans is not anticipated, there is a complete ingestion and dermal exposure pathway for cattle and other ecological receptors. A second private well is located approximately 1,985 feet downgradient (south) of FT001 and is owned by a landscape/nursery company. It is not known whether this well is used for potable water (USAF, 2012b). As part of the future RI at FT001, an inventory of all nearby private wells will be conducted and sampling of each well and analysis of groundwater for PFCs will be performed (Jensen, 2015, personal communication; Appendix C).

Sampling was conducted at FT001 as part of a broad agency announcement in 2011. PFCs were detected in groundwater collected at and downgradient of this location. A remedial investigation (RI) to assess the extent of PFCs at this location and downgradient of the location is planned (Jensen, 2015, personal communication; Appendix C).

# 2.1.3.2 Surface Water Pathway and Targets

The surface water drainage from FT001 flows south from the site to unnamed drainages which discharge to Pond 1, and eventually enters into a private landowner's pond. Ellsworth AFB drinking water does not come from surface water sources located within the watershed of Ellsworth AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water. Groundwater beneath FT001 discharges into the unnamed drainages south of the site and could provide a complete exposure pathway for non-ingestion exposures, such as dermal exposure to humans. Ingestion by aquatic or other animals is also a potential pathway for ecological receptors.

The site is not located within a flood zone. The nearest body of water is Pond 1, located approximately 800 feet downgradient of the site. Discharge from Pond 1 leaves the Base via Outfall 1 and travels to a private landowner's pond located approximately 0.5 mile downgradient of FT001.

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of the site; however, several wetlands are present (EDR, 2015; USFWS, 2015). Local waterways may be used for recreational fishing by residents of nearby communities while crayfish and fish are known to be consumed from on-Base ponds (Goyer, 2015b, personal communication; Appendix C). Additionally, nearly all of the surface water along the tributaries and Boxelder Creek is available for use for stock watering (Goyer, 2015a, personal communication; Appendix C).

# 2.1.3.3 Soil and Air Exposure Pathways and Targets

A release of AFFF to the soil surface during fire training activities has likely occurred. Additionally, dredge materials from Pond 1 were land applied to the west of the current FTA. The nearest residents are approximately 1,490 feet downgradient of FT001. Workers are not present at the location and, aside from the fire training activities that occur just north of FT001 at the current FTA, no workers are present within 0.5 mile of FT001. The well-vegetated area would preclude any fugitive dust emissions and potential exposures. Current and planned future land use does not involve any human health exposures, and no intrusive work is anticipated that would allow for dermal soil exposures to utility or construction workers. The potential of exposure to burrowing animals, if present, would exist.

The population within 4 miles of the site includes Rapid City and Box Elder residents, with a population of approximately 8,190. No schools or day care facilities are within a 200-foot radius of the site. The nearest school is Vandenberg Elementary School, located approximately 7,780 feet to the east-northeast of FT001 (EDR, 2015). The nearest day care facility is the Ellsworth AFB Child Development Center, located approximately 8,700 feet to the northeast.

The FT001 area is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future. No sensitive environments have been identified within 200 feet or within 4 miles.

Sampling was conducted at FT001 as part of a broad agency announcement in 2011. PFCs were detected in soils collected at and downgradient of this location. An RI to assess the extent of PFCs at this site is planned (Jensen, 2015, personal communication; Appendix C).

#### 2.2 CURRENT FIRE TRAINING AREA

# 2.2.1 Description and Operational History

The current FTA, is approximately 7 acres in size and is located in the southwestern segment of Ellsworth AFB (Figures 1.1 and 2.1). The current FTA is bordered to the north by the open fields, to the south by FT001, to the east by unnamed drainages, and to the west by open grasslands. The geographic coordinates are 44°7′ 59.56"N and 103°5′ 53.96"W.

The current FTA was built in 1992 and began operation in 1993. This location contains a large concrete pad with a steel mockup aircraft in the center that is set ablaze for fire training exercises. The central area of the concrete pad consists of a lined pit in which the training activities are conducted. This pit holds the water and/or AFFF applied during fire training exercises. When the pit reaches capacity, the water is discharged via underground piping to a lined retention pond located just off the concrete pad to the southwest (Beck, 2015a, personal communication; Appendix C). When full, the retention pond is emptied using a 9,500-gallon tanker and a transfer pump and contents are disposed of at the 70 row diversion tank (see Section 3.1.1 for discussion regarding the 70 row diversion tank).

The location of the current FTA is shown on Figures 1.1 and 2.1.

#### 2.2.2 Waste Characteristics

Fire training is typically conducted on a monthly basis using only water; however, AFFF is used up to a few times a year. Historically, 6 percent AFFF was used until the mid-1990s when the Base switched to 3 percent AFFF, which is currently still in use by the fire department (Beck, 2015a, personal communication; Appendix C).

Spray nozzle testing is also conducted annually at the current FTA. While the majority of AFFF discharged during this testing is contained on the concrete pad, it does occasionally run off into the grass surrounding the pad. No logs exist that document the volume of AFFF used during fire training activities; however, approximately 5 to 10 gallons of AFFF are used during each test (Beck, 2015a, personal communication; Appendix C).

After an emergency response call where AFFF is applied, the nozzle is always flushed at the current FTA.

Five-gallon buckets of AFFF are stored inside a conex storage container at the current FTA. As of February 2015, 1,635 gallons were reportedly stored here. No spills or releases have been reported or observed (Beck, 2015a, personal communication; Appendix C).

Based on the operational history and release of AFFF during these years, the potential for PFCs released to the environment is high. Because the location is currently in use, future impacts to environmental media would need to be investigated once the ongoing use of AFFF is discontinued.

# 2.2.3 Pathway and Environmental Hazard Assessment

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows one day care facility, six schools, three hospitals, and two colleges within the potential migration area of 4 miles from any given potential release location of PFCs. No elementary schools are located on Base. The closest elementary school is located at least 1.6 miles hydrologically cross-gradient of the current FTA. The on-Base child development center is located approximately 1.4 miles hydrologically cross-gradient of the location.

# 2.2.3.1 **Groundwater Pathway and Targets**

The Basewide geologic and hydrogeological settings are provided in Section 1.3. In the southern portion of Ellsworth AFB, groundwater flows in a southerly direction within the shallow aquifer.

Ellsworth AFB drinking water sources are all located more than 4 miles cross-gradient or upgradient of Ellsworth AFB and do not support a complete drinking water exposure pathway. The fact that Ellsworth does not use the shallow unconfined aquifer below the Base as a supply of drinking water would render this drinking water exposure pathway incomplete for Ellsworth AFB workers and residents. However, because of the relatively shallow depth to groundwater in some areas (as shallow as 10 feet bgs), excavation workers could be exposed to groundwater.

One public water supply well, owned by Box Elder, is located approximately 2.3 miles east of the location (EDR, 2015). The well serves a population of approximately 7,800 (EDR, 2015). This is a groundwater well; although, the aquifer in which the well is zoned is unknown. However, it is likely to be installed in the deeper confined aquifer that would not be impacted by shallow groundwater migrating off Base. Additionally, this well is hydrologically cross-gradient of the current FTA.

One private groundwater public water supply well is located 1.9 miles southeast of the current FTA and serves a population of approximately 90 in Whispering Willows. The aquifer in which the well is zoned is unknown (EDR, 2015). This well is hydrologically cross-gradient of the location.

One known private well is located 2,250 feet downgradient (south) of the location and is used to water cattle (Jensen, 2015, personal communication; Appendix C). Consequently, while ingestion of groundwater by humans is not anticipated, there is a complete ingestion and dermal exposure pathway for cattle and other ecological receptors. A second private well is located approximately 2,650 feet downgradient (south) of the location and is owned by a landscape/nursery company. It

is not known whether this well is used for potable water (USAF, 2012b). As part of the RI at FT001, an inventory of all nearby private wells will be conducted and sampling of each well and analysis of the groundwater for PFCs will be performed (Jensen, 2015, personal communication; Appendix C). Because the current FTA is located directly north of FT001, any potential impacts to downgradient groundwater resources will be identified during this RI.

# 2.2.3.2 Surface Water Pathway and Targets

The surface water drainage from the current FTA either infiltrates into the soils, enters the unnamed drainages to the east, or travels south to FT001 where runoff eventually enters unnamed drainages and discharges to Pond 1 and eventually enters into a private landowners' pond. Ellsworth AFB drinking water does not come from surface water sources located within the watershed of Ellsworth AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water. Groundwater beneath the current FTA daylights into the unnamed drainages south of the location and could provide a complete exposure pathway for non-ingestion exposures, such as dermal exposure to humans. Ingestion by aquatic or other animals is also a potential pathway for ecological receptors.

The location is not located within a flood zone. The nearest body of water is Pond 1, located approximately 1,400 feet downgradient of the location. Discharge from Pond 1 leaves the Base via Outfall 1 and travels to a private landowners' pond located approximately 0.5 mile downgradient of FT001 (Goyer, 2015a, personal communication; Appendix C).

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of the location; however, several wetlands are present (EDR, 2015; USFWS, 2015). Local waterways may be used for recreational fishing by residents of nearby communities while crayfish and fish are known to be consumed from on-Base ponds (Goyer, 2015b, personal communication; Appendix C). Additionally, nearly all of the surface water along the tributaries and Boxelder Creek is available for use for stock watering (Goyer, 2015a, personal communication; Appendix C).

# 2.2.3.3 Soil and Air Exposure Pathways and Targets

A release of AFFF to the soil surface during fire training activities has likely occurred. The nearest residents are approximately 2,250 feet south of the location. Workers are present at the location during monthly fire training activities. Aside from fire department staff who conduct fire training activities at the location, workers are not present within 0.5 mile of the current FTA. The well-vegetated area would preclude any fugitive dust emissions and potential exposures. Construction activities or other ground-disturbing activities could result in potential worker exposure. The potential of exposure to burrowing animals, if any, would be present at the perimeter of the location, although the majority of the location is concrete.

The population within 4 miles of the current FTA includes Rapid City and Box Elder residents, with a population of approximately 8,190. No schools or day care facilities are within a 200-foot radius of the current FTA. The nearest school is Vandenberg Elementary School, located approximately 7,750 feet to the east-northeast of the current FTA (EDR, 2015). The nearest day care facility is the Ellsworth AFB Child Development Center, located approximately 8,600 feet to the northeast.

# FIGURE







# 3.0 NON-FIRE TRAINING AREAS

#### 3.1 HANGARS/BUILDINGS

# 3.1.1 70, 80, and 90 Rows

# 3.1.1.1 Description and Operational History

Docks 70, 71, 72, 73, 74, 81, 90, 91, 92, and 93 are aircraft hangars in the 70, 80, and 90 rows of hangars on the northeast side of the Ellsworth AFB runway (Figures 1.1 and 3.1). The area encompasses approximately 83 acres. The geographic coordinates are 44°9′ 6.40″N and 103°6′ 6.10″W.

Historically, these docks contained AFFF fire suppression systems. These systems were supplied with AFFF via Pumphouse 7263 located at the northeast end of 90 row. Pumphouse 7263 contained a 1,000-gallon AFFF tank that fed the 70, 80, and 90 rows of hangars via underground piping. According to the spills database, 310 gallons of AFFF was released at the pumphouse in September 1994 (Ellsworth, 2015). In 2000, the systems were upgraded and each dock had its own 500-gallon AFFF tank installed inside. AFFF underground piping from the pumphouse to the hangars is still in place but capped at the floor.

Inside each dock is a trench drain system that discharges to the 150,000-gallon 70 row diversion tank (underground storage tank [UST] 7246). The contents of the diversion tank were typically released to the WWTP but could have also been released to Outfall 3 on the southwest side of the runway at Ellsworth AFB through storm drains. In 2000, the systems were upgraded and each dock had its own 500-gallon AFFF tank installed inside. AFFF underground piping from the pumphouse to the hangars is still in place but capped at the floor.

According to Mr. Beck, when an AFFF system would activate, the diversion valve was closed automatically through Monaco system to prevent AFFF from traveling to the WWTP and the diversion tank would be opened. Released AFFF was held inside the facility and entered drain lines and the diversion tank. After the AFFF was drained, the lines were flushed with water and the diversion valves were re-opened. AFFF in the tank would be removed as hazardous waste (Beck, 2015a, personal communication; Appendix C).

In 2014, the WWTP was decommissioned. As of July 2014, the diversion tank now discharges to the off-Base publicly owned treatment works.

Conversion of all AFFF systems to high-expansion foam systems began in 2005 and was completed in 2012. AFFF is no longer used in any of the docks (Beck, 2015a, personal communication; Appendix C).

#### 3.1.1.2 Waste Characteristics

According to the spills database, 310 gallons of AFFF was released at the pumphouse in September 1994 (Ellsworth, 2015). In 1993, the tank contents, approximately 150,000 gallons, were released into the storm drain, which flowed to Outfall 3 and then off-Base through an unnamed tributary of Boxelder Creek. The USEPA issued a Notice of Violation regarding this incident (USAF, 2012b).

Several releases of AFFF have occurred at the docks including the following:

#### Dock 70:

- o 700 gallons of AFFF were released due to unknown reasons (November 2000) (Ellsworth, 2015).
- O An unknown amount of AFFF was released in due to a system malfunction (September 2002) (Ellsworth, 2015).

#### • Dock 71:

- o Inadvertent release/pipe break of 400 gallons of AFFF in foam pump room (September 2006). Contained in diversion tank (Beck, 2015a, personal communication; Appendix C).
- o A 300-foot by 30-foot spill occurred when testing repaired AFFF system (May 1998). Contained in diversion tank (Ellsworth, 2015).
- o An unknown amount of AFFF was released in the mechanical room of Dock 71 when a pipe broke in July 2000 (Ellsworth, 2015).

#### • Dock 74:

• 100 gallons released when system activated (October 1994). Contained in diversion tank (USAF, 2012b)

#### • Dock 81:

- o 30 gallons released from a leaking nozzle (June 1999) (Ellsworth, 2015).
- 250 gallons released for unknown reasons (June 2000). The spills database also noted this as occurring at AFFF pumphouse; therefore, it is unclear whether this occurred in Dock 81 or at Pumphouse 7263 (Ellsworth, 2015).
- o An unknown amount of AFFF was released due to a leaking gasket (June 2000) (Ellsworth, 2015).
- An unknown amount of AFFF was released from a deck gun (July 2002) (Ellsworth, 2015).

#### • Dock 90:

- o 12-gallon release when system activated (March 1995). Contained in diversion tank (USAF, 2012b).
- o Inadvertent release of 450 gallons of AFFF (March 2007). Contained in diversion tank (Beck, 2015a, personal communication; Appendix C).
- O An unknown amount of AFFF was released as a result of cold weather (January 2005) (Ellsworth, 2015).

#### • Dock 91:

- o Inadvertent release of 315 gallons of AFFF (May 2006). Contained in diversion tank (Beck, 2015a, personal communication; Appendix C).
- O Unknown amount of AFFF released from the pipe next to the monitor gun (December 2000) (Ellsworth, 2015).

#### • Dock 92:

o 300 gallons released during system activation and equipment failure (November 1995). Contained in diversion tank (USAF, 2012b).

- 25 to 50 gallons released due to nuisance tripping of fire alarm (June 2000)
   (Ellsworth, 2015).
- o 400 gallons released from aircraft 5086 (December 2000) (Ellsworth, 2015).
- o 400 gallons released due to a system leak (December 2005) (Ellsworth, 2015).

## Dock 93:

- o 60 to 70 gallons spilled from drums while transferring to tank (February 1994). Contained on concrete (USAF, 2012b).
- o 500 gallons released for unknown reasons (May 2002) (Ellsworth, 2015).

Mr. Beck, who has worked at Ellsworth AFB for 20 years, related that soil surrounding these docks may potentially be contaminated with PFCs because he often saw discharges coming out of the hangars (Beck, 2015a, personal communication; Appendix C).

#### 3.1.1.3 Pathway and Environmental Hazard Assessment

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows one day care facility, six schools, three hospitals, and two colleges within the potential migration area of 4 miles from any given potential release location of PFCs. No elementary schools are located on Base. The closest elementary school is located at least 1.9 miles hydrologically downgradient (southeast) of the hangars. The on-Base child development center is located approximately 1.5 miles hydrologically downgradient (east-southeast) of the location.

#### 3.1.1.3.1 Groundwater Pathway and Targets

The Basewide geologic and hydrogeological settings are provided in Section 1.3. In the northern portion of the Base, groundwater in the shallow groundwater aquifer generally flows southeast.

Ellsworth AFB drinking water sources are all located more than 4 miles cross-gradient or upgradient of Ellsworth AFB and do not support a complete drinking water exposure pathway. The fact that Ellsworth does not use the shallow unconfined aquifer below the Base as a supply of drinking water would render this drinking water exposure pathway incomplete for Ellsworth AFB workers and residents. However, because of the relatively shallow depth to groundwater in some areas (as shallow as 10 feet bgs), excavation workers could be exposed to groundwater.

One public water supply well, owned by Box Elder, is located approximately 3 miles southeast (cross-gradient) of the location (EDR, 2015). The well serves a population of approximately 7,800 (EDR, 2015). This is a groundwater well, although the aquifer in which the well is zoned is unknown. However, it is likely to be installed in the deeper confined aquifer that would not be impacted by shallow groundwater migrating off Base.

One private groundwater public water supply well is located 3.1 miles south-southeast of the location and serves a population of approximately 90 in Whispering Willows. The aquifer in which the well is zoned is unknown (EDR, 2015). This well is hydrologically cross-gradient of the location.

One known private well is located 9,000 feet cross-gradient (south) of the location and is used to water cattle (Jensen, 2015, personal communication; Appendix C). A second private well is located approximately 9,400 feet cross-gradient (south) of the location and is owned by a landscape/nursery company. It is not known whether this well is used for potable water (USAF, 2012b). However, because these wells are cross-gradient of the hangars, a complete exposure pathway does not exist.

Sampling for PFCs was conducted as part of the Site Inspection (SI) (SCF, 2015) at Docks 73 and 93. PFCs were detected in groundwater and confirm that PFCs have been released as a result of the AFFF fire suppression systems in the hangars.

# 3.1.1.3.2 Surface Water Pathway and Targets

The surface water drainage from the area around the hangars either infiltrates into the soils adjacent to the hangars or enters the storm drain system that flows to the west and discharges to Pond 3, eventually leaving the Base via Outfall 3. In 1993, the tank contents were released to the storm drain system and entered Pond 3, discharged off Base, and eventually discharged to Boxelder Creek. Additionally, while no surface waterbodies are present in the vicinity of the hangars, shallow groundwater beneath the hangar area could be hydrologically connected with downgradient surface waters such as Boxelder Creek. Consequently, complete exposure pathways for dermal exposure to humans and dermal exposure and ingestion by aquatic or other animals are present. Ellsworth AFB drinking water does not come from surface water sources located within the watershed of Ellsworth AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water.

The location is not located within a flood zone. No wetlands are located within the immediate vicinity of the hangars or within 0.5 mile of the location. Discharge from the hangars either enters storm drains or infiltrates into grassy areas surrounding the hangars.

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of the location; however, several wetlands are present (EDR, 2015; USFWS, 2015). Local waterways may be used for recreational fishing by residents of nearby communities while crayfish and fish are known to be consumed from on-Base ponds (Goyer, 2015b, personal communication; Appendix C). Additionally, nearly all of the surface water along the tributaries and Boxelder Creek is available for use for stock watering (Goyer, 2015a, personal communication; Appendix C).

Sampling for PFCs was conducted as part of the SI (SCF, 2015) at Docks 73 and 93. PFCs were detected in surface water and sediments at Pond 3/Outfall 3 located downgradient of the hangars.

# 3.1.1.3.3 Soil and Air Exposure Pathways and Targets

A release of AFFF to the soil surface during fire training activities has likely occurred. This area has no residents, but workers are present at the location where staff work inside and around the hangars. The nearest residents are approximately 1 mile east of the location. The location consists

primarily of hard surfaces with grassy areas along the perimeter. The unpaved areas surrounding the location are well-vegetated and would preclude any fugitive dust emissions and potential exposures. Construction activities or other ground-disturbing activities could result in potential worker exposure. The potential of exposure to burrowing animals, if present, would be possible, although the majority of the location is paved.

The population within 4 miles of the location includes Rapid City and Box Elder residents, with a population of approximately 5,660. No schools or day care facilities are within a 200-foot radius of the location. The nearest school is Vandenberg Elementary School, located approximately 8,875 feet to the southeast of the location (EDR, 2015). The nearest day care facility is the Ellsworth AFB Child Development Center, located approximately 1.4 miles to the west-southwest.

The location is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future. No sensitive environments have been identified within 200 feet or within 4 miles.

Sampling for PFCs was conducted as part of the SI (SCF, 2015) at Docks 73 and 93. PFCs were detected in groundwater and confirm that PFCs have been released as a result of the AFFF fire suppression systems in the hangars.

# **3.1.2** Building 618

# 3.1.2.1 <u>Description and Operational History</u>

Building 618, the Logistics Readiness Squadron and refueling maintenance, is located near the southeast end of the runway (Figures 1.1 and 3.2). This building formerly had an AFFF fire suppression system. Discharge from the system was captured in floor drains and discharged to a 50,000-gallon diversion recovery tank (UST 618) via underground pipelines. The tank contents were released to the WWTP. The solids in the tank were periodically cleaned out by contractors. The dewatered sludge was shoveled out and disposed of at a local landfill (Ellefson, 2015, personal communication; Appendix C). The geographic coordinates are 44°8′ 11.54″N and 103°5′ 9.42″W.

Conversion of all AFFF systems to high-expansion foam systems started in 2005 and was completed in 2012. AFFF is no longer used at Building 618 (Beck, 2015a, personal communication; Appendix C).

# 3.1.2.2 Waste Characteristics

According to the spills database, 50 gallons of AFFF were inadvertently released inside Building 618 when electricians accidentally pressurized the system in November 2001 (Ellsworth, 2015). Based on data collected during the SI (SCF, 2015), AFFF releases have occurred at this location as discussed in Sections 3.1.2.3.1 and 3.1.2.3.3.

# 3.1.2.3 Pathway and Environmental Hazard Assessment

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other

release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows one day care facility, six schools, three hospitals, and two colleges within the potential migration area of 4 miles from any given potential release location of PFCs. No elementary schools are located on Base. The closest elementary school is located at least 1.1 miles hydrologically cross-gradient (east) of Building 618. The on-Base child development center is located approximately 1 mile hydrologically cross-gradient (northeast) of the location.

# 3.1.2.3.1 Groundwater Pathway and Targets

The Basewide geologic and hydrogeological settings are provided in Section 1.3. In the northern portion of the Base, groundwater in the shallow groundwater aquifer generally flows southeast.

Ellsworth AFB drinking water sources are all located more than 4 miles cross-gradient or upgradient of Ellsworth AFB and do not support a complete drinking water exposure pathway. The fact that Ellsworth does not use the shallow unconfined aquifer below the Base as a supply of drinking water would render this drinking water exposure pathway incomplete for Ellsworth AFB workers and residents. However, because of the relatively shallow depth to groundwater near Building 618 (12 to 15 feet bgs), excavation workers could be exposed to groundwater.

One public water supply well, owned by Box Elder, is located approximately 1.8 miles southeast (downgradient) of the location (EDR, 2015). The well serves a population of approximately 7,800 (EDR, 2015). This is a groundwater well, although the aquifer in which the well is zoned is unknown. However, it is likely to be installed in the deeper confined aquifer that would not be impacted by shallow groundwater migrating off Base.

One private groundwater public water supply well is located 1.8 miles south-southeast of the location and serves a population of approximately 90 in Whispering Willows. The aquifer in which the well is zoned is unknown (EDR, 2015). This well is hydrologically cross-gradient of the location.

One known private well is located 5,385 feet cross-gradient (southwest) of the location and is used to water cattle (Jensen, 2015, personal communication; Appendix C). A second private well is located approximately 5,600 feet cross-gradient (southwest) of the location and is owned by a landscape/nursery company. It is not known whether this well is used for potable water (USAF, 2012b). However, because these wells are cross-gradient of Building 618, a complete exposure pathway does not exist.

Sampling for PFCs was conducted as part of the SI (SCF, 2015) at Building 618. PFCs were detected in groundwater and confirm that PFCs have been released as a result of the AFFF fire suppression system.

#### 3.1.2.3.2 Surface Water Pathway and Targets

The surface water drainage from the area around Building 618 either infiltrates into the soils adjacent to the location or enters the storm drain system that flows to the south, discharges into Pond 2, and eventually discharges off Base from Outfall 2. Additionally, while no surface waterbodies are present in the vicinity of the building, shallow groundwater beneath the location

could be hydrologically connected with downgradient surface waters such as Boxelder Creek. Consequently, complete exposure pathways for dermal exposure to humans and dermal exposure and ingestion by aquatic or other animals are present. Ellsworth AFB drinking water does not come from surface water sources located within the watershed of Ellsworth AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water.

The location is not located within a flood zone. No waterbodies or wetlands are located within the immediate vicinity of Building 618. Unnamed drainages and ponds are located within 1,380 feet east and northeast of the location.

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of the location; however, several wetlands are present (EDR, 2015; USFWS, 2015). Local waterways may be used for recreational fishing by residents of nearby communities while crayfish and fish are known to be consumed from on-Base ponds (Goyer, 2015b, personal communication; Appendix C). Additionally, nearly all of the surface water along the tributaries and Boxelder Creek is available for use for stock watering (Goyer, 2015a, personal communication; Appendix C).

# 3.1.2.3.3 Soil and Air Exposure Pathways and Targets

A release of AFFF to the soil surface has occurred based on recent sampling efforts during the SI. This area has no residents, but workers are present at the location where staff work inside and around the building. The nearest residents are approximately 3,200 feet east of the location. The location consists primarily of hard surfaces with grassy areas along the perimeter and surrounding the tank. The unpaved areas surrounding the location are well-vegetated and would preclude any fugitive dust emissions and potential exposures. Construction activities or other ground-disturbing activities could result in potential worker exposure. The potential of exposure to burrowing animals, if present, would be possible although the majority of the location is paved.

The population within 4 miles of the location includes Rapid City and Box Elder residents, with a population of approximately 7,210. No schools or day care facilities are within a 200-foot radius of the location. The nearest school is Vandenberg Elementary School, located approximately 4,600 feet to the east-northeast (EDR, 2015). The nearest day care facility is the Ellsworth AFB Child Development Center, located approximately 5,450 feet to the northeast.

The location is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future. No sensitive environments have been identified within 200 feet or within 4 miles.

Sampling for PFCs was conducted as part of the SI (SCF, 2015) at Building 618. PFCs were detected in the soil and confirm that PFCs have been released as a result of the AFFF fire suppression system.

#### **3.1.3 Building 88240**

# 3.1.3.1 <u>Description and Operational History</u>

Building 88240 is located in the munitions storage area on the north side of Ellsworth AFB and formerly contained an AFFF fire suppression system (Figures 1.1 and 3.3). The building contains a trench drain system. Under normal operating conditions, flow from the trench drains goes into

an oil-water separator prior to being released into the sanitary sewer. However, a valve can be switched to route drainage into the surface impoundment in the event that the AFFF system was activated. Consequently, any AFFF releases in Building 88240 would have drained via underground piping to a surface impoundment located south of Building 88240. There are no records of accidental AFFF releases from Building 88240. The approximate size of the location is 4.7 acres including the surface impoundment. The building currently supports a water-only fire suppression system. The geographic coordinates are 44°9′ 54.73″N and 103°6′ 23.53″W.

Pumphouse 88490, located just southwest of Building 88240, once contained a 500-gallon AFFF tank in the 1980s. This tank provided the AFFF to the fire suppression system located inside Building 88240. The AFFF tank was removed in the early 1990s (Goyer, 2015a, personal communication; Appendix C).

# 3.1.3.2 Waste Characteristics

No spills or releases are known to have occurred at Building 88240; however, sampling conducted during the SI (SCF, 2015) confirms that PFCs have been released, possibly as a result of the AFFF fire suppression system in the building.

## 3.1.3.3 Pathway and Environmental Hazard Assessment

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows one day care facility, six schools, three hospitals, and two colleges within the potential migration area of 4 miles from any given potential release location of PFCs. No elementary schools are located on Base. The closest elementary school is located approximately 2.5 miles hydrologically downgradient (southeast) of Building 88240. The on-Base child development center is located approximately 2.3 miles hydrologically downgradient (southeast) of the location.

## 3.1.3.3.1 Groundwater Pathway and Targets

The Basewide geologic and hydrogeological settings are provided in Section 1.3. In the northern portion of the Base, groundwater in the shallow groundwater aquifer generally flows southeast.

Ellsworth AFB drinking water sources are all located more than 4 miles cross-gradient or upgradient of Ellsworth AFB and do not support a complete drinking water exposure pathway. The fact that Ellsworth does not use the shallow unconfined aquifer below the Base as a supply of drinking water would render this drinking water exposure pathway incomplete for Ellsworth AFB workers and residents. However, because of the relatively shallow depth to groundwater (10 feet bgs), excavation workers could be exposed to groundwater.

One public water supply well, owned by Box Elder, is located approximately 3.7 miles southeast (downgradient) of the location (EDR, 2015). The well serves a population of approximately 7,800 (EDR, 2015). This is a groundwater well, although the aquifer in which the well is zoned is unknown. However, it is likely to be installed in the deeper confined aquifer that would not be impacted by shallow groundwater migrating off Base.

One private groundwater public water supply well is located 4 miles south-southeast of the location and serves a population of approximately 90 in Whispering Willows. This aquifer in which the well is zoned is unknown (EDR, 2015). This well is hydrologically cross-gradient of the location.

One known private well is located 2.7 miles south of the location and is used to water cattle (Jensen, 2015, personal communication; Appendix C). A second private well is located approximately 2.75 miles south of the location and is owned by a landscape/nursery company. It is not known whether this well is used for potable water (USAF, 2012b). Because these wells are not located downgradient (groundwater flow from the location is southeast), a complete exposure pathway for cattle and other ecological receptors or people via drinking water or dermal contact does not exist.

Sampling for PFCs was conducted as part of the SI (SCF, 2015) at the surface impoundment south of Building 88240. PFCs were detected in groundwater collected within and around the surface impoundment south of Building 88240; these samples confirm that PFCs have been released as a result of the AFFF fire suppression system in the building.

#### 3.1.3.3.2 Surface Water Pathway and Targets

The surface water drainage from the area around Building 88240 either infiltrates into the soils adjacent to the location or enters the surface impoundment south of Building 88240. Consequently, complete exposure pathways for dermal exposure to humans and dermal exposure and ingestion by aquatic or other animals are present. Ellsworth AFB drinking water does not come from surface water sources located within the watershed of Ellsworth AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water.

The location is not located within a flood zone. In addition to the surface impoundment located 300 feet south of Building 88240, another pond is located 1,000 feet northwest of Building 88240 but is not within the surface drainage pathway.

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of the location; however, several wetlands are present (EDR, 2015; USFWS, 2015). Local waterways may be used for recreational fishing by residents of nearby communities while crayfish and fish are known to be consumed from on-Base ponds (Goyer, 2015b, personal communication; Appendix C). Additionally, nearly all of the surface water along the tributaries and Boxelder Creek is available for use for stock watering (Goyer, 2015a, personal communication; Appendix C).

Sampling for PFCs was conducted as part of the SI (SCF, 2015) at the surface impoundment south of Building 88240. PFCs were detected in sediment and surface water collected within and around the surface impoundment south of Building 88240; these samples confirm that PFCs have been released as a result of the AFFF fire suppression system in the building.

#### 3.1.3.3.3 Soil and Air Exposure Pathways and Targets

A release of AFFF to the soil has occurred based on recent sampling efforts during the SI. This area has no residents, but workers are present at the location where staff work inside and around the building. The nearest residents are approximately 7,000 feet southeast of the location. The location consists primarily of grassy areas with hard surfaces surrounding the building. The unpaved areas surrounding the location are well-vegetated and would preclude any fugitive dust emissions and potential exposures. Construction activities or other ground-disturbing activities could result in potential worker exposure. The potential of exposure to burrowing animals, if present, would be possible.

The population within 4 miles of the location includes Rapid City and Box Elder residents, with a population of approximately 4,970. No schools or day care facilities are within a 200-foot radius of the location. The nearest school is Vandenberg Elementary School, located approximately 2.5 miles to the southeast (EDR, 2015). The nearest day care facility is the Ellsworth AFB Child Development Center, located approximately 2.3 miles to the southeast.

The location is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future. No sensitive environments have been identified within 200 feet or within 4 miles.

Sampling for PFCs was conducted as part of the SI (SCF, 2015) at the surface impoundment south of Building 88240. PFCs were detected in soil collected around the surface impoundment south of Building 88240; these samples confirm that PFCs have been released as a result of the AFFF fire suppression system in the building.

#### 3.2 FIRE STATIONS

# 3.2.1 Former Fire Station 2 (Building 7506)

#### 3.2.1.1 Description and Operational History

Former Fire Station 2 was located in Building 7506. The building was demolished in 2010. The station was located in the northern portion of the Base (Figures 1.1 and 3.4). This fire station was used to support the munitions storage area until 1994. This station did not have access to and did not service the airfield. It is unknown whether this station had a crash truck, but a fire truck was located here in the late 1980s for structural fires. Foam rarely would have been used on structure fires. No known spills or leaks of AFFF at this location have occurred (Beck, 2015a, personal communication; Appendix C). Based on the information obtained about Fire Station 2, the potential for this location to be a source of AFFF is low and no complete exposure pathways are likely to exist. The geographic coordinates are 44°9′ 40.63"N and 103°5′ 49.46"W.

#### 3.2.1.2 Waste Characteristics

Not applicable.

# 3.2.1.3 Pathway and Environmental Hazard Assessment

#### 3.2.1.3.1 Groundwater Pathway and Targets

Not applicable.

# 3.2.1.3.2 Surface Water Pathway and Targets

Not applicable.

# 3.2.1.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

# 3.2.2 Former Fire Storage Area

# 3.2.2.1 <u>Description and Operational History</u>

A former storage area used by the fire department was located in the northern portion of the Base (Figures 1.1 and 3.1). No fire trucks were stored here but other miscellaneous equipment was stored here by the department. Additionally, this location may have historically supported an old fire station (Beck, 2015a, personal communication; Appendix C). The dates of this fire station are unknown and it is unknown whether AFFF was used or stored here. However, given that several other fire stations were located on Base by 1970 and were closer to the flightline operations and based on the location of this storage area, it is unlikely that AFFF was used here (Beck, 2015a, personal communication; Appendix C). Based on the information obtained about the Former Fire Storage Area, the potential for this location to be a source of AFFF is low and no complete exposure pathways are believed to exist.

# 3.2.2.2 Waste Characteristics

Not applicable.

#### 3.2.2.3 Pathway and Environmental Hazard Assessment

#### 3.2.2.3.1 Groundwater Pathway and Targets

Not applicable.

#### 3.2.2.3.2 Surface Water Pathway and Targets

Not applicable.

# 3.2.2.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

#### 3.2.3 Former Fire Station (Building 7506)

# 3.2.3.1 <u>Description and Operational History</u>

The former fire station was located in Building 7506 in the central portion of Ellsworth AFB (Figures 1.1 and 3.4). The building was built in 1952, used until 2000, and demolished in 2007. The geographical coordinates are 44°8'44.06"N and 103°5'40.36"W.

Fire department vehicles were stored, cleaned, and maintained in this building. The building was fitted with trench drains that contained any spills inside the building although discharges of AFFF were often observed outside the building (Beck, 2015a, personal communication; Appendix C). Trench drains discharged to the sanitary sewer system and ultimately to the WWTP (the WWTP is evaluated in Section 3.4.2).

Due to limited space in the fire station, trucks were sometimes stored in Dock 51. No maintenance of fire trucks was conducted in Dock 51 (Beck, 2015a, personal communication; Appendix C). Two minor spills were noted in Dock 51 in the spills database including a 3-gallon spill from a fire truck in May 1998 and a 2-gallon spill from a foam trailer in April 2000 (Ellsworth, 2015). Spills would have entered the trench drains inside the building and been contained in the 20 row diversion tank. Consequently, Dock 51 is not considered a potential release location for AFFF.

# 3.2.3.2 Waste Characteristics

AFFF was stored in two overhead storage tanks with a piping system that was used to gravity fill into the tops of the crash trucks. The tanks were 300 and 500 gallons. These tanks were not known to have any serious leaks or spills (Beck, 2015a, personal communication; Appendix C). However, the spills database documented a 5-gallon spill when a line broke in November 1994 (Ellsworth, 2015). The spill was contained on concrete (USAF, 2012b).

While the former fire station was in operation, it was not uncommon to see foam solution on the fire station driveways after foam operations had occurred on Base (Beck, 2015a, personal communication; Appendix C) indicating releases outside of the building footprint.

Based on the operational history and use of AFFF during these years, the potential for PFCs released to the environment is high.

#### 3.2.3.3 Pathway and Environmental Hazard Assessment

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows one day care facility, six schools, three hospitals, and two colleges within the potential migration area of 4 miles from any given potential release location of PFCs. No elementary schools are located on Base. The closest elementary school is located

approximately 6,775 feet hydrologically downgradient (southeast) of the former fire station. The on-Base child development center is located approximately 6,610 feet hydrologically crossgradient (east) of the location.

# 3.2.3.3.1 Groundwater Pathway and Targets

The Basewide geologic and hydrogeological settings are provided in Section 1.3. In the northern portion of the Base, groundwater in the shallow groundwater aquifer generally flows southeast.

Ellsworth AFB drinking water sources are all located more than 4 miles cross-gradient or upgradient of Ellsworth AFB and do not support a complete drinking water exposure pathway. The fact that Ellsworth does not use the shallow unconfined aquifer below the Base as a supply of drinking water would render this drinking water exposure pathway incomplete for Ellsworth AFB workers and residents. However, because of the relatively shallow depth to groundwater (10 feet bgs), excavation workers could be exposed to groundwater.

One public water supply well, owned by Box Elder, is located approximately 2.5 miles southeast (downgradient) of the location (EDR, 2015). The well serves a population of approximately 7,800 (EDR, 2015). This is a groundwater well, although the aquifer in which the well is zoned is unknown. However, it is likely to be installed in the deeper confined aquifer that would not be impacted by shallow groundwater migrating off Base.

One private groundwater public water supply well is located 2.6 miles south-southeast of the location and serves a population of approximately 90 in Whispering Willows. The aquifer in which the well is zoned is unknown (EDR, 2015). This well is hydrologically cross-gradient of the location.

One known private well is located 1.4 miles southwest of the former fire station (cross-gradient) and is used to water cattle (Jensen, 2015, personal communication; Appendix C). A second private well is located approximately 1.45 miles southwest of the location and is owned by a landscape/nursery company. It is not known whether this well is used for potable water (USAF, 2012b). Because these wells are not located downgradient (groundwater flow from the location is southeast), a complete exposure pathway for cattle and other ecological receptors or people via drinking water or dermal contact does not exist.

# 3.2.3.3.2 Surface Water Pathway and Targets

The surface water drainage from the area around the former fire station either infiltrates into the soils adjacent to the location or enters the storm drain system and eventually drains off Base. Consequently, complete exposure pathways for dermal exposure to humans and dermal exposure and ingestion by aquatic or other animals are present. Ellsworth AFB drinking water does not come from surface water sources located within the watershed of Ellsworth AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water.

The location is not located within a flood zone. Unnamed drainages and wetlands are located approximately 2,900 feet east of the former fire station but are not within the surface drainage pathway.

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of the location; however, several

wetlands are present (EDR, 2015; USFWS, 2015). Local waterways may be used for recreational fishing by residents of nearby communities while crayfish and fish are known to be consumed from on-Base ponds (Goyer, 2015b, personal communication; Appendix C). Additionally, nearly all of the surface water along the tributaries and Boxelder Creek is available for use for stock watering (Goyer, 2015a, personal communication; Appendix C).

## 3.2.3.3.3 Soil and Air Exposure Pathways and Targets

Because grassy areas are located around the former fire station, it is possible that AFFF migrated out of the bay and into nearby soils. This area has no residents, but workers are present at the location where staff work inside and around the buildings. The nearest residents are approximately 5,000 feet northeast of the location. The location consists primarily of hard surfaces with some adjacent grassy areas. The unpaved areas surrounding the location are well-vegetated and would preclude any fugitive dust emissions and potential exposures. Construction activities or other ground-disturbing activities could result in potential worker exposure. The potential of exposure to burrowing animals, if present, would be possible.

The population within 4 miles of the location includes Rapid City and Box Elder residents, with a population of approximately 6,210. No schools or day care facilities are within a 200-foot radius of the location. The nearest school is Vandenberg Elementary School, located approximately 6,750 feet to the east-southeast (EDR, 2015). The nearest day care facility is the Ellsworth AFB Child Development Center, located approximately 6,620 feet to the east.

The location is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future. No sensitive environments have been identified within 200 feet or within 4 miles.

#### 3.2.4 Current Fire Station (Building 7502)

#### 3.2.4.1 Description and Operational History

The current fire station, Building 7502, is located in the central portion of the Base between 50 row and 60 row (Figures 1.1 and 3.4). The building was built in 2000 at which time the fire department moved out of the former location (Building 7506). The building is in good condition with no cracking in floors or driveways. It is surrounded by a paved/concrete area with small grassy areas bordering it to the south.

AFFF is stored in the current fire station in a storage room and in fire trucks and trailers. As of February 2015, 220 gallons of AFFF were stored in the storage room (Beck, 2015a, personal communication; Appendix C). A total of 2,641 gallons of AFFF are stored in trucks at the fire station; this includes 500 gallons on three P-23s, 56 gallons on U-8, 30 gallons on Engine 9, 25 gallons on Engine 7, 30 gallons on Aerial, and 1,000 gallons on the foam trailer. Trucks are refilled with AFFF in the bays from 5-gallon buckets.

As noted in the spills database, only one minor spill has occurred at the current fire station. Five gallons were released from a fire truck in July 2012 in the northwest corner of the fire station. The spill was not washed down the drains and was allowed to evaporate on the floor (Ellsworth, 2015).

Cleaning, maintenance, and refilling of the vehicle is conducted inside the fire station bays where floor drains are present to capture any runoff and feed into the sanitary sewer line that discharged

to the WWTP until 2014 when it was decommissioned. The sanitary sewer now discharges to an off-Base publicly owned treatment works. The WWTP is evaluated as a separate location in Section 3.4.2.The geographical coordinates of the current fire station are 44°8'47.24"N and 103°5'40.94"W.

# 3.2.4.2 <u>Waste Characteristics</u>

Not applicable.

#### 3.2.4.3 Pathway and Environmental Hazard Assessment

Not applicable.

#### 3.2.4.3.1 Groundwater Pathway and Targets

Not applicable.

## 3.2.4.3.2 Surface Water Pathway and Targets

Not applicable.

## 3.2.4.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

#### 3.3 EMERGENCY RESPONSE

Only those crashes where AFFF was used are presented below. As documented in the Limited PA (USAF, 2012b) and as confirmed by Mr. Beck (Beck, 2015a, personal communication; Appendix C), a C-21 crashed in the southwest corner of the Base in 2002 but AFFF was not released at this crash location. Therefore, this crash location is not discussed further.

## 3.3.1 B-52 Crash (1970)

#### 3.3.1.1 Description and Operational History

In April 1970, a B-52 caught fire and crashed during landing, skidding into a brick pumphouse containing six 25,000-gallon USTs. The crash occurred along the northern portion of the runway (Figures 1.1 and 3.1). The Ellsworth AFB Fire Department responded to the crash and extinguished the fire with an unknown quantity of foam (Beck, 2015a, personal communication; Appendix C). It is unlikely that AFFF would have been present in the Ellsworth inventory by early 1970. The geographic coordinates are 44°9′ 8.92″N and 103°6′ 36.22″W.

## 3.3.1.2 Waste Characteristics

Not applicable.

## 3.3.1.3 Pathway and Environmental Hazard Assessment

Not applicable.

## 3.3.1.3.1 Groundwater Pathway and Targets

Not applicable.

## 3.3.1.3.2 Surface Water Pathway and Targets

Not applicable.

## 3.3.1.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

## 3.3.2 B-1 Crash (1988)

## 3.3.2.1 Description and Operational History

In 1988, a B-1 crashed while landing just short of the southern end of the runway (Figures 1.1 and 3.5). The geographic coordinates are 44°7′ 43.33″N and 103°5′ 58.77″W.

# 3.3.2.2 <u>Waste Characteristics</u>

The Ellsworth AFB Fire Department responded to the B-1 crash and extinguished the fire with an unknown quantity of AFFF (Beck, 2015a, personal communication; Appendix C). AFFF applied would have infiltrated into the grass at the crash location.

## 3.3.2.3 Pathway and Environmental Hazard Assessment

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows one day care facility, six schools, three hospitals, and two colleges within the potential migration area of 4 miles from any given potential release location of PFCs. No elementary schools are located on Base. The closest elementary school is located approximately 5,350 feet hydrologically cross-gradient (northeast) of the crash location. The on-Base child development center is located approximately 6,610 miles hydrologically cross-gradient (east) of the location.

#### 3.3.2.3.1 Groundwater Pathway and Targets

The Basewide geologic and hydrogeological settings are provided in Section 1.3. Groundwater in the shallow groundwater aquifer generally flows southeast.

Residual AFFF released to grass or dirt surfaces at the crash location may have infiltrated to groundwater. Ellsworth AFB drinking water sources are all located more than 4 miles crossgradient or upgradient of Ellsworth AFB and do not support a complete drinking water exposure pathway. The fact that Ellsworth does not use the shallow unconfined aquifer below the Base as a supply of drinking water would render this drinking water exposure pathway incomplete for Ellsworth AFB workers and residents. However, because of the relatively shallow depth to groundwater (10 feet bgs), excavation workers could be exposed to groundwater.

One public water supply well, owned by Box Elder, is located approximately 1.5 miles east (crossgradient) of the location (EDR, 2015). The well serves a population of approximately 7,800 (EDR, 2015). This is a groundwater well, although the aquifer in which the well is zoned is unknown. However, it is likely to be installed in the deeper confined aquifer that would not be impacted by shallow groundwater migrating off Base.

One private groundwater public water supply well is located 1.2 miles south-southeast of the location and serves a population of approximately 90 in Whispering Willows. The aquifer in which the well is zoned is unknown (EDR, 2015). This well is hydrologically downgradient of the location.

One known private well is located approximately 4,700 feet southwest of the crash location (crossgradient) and is used to water cattle (Jensen, 2015, personal communication; Appendix C). A second private well is located approximately 4,730 feet southwest of the location and is owned by a landscape/nursery company. It is not known whether this well is used for potable water (USAF, 2012b). Because these wells are not located downgradient (groundwater flow from the location is southeast), a complete exposure pathway for cattle and other ecological receptors or people via drinking water or dermal contact does not exist.

#### 3.3.2.3.2 Surface Water Pathway and Targets

The surface water drainage from the area around the crash location infiltrates into the soils or enters the unnamed drainages just south of the location. Consequently, complete exposure pathways for dermal exposure to humans and dermal exposure and ingestion by aquatic or other animals are present. Ellsworth AFB drinking water does not come from surface water sources located within the watershed of Ellsworth AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water.

The location is not located within a flood zone. No wetlands are located within 200 feet of the location. Unnamed drainages and ponds are located approximately 1,300 feet southwest of the crash location.

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of the location; however, several wetlands are present (EDR, 2015; USFWS, 2015). Local waterways may be used for recreational fishing by residents of nearby communities while crayfish and fish are known to be consumed from on-Base ponds (Goyer, 2015b, personal communication; Appendix C). Additionally, nearly

all of the surface water along the tributaries and Boxelder Creek is available for use for stock watering (Goyer, 2015a, personal communication; Appendix C).

## 3.3.2.3.3 Soil and Air Exposure Pathways and Targets

AFFF was likely released to soils in this area. This area has no residents and no workers are present at the location. The nearest residents are approximately 3,350 feet northeast of the location. The location consists entirely of grass. The area is well-vegetated and would preclude any fugitive dust emissions and potential exposures. Construction activities or other ground-disturbing activities could result in potential worker exposure. The potential of exposure to burrowing animals, if present, would be possible.

The population within 4 miles of the location includes Rapid City and Box Elder residents, with a population of 7,530. No schools or day care facilities are within a 200-foot radius of the location. The nearest school is Vandenberg Elementary School, located approximately 5,350 feet to the northeast. The nearest day care facility is the Ellsworth AFB Child Development Center, located approximately 6,900 feet to the northeast.

The location is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future. No sensitive environments have been identified within 200 feet or within 4 miles.

## 3.3.3 Delta Taxiway West Crash (2000)

# 3.3.3.1 <u>Description and Operational History</u>

In August 2000, a P-15 fire truck rear ended an AFFF foam trailer on Delta Taxiway West (Figures 1.1 and 3.4) (Beck, 2015a, personal communication; Appendix C). The geographic coordinates are 44°8′ 30.33″N and 103°6′ 8.94″W.

## 3.3.3.2 <u>Waste Characteristics</u>

Approximately 100 gallons of AFFF was spilled at the scene (USAF, 2012b). AFFF released on the taxiway may have run off to the adjacent soils and infiltrated into the grass.

## 3.3.3.3 Pathway and Environmental Hazard Assessment

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows one day care facility, six schools, three hospitals, and two colleges within the potential migration area of 4 miles from any given potential release location of PFCs. No elementary schools are located on Base. The closest elementary school is located

approximately 8,400 feet hydrologically cross-gradient (east) of the crash location. The on-Base child development center is located approximately 8,750 miles hydrologically cross-gradient (east) of the location.

## 3.3.3.1 Groundwater Pathway and Targets

The Basewide geologic and hydrogeological settings are provided in Section 1.3. Groundwater in the shallow groundwater aquifer generally flows southeast.

Residual AFFF released to grass or dirt surfaces at the crash location may have infiltrated to groundwater. Ellsworth AFB drinking water sources are all located more than 4 miles crossgradient or upgradient of Ellsworth AFB and do not support a complete drinking water exposure pathway. The fact that Ellsworth does not use the shallow unconfined aquifer below the Base as a supply of drinking water would render this drinking water exposure pathway incomplete for Ellsworth AFB workers and residents. However, because of the relatively shallow depth to groundwater (10 feet bgs), excavation workers could be exposed to groundwater.

One public water supply well, owned by Box Elder, is located approximately 2.7 miles east-southeast (downgradient) of the location (EDR, 2015). The well serves a population of approximately 7,800 (EDR, 2015). This is a groundwater well, although the aquifer in which the well is zoned is unknown. However, it is likely to be installed in the deeper confined aquifer that would not be impacted by shallow groundwater migrating off Base.

One private groundwater public water supply well is located 2.6 miles south-southeast of the location and serves a population of 90 in Whispering Willows. The aquifer in which the well is zoned is unknown (EDR, 2015). This well is hydrologically downgradient of the location.

One known private well is located approximately 4,700 feet southwest of the crash location (crossgradient) and is used to water cattle (Jensen, 2015, personal communication; Appendix C). A second private well is located approximately 4,730 feet southwest of the location and is owned by a landscape/nursery company. It is not known whether this well is used for potable water (USAF, 2012b). Because these wells are not located downgradient (groundwater flow from the location is southeast), a complete exposure pathway for cattle and other ecological receptors or people via drinking water or dermal contact does not exist.

#### 3.3.3.3.2 Surface Water Pathway and Targets

The surface water drainage from the area around the crash location infiltrates into the soils or enters the storm drain system that flows to Pond 1 and eventually discharges into a private waterbody. Consequently, complete exposure pathways for dermal exposure to humans and dermal exposure and ingestion by aquatic or other animals are present. Ellsworth AFB drinking water does not come from surface water sources located within the watershed of Ellsworth AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water.

The location is not located within a flood zone. No wetlands are located within 200 feet of the location. Unnamed drainages and ponds are located approximately 1,300 feet southwest of the crash location.

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of the location; however, several

wetlands are present (EDR, 2015; USFWS, 2015). Local waterways may be used for recreational fishing by residents of nearby communities while crayfish and fish are known to be consumed from on-Base ponds (Goyer, 2015b, personal communication; Appendix C). Additionally, nearly all of the surface water along the tributaries and Boxelder Creek is available for use for stock watering (Goyer, 2015a, personal communication; Appendix C).

## 3.3.3.3 Soil and Air Exposure Pathways and Targets

AFFF was likely released to soils in this area. This area has no residents and no workers are present at the location. The nearest residents are approximately 3,350 feet northeast of the location. The location consists entirely of grass. The area is well-vegetated and would preclude any fugitive dust emissions and potential exposures. Construction activities or other ground-disturbing activities could result in potential worker exposure. The potential of exposure to burrowing animals, if present, would be possible.

The population within 4 miles of the location includes Rapid City and Box Elder residents, with a population of approximately 7,530. No schools or day care facilities are within a 200-foot radius of the location. The nearest school is Vandenberg Elementary School, located approximately 5,350 feet to the northeast. The nearest day care facility is the Ellsworth AFB Child Development Center, located approximately 6,900 feet to the northeast.

The location is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future. No sensitive environments have been identified within 200 feet or within 4 miles.

#### **3.3.4** Marten Crash (2003)

# 3.3.4.1 <u>Description and Operational History</u>

In February 2003, a privately owned semi-truck traveling west crashed off of an overpass on I-90 and landed in a grassy field on Ellsworth AFB property (Figures 1.1 and 3.5). The geographic coordinates are 44°7′ 4.79″N and 103°4′ 45.47″W.

## 3.3.4.2 Waste Characteristics

The Ellsworth AFB Fire Department responded to the crash and an unknown amount of AFFF was used at the scene (Beck, 2015a, personal communication; Appendix C).

# 3.3.4.3 Pathway and Environmental Hazard Assessment

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows one day care facility, six schools, three hospitals, and two colleges within the potential migration area of 4 miles from any given potential release location of PFCs. No elementary schools are located on Base. The closest elementary school is located approximately 7,860 feet hydrologically upgradient (northeast) of the crash location. The on-Base child development center is located approximately 9,950 miles hydrologically upgradient (northeast) of the location.

## 3.3.4.3.1 Groundwater Pathway and Targets

The Basewide geologic and hydrogeological settings are provided in Section 1.3. Groundwater in the shallow groundwater aquifer generally flows southeast.

Residual AFFF released to grass or dirt surfaces at the crash location may have infiltrated to groundwater. Ellsworth AFB drinking water sources are all located more than 4 miles crossgradient or upgradient of Ellsworth AFB and do not support a complete drinking water exposure pathway. The fact that Ellsworth does not use the shallow unconfined aquifer below the Base as a supply of drinking water would render this drinking water exposure pathway incomplete for Ellsworth AFB workers and residents. However, because of the relatively shallow depth to groundwater (10 feet bgs), excavation workers could be exposed to groundwater.

One public water supply well, owned by Box Elder, is located approximately 1.5 miles northeast (cross-gradient) of the location (EDR, 2015). The well serves a population of approximately 7,800 (EDR, 2015). This is a groundwater well, although the aquifer in which the well is zoned is unknown. However, it is likely to be installed in the deeper confined aquifer that would not be impacted by shallow groundwater migrating off Base.

One private groundwater public water supply well is located 0.6 mile southeast of the location and serves a population of approximately 90 in Whispering Willows. The aquifer in which the well is zoned is unknown (EDR, 2015). This well is hydrologically cross-gradient of the location.

One known private well is located approximately 6,260 feet northwest of the crash location (upgradient) and is used to water cattle (Jensen, 2015, personal communication; Appendix C). A second private well is located approximately 6,170 feet northwest of the location and is owned by a landscape/nursery company. It is not known whether this well is used for potable water (USAF, 2012b). Because these wells are not located downgradient (groundwater flow from the location is southeast), a complete exposure pathway for cattle and other ecological receptors or people via drinking water or dermal contact does not exist.

#### 3.3.4.3.2 Surface Water Pathway and Targets

The surface water drainage from the area around the crash location infiltrates into the soils or enters nearby unnamed tributaries that eventually discharge to Boxelder Creek. Consequently, complete exposure pathways for dermal exposure to humans and dermal exposure and ingestion by aquatic or other animals are present. Ellsworth AFB drinking water does not come from surface water sources located within the watershed of Ellsworth AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water.

The location is not located within a flood zone. No wetlands are located within 200 feet of the location. Unnamed drainages are located approximately 500 feet south of the crash location.

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of the location; however, several wetlands are present (EDR, 2015; USFWS, 2015). Local waterways may be used for recreational fishing by residents of nearby communities. Additionally, nearly all of the surface water along the tributaries and Boxelder Creek is available for use for stock watering (Goyer, 2015a, personal communication; Appendix C).

## 3.3.4.3.3 Soil and Air Exposure Pathways and Targets

AFFF was likely released to soils in this area. This area has no residents and no workers are present at the location. The nearest residents are approximately 3,350 feet northeast of the location. The location consists entirely of grass. The area is well-vegetated and would preclude any fugitive dust emissions and potential exposures. Construction activities or other ground-disturbing activities could result in potential worker exposure. The potential of exposure to burrowing animals, if present, would be possible.

The population within 4 miles of the location includes Rapid City and Box Elder residents, with a population of approximately 7,250. No schools or day care facilities are within a 200-foot radius of the location. The nearest school is Badger Clark Elementary School, located approximately 7,860 feet to the northeast. The nearest day care facility is the Ellsworth AFB Child Development Center, located approximately 10,080 feet to the northeast.

The location is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future. No sensitive environments have been identified within 200 feet or within 4 miles.

#### 3.3.5 Crash 4 (2001)

#### 3.3.5.1 Description and Operational History

In March 2000, Crash 4, a P-23 fire truck, apparently released 10 gallons of AFFF near the vicinity of Building 7140 (Figures 1.1 and 3.1). The fire department has no records or knowledge of this crash but according to Mr. Beck, it likely happened on the road leading from taxiway alpha to Building 7140, which has since been demolished. Mr. Beck indicated that the area was often used for staging fire trucks during war training exercises (Beck, 2015b, personal communication; Appendix C). The geographic coordinates are 44°9′ 23.90″N and 103°6′ 33.81″W.

#### 3.3.5.2 Waste Characteristics

The spills database indicates that a spill resulted in the release of 10 gallons of AFFF (Ellsworth, 2015).

# 3.3.5.3 Pathway and Environmental Hazard Assessment

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other

release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows one day care facility, six schools, three hospitals, and two colleges within the potential migration area of 4 miles from any given potential release location of PFCs. No elementary schools are located on Base. The closest elementary school is located approximately 11,750 feet hydrologically downgradient (southeast) of the crash location. The on-Base child development center is located approximately 11,050 miles hydrologically downgradient (southeast) of the location.

#### 3.3.5.3.1 Groundwater Pathway and Targets

The Basewide geologic and hydrogeological settings are provided in Section 1.3. Groundwater in the shallow groundwater aquifer generally flows southeast.

Residual AFFF released to grass or dirt surfaces at the crash location may have infiltrated to groundwater. Ellsworth AFB drinking water sources are all located more than 4 miles crossgradient or upgradient of Ellsworth AFB and do not support a complete drinking water exposure pathway. The fact that Ellsworth does not use the shallow unconfined aquifer below the Base as a supply of drinking water would render this drinking water exposure pathway incomplete for Ellsworth AFB workers and residents. However, because of the relatively shallow depth to groundwater (10 feet bgs), excavation workers could be exposed to groundwater.

One public water supply well, owned by Box Elder, is located approximately 3.5 miles southeast (downgradient) of the location (EDR, 2015). The well serves a population of approximately 7,800 (EDR, 2015). This is a groundwater well, although the aquifer in which the well is zoned is unknown. However, it is likely to be installed in the deeper confined aquifer that would not be impacted by shallow groundwater migrating off Base.

One private groundwater public water supply well is located 3.6 miles south-southeast of the location and serves a population of approximately 90 in Whispering Willows. The aquifer in which the well is zoned is unknown (EDR, 2015). This well is hydrologically cross-gradient of the location.

One known private well is located approximately 11,500 feet south of the location (cross-gradient) and is used to water cattle (Jensen, 2015, personal communication; Appendix C). A second private well is located approximately 11,900 feet south of the location and is owned by a landscape/nursery company. It is not known whether this well is used for potable water (USAF, 2012b). Because these wells are not located downgradient (groundwater flow from the location is southeast), a complete exposure pathway for cattle and other ecological receptors or people via drinking water or dermal contact does not exist.

#### 3.3.5.3.2 Surface Water Pathway and Targets

The surface water drainage from the area around the crash location infiltrates into the soils or enters nearby drainages. Consequently, complete exposure pathways for dermal exposure to humans and dermal exposure and ingestion by aquatic or other animals are present. Ellsworth AFB drinking water does not come from surface water sources located within the watershed of

Ellsworth AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water.

The location is not located within a flood zone. No wetlands are located within 200 feet of the location. Unnamed drainages are located approximately 500 feet north of the location.

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of the location; however, several wetlands are present (EDR, 2015; USFWS, 2015). Local waterways may be used for recreational fishing by residents of nearby communities. Additionally, nearly all of the surface water along the tributaries and Boxelder Creek is available for use for stock watering (Goyer, 2015a, personal communication; Appendix C).

## 3.3.5.3.3 Soil and Air Exposure Pathways and Targets

AFFF was potentially released to soils in this area. This area has no residents and no workers are present at the location. The nearest residents are approximately 6,950 feet east of the location. The location consists of paved areas surrounded by grass. The area is well-vegetated and would preclude any fugitive dust emissions and potential exposures. Construction activities or other ground-disturbing activities could result in potential worker exposure. The potential of exposure to burrowing animals, if present, would be possible.

The population within 4 miles of the location includes Rapid City and Box Elder residents, with a population of approximately 7,250. No schools or day care facilities are within a 200-foot radius of the location. The nearest school is Badger Clark Elementary School, located approximately 11,750 feet to the southeast. The nearest day care facility is the Ellsworth AFB Child Development Center, located approximately 11,050 feet to the southeast.

The location is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future. No sensitive environments have been identified within 200 feet or within 4 miles.

#### 3.4 OTHER

#### **3.4.1 Hazmart** (Building 1911)

## 3.4.1.1 Description and Operational History

Hazmart (Building 1911) is a chemical storage facility located on the southern portion of the Base (Figures 1.1 and 3.2). The Hazmart currently stores about 3,965 gallons of AFFF (Beck, 2015a, personal communication; Appendix C). Based on a visit on February 24, 2015, most containers are shrink-wrapped and stored on pallets. The storage room has floor drains that would contain spills. No known spills or releases are documented (Ellsworth, 2015). The geographic coordinates are 44°8′ 9.52″N and 103°4′ 58.93″W.

#### 3.4.1.2 Waste Characteristics

Not applicable.

## 3.4.1.3 Pathway and Environmental Hazard Assessment

#### 3.4.1.3.1 Groundwater Pathway and Targets

Not applicable.

## 3.4.1.3.2 Surface Water Pathway and Targets

Not applicable.

## 3.4.1.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.

#### 3.4.2 Wastewater Treatment Plant

## 3.4.2.1 <u>Description and Operational History</u>

The Base WWTP is located in the southeast portion of the Base (Figures 1.1 and 3.6) and was decommissioned in July 2014. The geographic coordinates are 44°7′ 54.49″N and 103°4′ 41.05″W.

During operations, all waste in the sanitary sewer and industrial sewer lines went to the WWTP. Treated water was discharged to Outfall 5, which flowed to unnamed drainages then to Golf Course Lake and to Outfall 6 where it went off Base and discharged to Boxelder Creek. When the WWTP was operating, approximately 300,000 to 500,000 gallons per day were discharged from the Golf Course Lake to off Base. Sludge from the WWTP was disposed of at the local landfill in accordance with the permit (Goyer, 2015a, personal communication; Appendix C).

## 3.4.2.2 Waste Characteristics

The WWTP received discharge from several locations which have had AFFF releases such as the diversion tanks at 70 row and Building 618 and any discharge from fire station floor drains (Goyer, 2015a, personal communication; Appendix C). Sludge and treated water from the WWTP are likely to contain PFCs. While the WWTP was a closed system, AFFF was likely released as a result of treated water discharge and sludge management. Additionally, water from Golf Course Lake was sometimes used for irrigation of the golf course (Goyer, 2015a, personal communication; Appendix C).

# 3.4.2.3 Pathway and Environmental Hazard Assessment

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows one day care facility, six schools, three hospitals, and two colleges within the potential migration area of 4 miles from any given potential release location of PFCs. No elementary schools are located on Base. The closest elementary school is located approximately 3,780 feet hydrologically cross-gradient (northeast) of the WWTP. The on-Base child development center is located approximately 5,265 feet hydrologically cross-gradient (northeast) of the location.

#### 3.4.2.3.1 Groundwater Pathway and Targets

The Basewide geologic and hydrogeological settings are provided in Section 1.3. Groundwater in the shallow groundwater aquifer generally flows east near the WWTP.

The sludge drying bed at the WWTP is a potential source of AFFF to groundwater. The drying beds do not have an impervious layer beneath them. Ellsworth AFB drinking water sources are all located more than 4 miles cross-gradient or upgradient of Ellsworth AFB and do not support a complete drinking water exposure pathway. The fact that Ellsworth does not use the shallow unconfined aquifer below the Base as a supply of drinking water would render this drinking water exposure pathway incomplete for Ellsworth AFB workers and residents. However, because of the relatively shallow depth to groundwater (as shallow as 10 feet bgs), excavation workers could be exposed to groundwater.

One public water supply well, owned by Box Elder, is located approximately 1.3 miles east (downgradient) of the location (EDR, 2015). The well serves a population of approximately 7,800 (EDR, 2015). This is a groundwater well, although the aquifer in which the well is zoned is unknown. However, it is likely to be installed in the deeper confined aquifer that would not be impacted by shallow groundwater migrating off Base.

One private groundwater public water supply well is located 1.3 miles south-southeast of the location and serves a population of approximately 90 in Whispering Willows. The aquifer in which the well is zoned is unknown (EDR, 2015). This well is hydrologically cross-gradient of the location.

One known private well is located 6,220 feet southwest of the location (cross-gradient) and is used to water cattle (Jensen, 2015, personal communication; Appendix C). A second private well is located approximately 6,350 feet southwest of the location and is owned by a landscape/nursery company. It is not known whether this well is used for potable water (USAF, 2012b). Because these wells are not located downgradient (groundwater flow from the location is southeast), a complete exposure pathway for cattle and other ecological receptors or people via drinking water or dermal contact does not exist.

#### 3.4.2.3.2 Surface Water Pathway and Targets

Surface runoff from the area runs into nearby unnamed drainages that drain to Golf Course Lake which discharges off Base via Outfall 6. Consequently, complete exposure pathways for dermal exposure to humans and dermal exposure and ingestion by aquatic or other animals are present. Ellsworth AFB drinking water does not come from surface water sources located within the watershed of Ellsworth AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water.

The location is not located within a flood zone. Wetlands are located 120 feet south of the location and unnamed drainages are located directly east of the location.

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of the location; however, several wetlands are present (EDR, 2015; USFWS, 2015). Local waterways may be used for recreational fishing by residents of nearby communities while crayfish and fish are known to be consumed from on-Base ponds (Goyer, 2015b, personal communication; Appendix C). Additionally, nearly all of the surface water along the tributaries and Boxelder Creek is available for use for stock watering (Goyer, 2015a, personal communication; Appendix C).

As part of the SI (SCF, 2015), surface water and sediment samples were collected from the drainage system that leaves the WWTP and discharges to the Golf Course Lake, and these samples contained PFCs.

## 3.4.2.3.3 Soil and Air Exposure Pathways and Targets

AFFF is likely present in soils of the sludge drying beds, which are still in place. This area has no residents and no workers are present at the location. The nearest residents are approximately 1,500 feet northeast of the location. The majority of the location consists of grass. The area is well-vegetated and would preclude any fugitive dust emissions and potential exposures. Construction activities or other ground-disturbing activities could result in potential worker exposure. The potential of exposure to burrowing animals, if present, would be possible.

The population within 4 miles of the location includes Rapid City and Box Elder residents, with a population of approximately 7,530. No schools or day care facilities are within a 200-foot radius of the location. The nearest school is Vandenberg Elementary School, located approximately 3,650 feet to the northeast. The nearest day care facility is the Ellsworth AFB Child Development Center, located approximately 5,200 feet to the east.

The location is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future. No sensitive environments have been identified within 200 feet or within 4 miles.

# 3.4.3 Spray Nozzle Test Area

#### 3.4.3.1 Description and Operational History

In the 1970s and 1980s, equipment testing was conducted near Pumphouses 1, 2, and 3 at the end of the runway using 6 percent AFFF. This routine equipment testing was often conducted when crash trucks were checked out. A truck would be driven to the edge of the ramp and the operator would discharge foam out across the grass (Beck, 2015a, personal communication; Appendix C). Figures 1.1 and 3.4 show the spray nozzle test area location. The geographic coordinates are 44°8′ 25.23″N and 103°5′ 35.30″W.

#### 3.4.3.2 Waste Characteristics

AFFF was sprayed onto the grassy area of the flightline and likely infiltrated soils.

## 3.4.3.3 Pathway and Environmental Hazard Assessment

A complete exposure pathway typically includes the following components: a source of contamination (an environmental medium contaminated at the source or a release mechanism by which chemicals are released from a source medium and transported), an exposure medium by which a receptor comes into contact, and a route of intake for the contaminant into the receptor's body at the exposure point. If any of these elements are missing, the pathway is incomplete. Other release mechanisms resulting in exposure media for receptors may include the uptake of soil contaminants by plants and animals and the emission of soil contaminants into the air in association with dust particles.

Database research (EDR, 2015) shows one day care facility, six schools, three hospitals, and two colleges within the potential migration area of 4 miles from any given potential release location of PFCs. No elementary schools are located on Base. The closest elementary school is located approximately 6,000 feet hydrologically cross-gradient (east) of the location. The on-Base child development center is located approximately 6,460 feet hydrologically cross-gradient (east-northeast) of the location.

#### 3.4.3.3.1 Groundwater Pathway and Targets

The Basewide geologic and hydrogeological settings are provided in Section 1.3. Groundwater in the shallow groundwater aquifer generally flows southeast.

AFFF applied to soils likely infiltrated to the groundwater. Ellsworth AFB drinking water sources are all located more than 4 miles cross-gradient or upgradient of Ellsworth AFB and do not support a complete drinking water exposure pathway. The fact that Ellsworth does not use the shallow unconfined aquifer below the Base as a supply of drinking water would render this drinking water exposure pathway incomplete for Ellsworth AFB workers and residents. However, because of the relatively shallow depth to groundwater (10 feet bgs), excavation workers could be exposed to groundwater.

One public water supply well, owned by Box Elder, is located approximately 2.5 miles southeast (downgradient) of the location (EDR, 2015). The well serves a population of approximately 7,800 (EDR, 2015). This is a groundwater well, although the aquifer in which the well is zoned is unknown. However, it is likely to be installed in the deeper confined aquifer that would not be impacted by shallow groundwater migrating off Base.

One private groundwater public water supply well is located 2.2 miles south-southeast of the location and serves a population of approximately 90 in Whispering Willows. The aquifer in which the well is zoned is unknown (EDR, 2015). This well is hydrologically cross-gradient of the location.

One known private well is located 5,680 feet southwest of the location (cross-gradient) and is used to water cattle (Jensen, 2015, personal communication; Appendix C). A second private well is located approximately 5,890 feet southwest of the location and is owned by a landscape/nursery company. It is not known whether this well is used for potable water (USAF, 2012b). Because these wells area not located downgradient (groundwater flow from the location is southeast), a complete exposure pathway for cattle and other ecological receptors or people via drinking water or dermal contact does not exist.

## 3.4.3.3.2 Surface Water Pathway and Targets

Surface runoff from the area either infiltrates into the soil or runs into nearby storm drains that discharge off Base via Outfall 1. Consequently, complete exposure pathways for dermal exposure to humans and dermal exposure and ingestion by aquatic or other animals are present. Ellsworth AFB drinking water does not come from surface water sources located within the watershed of Ellsworth AFB, so there is no exposure pathway for surface water to residents or workers through domestic drinking water.

The location is not located within a flood zone. No wetlands are located within 200 feet of the location. Unnamed drainages are located 1,400 feet west of the location.

No surface water intakes, downstream fisheries, or sensitive environments are adjacent to the surface water migration path within 15 miles downstream of the location; however, several wetlands are present (EDR, 2015; USFWS, 2015). Local waterways may be used for recreational fishing by residents of nearby communities while crayfish and fish are known to be consumed from on-Base ponds (Goyer, 2015b, personal communication; Appendix C). Additionally, nearly all of the surface water along the tributaries and Boxelder Creek is available for use for stock watering (Goyer, 2015a, personal communication; Appendix C).

## 3.4.3.3.3 Soil and Air Exposure Pathways and Targets

AFFF is likely present in soils of the location. This area has no residents and no workers are present at the location. The nearest residents are approximately 3,870 feet east of the location. The majority of the location consists of grass. The area is well-vegetated and would preclude any fugitive dust emissions and potential exposures. Construction activities or other ground-disturbing activities could result in potential worker exposure. The potential of exposure to burrowing animals, if present, would be possible.

The population within 4 miles of the location includes Rapid City and Box Elder residents, with a population of approximately 7,090. No schools or day care facilities are within a 200-foot radius of the location. The nearest school is Vandenberg Elementary School, located approximately 6,130 feet to the east. The nearest day care facility is the Ellsworth AFB Child Development Center, located approximately 6,450 feet to the east-northeast.

The location is not used for hunting, fishing, or harvesting of wild or farmed foods, and such activities are not anticipated in the future. No sensitive environments have been identified within 200 feet or within 4 miles.

#### 3.4.4 Alert Apron

# 3.4.4.1 <u>Description and Operational History</u>

The alert apron is located in the southern portion of the Base just west of the southern end of the runway (Figures 1.1 and 2.1). During the Cold War, B-52s were parked down in this location to be on standby for quick takeoff. Crash trucks were also located here in the event of an emergency (Beck, 2015a, personal communication; Appendix C). AFFF may have been stored in some of the crash trucks that were on standby at the alert apron. However, no known emergency response was conducted at the alert apron, and no leaks or spills are known or reported (Beck, 2015a, personal

communication; Appendix C). Therefore, this area likely has not had any AFFF releases. The geographical coordinates are  $44^{\circ}7'45.61"N$  and  $-103^{\circ}5'37.75"W$ .

## 3.4.4.2 Waste Characteristics

Not applicable.

## 3.4.4.3 Pathway and Environmental Hazard Assessment

# 3.4.4.3.1 Groundwater Pathway and Targets

Not applicable.

# 3.4.4.3.2 Surface Water Pathway and Targets

Not applicable.

# 3.4.4.3.3 Soil and Air Exposure Pathways and Targets

Not applicable.





























## 4.0 SUMMARY AND CONCLUSIONS

The sections below summarize the findings of the PA for AFFF on Ellsworth AFB and provide conclusions based on those findings.

#### 4.1 SUMMARY

Based on background research and visits to Ellsworth AFB, a total of 2 FTAs, 3 fire stations, 1 fire station storage area, 10 hangars (evaluated as 1 location), 2 buildings, 5 emergency response locations, 1 area where AFFF spray testing has occurred, and 3 additional miscellaneous locations have been identified as being active during the timeframe when AFFF has been used by the USAF for fire suppression. The sections below summarize the PA findings for these 18 locations.

## **4.1.1** Fire Training Areas

## 4.1.1.1 FT001 – Former Fire Training Area

Ellsworth AFB has only one former FTA (FT001) that is currently an Environmental Restoration Program location. FT001 contained a shallow, unlined burn pit with a steel aircraft mockup that was set ablaze for fire training exercises. The location of the burn area within the former FTA has changed several times over the years. This location has known releases of AFFF and soil, groundwater, and downgradient soil and sediment have been sampled as part of an SI. An RI is planned for FT001 in 2017 (Jensen, 2015, personal communication; Appendix C).

#### 4.1.1.2 Current Fire Training Area

The current FTA was built in 1992 and began operation in 1993. This location contains a large concrete pad with a steel mockup aircraft in the center that is set ablaze for fire training exercises. The central area of the concrete pad consists of a lined pit in which the training activities are conducted. This pit holds the water and/or AFFF applied during fire training exercises. When the pit reaches capacity, the water is discharged via underground piping to a lined retention pond located just off the concrete pad to the southwest (Beck, 2015a, personal communication; Appendix C). When full, the retention pond is emptied using a 9,500-gallon tanker and a transfer pump and contents are disposed of at the 70 row diversion tank. Spray nozzle testing and flushing occurs on the concrete pad at the location but runoff is likely to have impacted adjacent soils.

## **4.1.2** Non-Fire Training Areas

## 4.1.2.1 <u>Hangars/Buildings</u>

Ten docks located in 70, 80, and 90 rows previously contained AFFF fire suppression systems. One pumphouse (7263) and one underground diversion tank (7246) also contained AFFF. Pumphouse 7263 contained a 1,000-gallon AFFF tank that fed 70, 80, and 90 row hangars via underground piping. Inside each dock is a trench drain system that discharged to the 150,000-gallon 70 row diversion tank (UST 7246). The contents of the diversion tank were typically released to the WWTP but could also be released to Outfall 3 on the southwest side of the runway at Ellsworth AFB through storm drains. In 1993, the entire contents of the diversion

tank were released to the storm drains. In addition, 8 of the 10 docks had known discharges of AFFF inside of them and discharges were often seen coming outside of the hangar doors.

Based on sampling conducted during SI outside two of the docks with known releases (Docks 73 and 93), soil and groundwater around the hangars are contaminated. Based on these data, there is a high likelihood of contamination in soil and groundwater at all docks. Additionally, as a result of releases to the storm drains, PFCs likely impacted downgradient waterbodies.

Two additional buildings (618 and 88240) had AFFF fire suppression systems. Discharges from Building 618 went to an underground diversion tank (UST 618) while Building 88240 released AFFF discharges to a surface impoundment located south of the location. Sampling conducted during the SI at both locations indicated that media (soil, groundwater, sediment, and surface water at the surface impoundment and soil and groundwater near UST 618) have been impacted by PFCs.

# 4.1.2.2 Fire Stations

Former Fire Station 2 was used to support the munitions storage area until 1994. This fire station did not have access to and did not service the airfield. The likelihood of AFFF being used or released at this fire station is low. Similarly, a former fire storage area was located near the northern portion of the runway. No fire trucks were stored at this location, but the fire department stored other miscellaneous equipment here. Additionally, this location may have historically supported an old fire station (Beck, 2015a, personal communication; Appendix C). The operational dates of this fire station are unknown, and it is unknown whether AFFF was used or stored here. However, given that several other fire stations were located on Base by 1970, and they were closer to the flightline operations, and based on the location of this storage area, it is unlikely that AFFF was used here (Beck, 2015a, personal communication; Appendix C).

AFFF was used and stored at the former fire station (Building 7506). While the former fire station was in operation, it was not uncommon to see AFFF solution on the fire station driveways after AFFF operations had occurred on Base (Beck, 2015a, personal communication; Appendix C). Additionally, the spills database documented a known 5-gallon AFFF spill inside of the station (Ellsworth, 2015). Based on the history, there is potential for AFFF to have been released to adjacent soils and groundwater beneath the location.

While AFFF is used at the current fire station, no known spills have been reported, and trench drains within the building and outside of the building would prevent migration of AFFF to outside soils. Consequently, releases from the current fire station are unlikely.

#### 4.1.2.3 Emergency Response

AFFF was known to have been used or released at five crash locations. All crash locations were located either in grassy fields adjacent to the runways or on the runway adjacent to grassy fields. The AFFF could have infiltrated soils and may have entered nearby waterbodies or storm drains.

## 4.1.2.4 Other

Other areas include the Hazmart, the WWTP, a spray nozzle test area, and an alert apron. Of these, only the WWTP and the spray nozzle test area location are likely to be potential release areas for AFFF. The Hazmart (Building 1911) is a chemical storage facility located on Base. While the Hazmart stores a large amount of AFFF, it is stored on pallets in shrink-wrap, and spills would be

contained via the floor drain system. While crash trucks may have been present at the alert apron, no emergency response efforts are known to have been needed, and no spills or releases are documented.

The WWTP is likely to have released PFCs to soils through the sludge drying beds as well as to nearby waterbodies via discharges to Outfall 5. As part of the SI (SCF, 2015), surface water and sediment samples were collected from the drainage system that leaves the WWTP and discharges to the Golf Course Lake; these samples contained PFCs.

In the 1970s and 1980s, equipment testing was conducted near Pumphouses 1, 2, and 3 at the end of the runway using 6 percent AFFF. This routine equipment testing was often conducted when crash trucks were checked out. A truck would be driven to the edge of the ramp and the operator would shoot AFFF out across the grass (Beck, 2015a, personal communication; Appendix C). Soil and groundwater beneath this area is likely to be impacted with PFCs.

#### 4.2 CONCLUSIONS

Table 4.1 summarizes the findings from this PA Report and presents possible future location management decisions. The identified locations are categorized by group as follows:

- Group 1 High mass of AFFF released and probability of groundwater contamination.
- Group 2 Unknown mass or medium mass of AFFF released.
- Group 3 Low mass of AFFF released.
- Group 4 No AFFF released.

Based on the group designation and rationale for each location, recommendations are provided in Table 4.1. In accordance with the USEPA CERCLA Preliminary Assessment and SI guidance documents (USEPA, 1991; USEPA, 1992), each identified location is recommended for one of the following actions: Implement removal action due to imminent threat; Close out due to no release; Initiate an RI; or Initiate an SI.

- Removal actions, as defined in CERCLA Section 104, are actions taken to eliminate, control, or otherwise mitigate a threat posed to public health or the environment due to a release or threatened release of hazardous substances (USEPA, 1991).
- Close out or no further remedial action planned (NFRAP) is defined as a disposition decision that further response under the federal Superfund is not necessary (USEPA, 1991).
- RI is defined as a field investigation to characterize the nature and extent of contamination at a location. The RI supports development, evaluation, and selection of the appropriate response alternative (USEPA, 1991).
- SI is defined as an investigation to collect and analyze waste and environmental samples to support an evaluation (USEPA, 1992).

# Table 4.1 Preliminary Assessment Report Summary and Findings Ellsworth Air Force Base, South Dakota

| Locations                                 | Group   | Rationale                                                                                                                                                                                                                                               | Recommendation                              |
|-------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| FT001 –<br>Former FTA                     | Group 1 | <ul> <li>Used for fire training from 1942 to 1990.</li> <li>Known discharges to downgradient waterbodies.</li> <li>Sampling conducted during broad agency announcement supports elevated PFCs in soil and groundwater.</li> </ul>                       | Continue with RI that is planned for 2017.  |
| Current FTA                               | Group 2 | <ul> <li>In operation since 1993; still using AFFF.</li> <li>All nozzle spray testing and flushing occurs at this location.</li> <li>Most AFFF is contained within the retention pond.</li> <li>Some AFFF may be released to adjacent soils.</li> </ul> | Initiate SI.                                |
| 70, 80, 90 Rows                           | Group 1 | <ul> <li>Known releases in 8 of 10 hangars.</li> <li>SI (SCF, 2015) indicated soil and groundwater contamination associated with Docks 73 and 93, and the 70 row diversion tank.</li> </ul>                                                             | Initiate SI.                                |
| Building 618                              | Group 1 | <ul> <li>SI (SCF, 2015) indicated soil and groundwater contamination.</li> <li>Spills noted in the spills database.</li> </ul>                                                                                                                          | Initiate SI.                                |
| Building 88240                            | Group 1 | SI (SCF, 2015) indicated soil, sediment,<br>surface water, and groundwater<br>contamination.                                                                                                                                                            | Initiate SI.                                |
| Former Fire<br>Station 2                  | Group 4 | <ul><li>No known use of AFFF.</li><li>Served munitions storage area; no access to flightline.</li></ul>                                                                                                                                                 | Close out with no additional investigation. |
| Former Fire<br>Storage Area               | Group 4 | No known storage of AFFF.                                                                                                                                                                                                                               | Close out with no additional investigation. |
| Former Fire<br>Station<br>(Building 7506) | Group 3 | <ul> <li>Overhead AFFF tanks.</li> <li>Known spill (5 gallons).</li> <li>Several engines/trailer contained AFFF.</li> <li>AFFF seen on station driveways.</li> </ul>                                                                                    | Initiate SI.                                |

# **Table 4.1 Preliminary Assessment Report Summary and Findings** Ellsworth Air Force Base, South Dakota

| Locations                                  | Group   | Rationale                                                                                                                                                                          | Recommendation                              |
|--------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Current Fire<br>Station<br>(Building 7502) | Group 4 | <ul> <li>Activities occur inside fire station.</li> <li>Any releases are contained within the building.</li> <li>Only one spill reported but contained inside building.</li> </ul> | Close out with no additional investigation. |
| B-52 Crash (1970)                          | Group 3 | Based on crash date, unknown whether<br>AFFF was applied but possible.                                                                                                             | Initiate SI.                                |
| B-1 Crash (1988)                           | Group 3 | Unknown amount of AFFF applied during emergency response.                                                                                                                          | Initiate SI.                                |
| Delta Taxiway<br>West Crash (2000)         | Group 3 | 100 gallons of AFFF spilled; likely<br>migrated to adjacent soils.                                                                                                                 | Initiate SI.                                |
| Marten Crash<br>(2003)                     | Group 3 | Based on crash photos, a moderate amount<br>of AFFF was applied at the crash location.                                                                                             | Initiate SI.                                |
| Crash 4 (2001)                             | Group 3 | 10 gallons released from fire truck.                                                                                                                                               | Initiate SI.                                |
| Hazmart                                    | Group 4 | Storage of AFFF but no known spills; all spills would be contained in floor drain system.                                                                                          | Close out with no additional investigation. |
| WWTP                                       | Group 1 | SI (SCF, 2015) indicates that downgradient<br>sediment and surface water are impacted.                                                                                             | Initiate SI.                                |
| Spray Nozzle<br>Test Area                  | Group 2 | AFFF applied to grassy area for up to<br>20 years (1970s and 1980s).                                                                                                               | Initiate SI.                                |
| Alert Apron                                | Group 4 | No known emergency response or AFFF releases occurred here.                                                                                                                        | Close out with no additional investigation. |



#### 5.0 REFERENCES

- Beck, William (Fire Inspector). 2015a. Personal communication. February 23.
- Beck, William (Fire Inspector). 2015b. Personal communication. March 18.
- Chang, E.T., H.O Adami, P. Boffetta, P. Cole, T.B. Starr, and J.S. Mandel. 2014. A Critical Review of Perfluoroocanoate and Perfluorooctanesulfonate Exposure and Cancer Risk in Humans, Critical Reviews in Toxicology, 44(S1): 1-81.
- Coates, C.Y. (Center Historian). 1977. A History of USAF Fire Protection Training at Chanute Air Force Base, 1964–1976. Chanute Technical Training Center, Chanute AFB, Illinois. February.
- Ellefson, Daniel (Fire System Specialist). 2015. Personal communication. February 23.
- Ellsworth Air Force Base. 2015. "Ellsworth Spills." Database. February 23.
- Environmental Data Resources, Inc. (EDR). 2015. EDR Offsite Receptor Report 4220219.3s, EDR NEPACHECK 4220219.2s, EDR GEOCHECK 4220219.1s. March.
- Goyer, Kevin (Water Quality Program Manager). 2015a. Personal communication. February 23.
- Goyer, Kevin (Water Quality Program Manager). 2015b. Personal communication. March 10.
- Jensen, Melody (Restoration Program Manager). 2015. Personal communication. February 23.
- Pavek, Timothy (Restoration Program Manager). 2015. Personal communication. February 23.
- Porter, R., 2011. AFCEE/TDV Emerging Issues. Perfluorinated Compounds. Air Force Restoration and Technology Transfer Workshop. March.
- Rak, Andrew and Catherine M. Vogel. 2009. Increasing Regulation of Perfluorinated Compounds and the Potential Impacts at Air Force Installations. Prepared for the U.S. Air Force. March.
- SES Construction and Fuel Services, LLC (SCF). 2015. Draft Site Investigation Report for Site Investigations of Fire Fighting Foam Usage at Various Air Force Bases in the United States. Ellsworth Air Force Base. Prepared for the U.S. Air Force. January.
- U.S. Air Force (USAF). 2008. 2007 Consumer Confidence Report for Drinking Water Quality. June.
- U.S. Air Force (USAF). 2012a. Interim Air Force Guidance on Sampling and Response Actions for Perfluorinated Compounds at Active and BRAC Installations. August.
- U.S. Air Force (USAF). 2012b. Limited Preliminary Assessment Summarizing Aqueous Film-Forming Foam Use, Releases, and Disposal at Ellsworth AFB, South Dakota. November.
- U.S. Air Force (USAF). 2012c. Final Record of Decision Amendment, Operable Unit 11/Basewide Groundwater, for Remedial Action at Ellsworth Air Force Base, South Dakota. February.
- U.S. Environmental Protection Agency (USEPA). 1991. Guidance for Preparing Preliminary Assessments under CERCLA. September.
- U.S. Environmental Protection Agency (USEPA). 1992. Guidance for Performing Site Inspections under CERCLA. September.

U.S. Fish and Wildlife Service (USFWS). 2015. Geospatial Fisheries Information Network (GeoFIN). Available at: <a href="http://ecos.fws.gov/geofin/">http://ecos.fws.gov/geofin/</a>.

# APPENDIX A PHOTO DOCUMENTATION



PHOTOGRAPH LOG

|           |           |                | PHOTOGRAPH LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Elkwor    | TH AFB         | Date: 2-24-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Project N | lumber:   |                | Observation Period: Start: 2-24-15 Stop: 2-25-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Weather:  | 224-15    | Sunny 50s,     | 2:25:15 cold Show                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Photo     |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| No.       | Time      | View Direction | Location/Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 210       | N              | Pond #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2         | 3:10      | 2              | Cullent FTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3         | 7.11      | W              | Retention Pond @ FTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1         | 2 0       |                | LOOKING @ FTA tran (R+C) THAT PORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5         | 2.13      | 3-             | ATT STORY & CODEX & FTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| £,        | 214       | 3              | ALL S JOURN BUCKOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Q.        | 22        | 2              | FTOOI (old FTA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a         | 2.25      | M              | minages new FTCC & (GW deylights)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1         | 2:35      | 3              | Ca) Gorn C OV + (Grains to Scotth) - 10 AFFFUSCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10        | 4.60      | N              | towning de to cook site (from trolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1         | 2.50      | N              | Don't 3 Lined but openiously unined Northorn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15        | 2.5%      | 5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13        | 2.83      | <              | pend 3 heyand ows  Pend 3 avain to unknown drawns = pend 1 2) here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15        | 3 09      | W              | ARCHADOD 8-523 (ACQUARD & POMILE) NOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 110       | 2.12      | N              | AAT ANTO RESE (CHANTE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14        | 2013      | CE             | 188 R-1 crash esend of runway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| R         | 3:15      | Sin/           | The state of the s |
| 19        | 3:20      | DAN -          | CUTIENT FIRE PAPT TIENCH DRAINS - built in 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20        | 3:20      | 1/W by         | Red Trucks 25 gallon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21        | 3:20      |                | Green Trucks 500 MIKO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22        | 3:21      |                | JOS GAIKO FOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23        | 3:22      |                | AFFF STOTOX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24        | 3:23      |                | 11 Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25_       | 3:24      |                | TROUD drain to OWS to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | 2.01      |                | OICH FIRE SPATICO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 26        | 3:36      | NE,            | TREACH CYCHIA OUT YOLE FO (318) TO STORM (VAM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7         | 3:29      | SW             | THE STATION WORTH 131 BINE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 28        | 3:39      | _              | Dick 51 - FO truck storage pe-2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 29        | 3:40      | -              | DOCK 51 - Floor dealp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 30        | 3:16      | N              | DOCK 51 - floor death had favor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37        | 3:5       | N              | TO BOW DIVERSON TOUR SIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 32        |           | - 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| J. Dall   | 4:08      | 2/1            | 23240 retention prod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 34<br>35  |           | NO             | 2100 leterion fina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | 4:21      | SE             | Five Station 2 (potential Afff scorce)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 36        | 4:26      | 3              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 38        | 5:-25     | E              | Truck Crash - off overpass onto base property - and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 39        | 5:25      | C              | Truck Crash - off overpass anto base property - and Truck Crash - rearry draining outth fence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 40        | 5:25      | -              | 7213 Pumphane rearry alainage alter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 41        | 10:18     |                | inside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 42        | 10:19     |                | 7263 Trench Pigns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 43        | 10:30     |                | Slaven of the state of the stat |
| 44        | 10:20     |                | 7263 AFF STORAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 45        | 10:30     |                | DOCK-73 TRENCH DICTURS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 460       | 10:21     |                | DOCK 13 HEF COOKES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 47        | 115:33    | -              | DOCK 93 HEF IN System In MEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 48        | 10:33     | -              | II HEF CONTROL panel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | <b>SL</b> |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### PHOTOGRAPH LOG

| Team:     |        |                                        | Date:                                         |
|-----------|--------|----------------------------------------|-----------------------------------------------|
| Project N | umber: |                                        | Observation Period: Start: Stop:              |
| Weather:  | 1      |                                        |                                               |
| Photo     | m      |                                        |                                               |
| No.       | 10:35  | View Direction                         | Location/Description                          |
|           | -      | -3M                                    | DOCK 93 - Ptcs detected in soil beneath paven |
| 50        | 10:36  | NE                                     | Gassy area bening the 93. His de tector       |
| -         | 10.50  | VV                                     | MID BOD CION                                  |
| 53        | 11:05  | 17.17                                  | 1970s to 1980s mozzoj chan out / testing area |
| 53<br>54  | 11:106 |                                        | right of side is to botto                     |
| 55        | 11:08  | 5/1/                                   | LOIS DIVERSION JENK BOOMEN 50,000 DON         |
| 56        | 11:59  | N                                      | Consider the see But since But                |
| 100 1/4   | 11:25  | SE                                     | WWTP - MIKHING FIHER MIGHT                    |
| 38        | 11:35  | SE E                                   | 11 - best-Filter DIPSS                        |
| 591       | 1135   | N                                      | Five Station 2 (possible had AFF on trucks)   |
| 60        | 11:36  | NE                                     | "                                             |
|           | 19:00  |                                        | Blog STOHO TRENCH DROWNS                      |
| (0)       | 10-03  |                                        | us in Trench Drains & havgar docks            |
| 63        | 19:08  | -                                      | MONTH SSONO IN FIRE SUPPRESSION SYSTEM WATER  |
|           | -      |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           | ,      |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        | ************************************** |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        | PACE                                   |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |
|           |        |                                        |                                               |



Photo 1



Photo 3



Photo 2



Photo 4



Photo 5



Photo 7



Photo 6



Photo 8





Photo 11



Photo 10



Photo 12



Photo 13



Photo 15



Photo 14



Photo 16



Photo 17



Photo 19



Photo 18



Photo 20



Photo 21



Photo 23



Photo 22



Photo 24



Photo 25



Photo 27



Photo 26



Photo 28



Photo 29



Photo 31



Photo 30



Photo 32



Photo 33



Photo 35



Photo 34



Photo 36



Photo 37



Photo 39



Photo 38



Photo 40



Photo 41



Photo 43



Photo 42



Photo 44



Photo 45



Photo 47



Photo 46



Photo 48





Photo 51



Photo 50



Photo 52



Photo 53



Photo 55



Photo 54



Photo 56



Photo 57



Photo 59



Photo 58



Photo 60



Photo 61



Photo 63



Photo 62

Preliminary Assessment Report

## APPENDIX B

### FIELD DOCUMENTATION



| HGL—Preliminary Assessment Report— Ellsworth Air Force Base, South Dakota |
|---------------------------------------------------------------------------|
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
| POTENTIAL HAZARDOUS WASTE SITE FORMS                                      |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |



|                     |                          |                    |                          |                  | Identificatio | on           |
|---------------------|--------------------------|--------------------|--------------------------|------------------|---------------|--------------|
| Potential           | Hazardous W              |                    | Preliminary              | Assessment       | State: SD     | CERCLIS #:   |
|                     |                          | Form               |                          |                  | CERCLIS Disc  | covery Date: |
|                     |                          | 1. Ge              | neral Site Inform        | nation           |               |              |
| Name: Ellsworth     | n AFB                    | Street Address     | s: 1000 N Ellswort       | h Rd             |               |              |
| City:               |                          | State: SD          | Zip Code:<br>57769       | County:<br>Meade | Co. Code:     | Cong. Dist:  |
| Latitude:           | Longitude:               | Approximate A      | Area of Site:            | Status of Site:  | ı             |              |
| 44°7' 51.83"        | 103°5' 56.05"            | _10                | Acres                    | ☐ Active ☐       | Not Specified |              |
|                     |                          |                    | Square Ft                |                  | NA (GW plume  | etc.)        |
| Site Name: FT00     | )1 - Former Fire Trainin | g Area             |                          |                  |               |              |
| Site Description    | : FT001 is the former fi | re training area   | operated from 19         | 42 to 1990.      |               |              |
|                     |                          |                    |                          |                  |               |              |
|                     |                          |                    |                          |                  |               |              |
|                     |                          |                    |                          |                  |               |              |
|                     |                          |                    |                          |                  |               |              |
|                     |                          | 2. Owne            | er/Operator Info         | rmation          |               |              |
| Owner: Ellswort     | h AFB                    |                    | Operator:                |                  |               |              |
| Street Address:     | 1000 N Ellsworth Rd      |                    | Street Addres            | SS:              |               |              |
| City                |                          |                    | City                     |                  |               |              |
| City:               | la: o l                  | I                  | City:                    | la: o i          | I <del></del> |              |
| State: SD           | Zip Code:                | Telephone:         | State:                   | Zip Code:        | Telephone:    |              |
| Type of Owners      | <br>hin:                 |                    | Type of Owne             | <br>Prship:      |               |              |
| ☐ Private           | ☐ County                 |                    | ☐ Private                | ☐ County         |               |              |
| ☑ Federal Agency    | ☐ Municipa               | ıl                 | ☐ Frivate ☐ Federal Agen |                  | l             |              |
| Name: _DO           |                          |                    | Name:                    |                  | ified         |              |
| ☐ State<br>☐ Indian | Other                    |                    | ☐ State<br>☐ Indian      | Other            | <del></del>   |              |
| Indian              |                          |                    | - Indian                 |                  |               |              |
|                     |                          | 3. Site            | <b>Evaluator Inform</b>  | nation           | _             |              |
| Name of Evaluat     | tor:                     | Agency/Organ       | nization:                |                  | Date Prepar   |              |
| Kelly Teplitsky     |                          | CH2M HILL          | T                        |                  | 03/03/2015    |              |
| Street Address:     | 9191 South Jamaica St    | reet               | City: Englewo            | od               | State: CO     |              |
| Name of EDA or      | State Agency Contact:    |                    | Street Addres            |                  |               |              |
| Name of LFA of      | State Agency Contact.    |                    | Street Addres            |                  |               |              |
| City:               |                          | State:             |                          | Telephone:       |               |              |
|                     |                          |                    |                          |                  |               |              |
|                     |                          | 4. Site Dis        | position <i>(for EPA</i> | use only)        |               |              |
|                     | onse/Removal Assess      | ment               | CERCLIS Reco             | mmendation:      | Signature:    |              |
| Recommendation      | on:                      |                    | ☐ Higher Pr              | •                | Name - /:     | ۵۱.          |
|                     | Yes                      |                    | ☐ Lower Pri              | ority SI         | Name (type    | a):          |
|                     | □ No                     |                    | RCRA                     |                  | Position:     |              |
|                     | Date:                    |                    | Other:                   | <del></del>      | . 03.0011.    |              |
|                     |                          |                    | Date:                    |                  |               |              |
|                     | 1                        |                    | eral Site Charact        | eristics         | l.,           |              |
| Predominant La      | nd Use Within 1 Mile o   | of Site (check all | Site Setting:            |                  | Years of Ope  | eration:     |

| that apply):                                                                                                                                                                                                                                                                                                             |                               |                                      |                             |                                                                                                                                                                           |                                                                                                                                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ☐ Industrial ☐ Agriculture ☐ DOI                                                                                                                                                                                                                                                                                         |                               |                                      | ☐ Urban                     | ı                                                                                                                                                                         | Beginning Year1942_                                                                                                                    |  |  |
| ☐ Commercial                                                                                                                                                                                                                                                                                                             | ☐ Mining                      | Other Federal                        | ✓ Subur                     | ban                                                                                                                                                                       | Fadha Vara 1000                                                                                                                        |  |  |
| Residential                                                                                                                                                                                                                                                                                                              |                               | ] Facility:                          | ☑ Rural                     |                                                                                                                                                                           | Ending Year1990_                                                                                                                       |  |  |
| ☐ Forest/Fields                                                                                                                                                                                                                                                                                                          | DOE                           | <br>] Other                          |                             |                                                                                                                                                                           | ☐ Unknown                                                                                                                              |  |  |
|                                                                                                                                                                                                                                                                                                                          |                               |                                      |                             |                                                                                                                                                                           |                                                                                                                                        |  |  |
| Type of Site Operatio                                                                                                                                                                                                                                                                                                    | ns (check all tha             | apply):                              |                             |                                                                                                                                                                           | Waste Generated:                                                                                                                       |  |  |
| ☐ Manufacturing (must ch                                                                                                                                                                                                                                                                                                 | neck subcategory)             |                                      | Retail                      |                                                                                                                                                                           | Onsite                                                                                                                                 |  |  |
|                                                                                                                                                                                                                                                                                                                          |                               |                                      | Recycling                   |                                                                                                                                                                           | Offsite                                                                                                                                |  |  |
| ☐ Inorganic Chemic                                                                                                                                                                                                                                                                                                       | cals                          |                                      | ☐ Junk/Salvage Yard         |                                                                                                                                                                           | Onsite and Offsite                                                                                                                     |  |  |
| ☐ Plastic and/or Ru                                                                                                                                                                                                                                                                                                      |                               |                                      | Municipal Landfill          |                                                                                                                                                                           |                                                                                                                                        |  |  |
| ☐ Paints, Varnishes☐ Industrial Organic                                                                                                                                                                                                                                                                                  |                               |                                      | ☐ Other Landfill<br>☑ DOD   |                                                                                                                                                                           | Waste Deposition Authorized                                                                                                            |  |  |
| ☐ Agricultural Chem                                                                                                                                                                                                                                                                                                      |                               |                                      | □ DOE                       |                                                                                                                                                                           | By:                                                                                                                                    |  |  |
| ☐ Miscellaneous Ch                                                                                                                                                                                                                                                                                                       |                               |                                      | □ DOI                       |                                                                                                                                                                           | ☐ Present & Former Owner                                                                                                               |  |  |
| Primary Metals                                                                                                                                                                                                                                                                                                           |                               |                                      | Other Federal Facility      | /                                                                                                                                                                         | Unauthorized                                                                                                                           |  |  |
| ☐ Metal Coating, Pla                                                                                                                                                                                                                                                                                                     |                               |                                      | □ RCRA □ Treatment, Stor    | age or Disposal                                                                                                                                                           | Unknown                                                                                                                                |  |  |
| <ul><li>☐ Metal Forging, St</li><li>☐ Fabricated Struct</li></ul>                                                                                                                                                                                                                                                        | amping<br>ural Metal Products |                                      | ☐ Large Quantity            |                                                                                                                                                                           | Waste Accessible to the Public:                                                                                                        |  |  |
| ☐ Electronic Equipn                                                                                                                                                                                                                                                                                                      |                               |                                      | ☐ Small Quantity            |                                                                                                                                                                           |                                                                                                                                        |  |  |
| ☐ Other Manufactur                                                                                                                                                                                                                                                                                                       | ring                          |                                      | ☐ Subtitle D                |                                                                                                                                                                           | ✓ Yes                                                                                                                                  |  |  |
| ☐ Mining                                                                                                                                                                                                                                                                                                                 |                               |                                      | ☐ Municipal<br>☐ Industrial |                                                                                                                                                                           | □ No                                                                                                                                   |  |  |
| ☐ Metals                                                                                                                                                                                                                                                                                                                 |                               |                                      | ☐ "Converter"               |                                                                                                                                                                           |                                                                                                                                        |  |  |
| ☐ Coal                                                                                                                                                                                                                                                                                                                   |                               |                                      | ☐ "Protective Filer         | .11                                                                                                                                                                       | Distance to Nearest Dwelling,                                                                                                          |  |  |
| Oil and Gas                                                                                                                                                                                                                                                                                                              |                               |                                      | ☐ "Non-or Late Filer"       |                                                                                                                                                                           | School, or Workplace:                                                                                                                  |  |  |
| ☐ Non-metallic Mine                                                                                                                                                                                                                                                                                                      | erals                         |                                      | ■ Note Specified            |                                                                                                                                                                           |                                                                                                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                          |                               |                                      | Other                       | <u> </u>                                                                                                                                                                  | _1,490 Feet                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                          |                               |                                      |                             |                                                                                                                                                                           |                                                                                                                                        |  |  |
| 6. Waste Characteristics Information                                                                                                                                                                                                                                                                                     |                               |                                      |                             |                                                                                                                                                                           |                                                                                                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                          |                               |                                      |                             |                                                                                                                                                                           |                                                                                                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                          |                               | (Refer to P                          | A Table 1 for WC Sco        | re)                                                                                                                                                                       |                                                                                                                                        |  |  |
| Source Type:                                                                                                                                                                                                                                                                                                             |                               | (Refer to Page Waste Quantity:       |                             | re)<br>General Type of                                                                                                                                                    |                                                                                                                                        |  |  |
| Source Type:<br>(check all that apply)                                                                                                                                                                                                                                                                                   | Sourc<br>(include             | (Refer to Page Waste Quantity:       | A Table 1 for WC Sco        | re)                                                                                                                                                                       |                                                                                                                                        |  |  |
| (check all that apply)                                                                                                                                                                                                                                                                                                   |                               | (Refer to Page Waste Quantity:       | A Table 1 for WC Sco        | re) General Type of (check all that app    Metals                                                                                                                         | oly):  ☐ Pesticides/Herbicides                                                                                                         |  |  |
| 7.7                                                                                                                                                                                                                                                                                                                      |                               | (Refer to Page Waste Quantity:       | A Table 1 for WC Sco        | General Type of (check all that app   Metals   Organics                                                                                                                   | Dly):  ☐ Pesticides/Herbicides ☐ Acids/Bases                                                                                           |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums                                                                                                                                                                                                                                                               | (include                      | (Refer to Page Waste Quantity:       | A Table 1 for WC Sco        | re)  General Type of (check all that app                                                                                                                                  | Pesticides/Herbicides Acids/Bases Oily Waste                                                                                           |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co                                                                                                                                                                                                                                          | (include                      | (Refer to Page Waste Quantity:       | A Table 1 for WC Sco        | General Type of (check all that app   Metals   Organics                                                                                                                   | Dly):  ☐ Pesticides/Herbicides ☐ Acids/Bases                                                                                           |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile                                                                                                                                                                                                                      | (include                      | (Refer to Page Waste Quantity:       | A Table 1 for WC Sco        | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi                                          | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives                                   |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co                                                                                                                                                                                                                                          | (include                      | (Refer to Page Waste Quantity:       | A Table 1 for WC Sco        | General Type of (check all that app     Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hospi   Radioactive Wast                                 | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  te  Other _AFFF_                 |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum)                                                                                                                                                        | (include                      | (Refer to Page Waste Quantity:       | A Table 1 for WC Sco        | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi                                          | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  te  Other _AFFF_                 |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Taillings Pile Trash Pile (open drum) Land Treatment                                                                                                                                        | ontainers                     | (Refer to Page Waste Quantity:       | A Table 1 for WC Sco        | General Type of (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hospi   Radioactive Wast   Construction/Der                | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  te  Other _AFFF_  molition Waste |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum                                                                                                                    | ontainers                     | (Refer to Page Waste Quantity:       | A Table 1 for WC Sco        | General Type of (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hospi   Radioactive Wast   Construction/Der                | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  te  Other _AFFF_                 |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Taillings Pile Trash Pile (open drum) Land Treatment                                                                                                                                        | ontainers                     | (Refer to Page Waste Quantity:       | A Table 1 for WC Sco        | General Type of (check all that app Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der                                | Pesticides/Herbicides                                                                                                                  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source)                                                  | ontainers                     | (Refer to Page Waste Quantity:       | A Table 1 for WC Sco        | General Type of (check all that app Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der                                | Pesticides/Herbicides                                                                                                                  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source) Contaminated Soil                                | ontainers                     | (Refer to Page Waste Quantity:       | A Table 1 for WC Sco        | General Type of (check all that app Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der                                | Pesticides/Herbicides                                                                                                                  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source)                                                  | ontainers                     | (Refer to Page Waste Quantity:       | A Table 1 for WC Sco        | General Type of (check all that app Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der Physical State of that apply): | Pesticides/Herbicides                                                                                                                  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified Source) Contaminated Soil Other                          | entainers (include            | (Refer to Page Waste Quantity: unit) | A Table 1 for WC Sco        | General Type of (check all that app Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der Physical State of that apply): | Pesticides/Herbicides                                                                                                                  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified Source) Contaminated Soil Other                          | ontainers                     | (Refer to Pose Waste Quantity: unit) | A Table 1 for WC Sco        | General Type of (check all that app Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der Physical State of that apply): | Pesticides/Herbicides                                                                                                                  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source) Contaminated Soil Other No Sources  *C=Constitue | ent, W=Wastestream, V         | (Refer to Pose Waste Quantity: unit) | Tier*:                      | General Type of (check all that app Metals Organics Inorganics Solvents Paints/Pigments Adioactive Wast Construction/Der Physical State of that apply):                   | Pesticides/Herbicides                                                                                                                  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified Source) Contaminated Soil Other                          | ent, W=Wastestream, V         | (Refer to Pote Waste Quantity: unit) | Tier*:                      | General Type of (check all that app Metals Organics Inorganics Solvents Addioactive Wast Construction/Der  Physical State of that apply):                                 | Pesticides/Herbicides                                                                                                                  |  |  |
| Check all that apply                                                                                                                                                                                                                                                                                                     | ent, W=Wastestream, V         | (Refer to Pote Waste Quantity: unit) | Tier*:                      | General Type of (check all that app Metals Organics Inorganics Solvents Addioactive Wast Construction/Der  Physical State of that apply):                                 | Pesticides/Herbicides                                                                                                                  |  |  |
| Check all that apply                                                                                                                                                                                                                                                                                                     | ent, W=Wastestream, V         | (Refer to Pote Waste Quantity: unit) | Tier*:                      | General Type of (check all that app Metals Organics Inorganics Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der  Physical State of that apply):         | Pesticides/Herbicides                                                                                                                  |  |  |
| Check all that apply                                                                                                                                                                                                                                                                                                     | ent, W=Wastestream, V         | (Refer to Pote Waste Quantity: unit) | Tier*:                      | General Type of (check all that app Metals Organics Inorganics Solvents Addioactive Wast Construction/Der  Physical State of that apply):                                 | Pesticides/Herbicides                                                                                                                  |  |  |

| Drinking Well:                                       | Have Primary Targe             | et Drinking          | /1/4 - 1/2 IVIIIC                                           | IVA                         |  |  |
|------------------------------------------------------|--------------------------------|----------------------|-------------------------------------------------------------|-----------------------------|--|--|
| Feet                                                 | Water Wells Been I             | •                    | >1/2 - 1 Mile                                               | NA                          |  |  |
| Type of Drinking Water Wells Within 4                | ☐Yes                           |                      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                       |                             |  |  |
| Miles                                                | ☐ Yes<br>☑ No                  |                      | >1 - 2 Mile                                                 | NA                          |  |  |
| (check all that apply):                              | If Yes, Enter Prim             | ary Target           | >2 - 3 Mile                                                 | NA                          |  |  |
| ✓ Municipal □ Private                                | Population:                    |                      | /2 J WIIIC                                                  |                             |  |  |
| ☐ None                                               |                                | People <sup>3</sup>  | >3 - 4 Mile                                                 | NA                          |  |  |
| Depth to Shallowest Aquifer:                         | Nearest Designated             | d Wellhead           | Total Within 4 Miles <sup>4</sup>                           | NA                          |  |  |
| ~ 10 to 50 Feet                                      | Protection Area <sup>6</sup> : |                      | Total Within 4 Miles                                        |                             |  |  |
| Karst Terrain/Aquifer Present:                       | ☐ Underlie                     |                      |                                                             |                             |  |  |
| ☐ Yes                                                | ☐ >0-4 Mi<br>☑ None W          | les<br>ithin 4 Miles | *Use population #s for PA Tal  *Note nearest well for #5 on |                             |  |  |
| ☑ No                                                 | 1                              |                      | Note hearest well for #5 off                                | GW Fathway Scoresheet       |  |  |
|                                                      |                                | Water Pathwa         |                                                             |                             |  |  |
| Type of Surface Water Draining Site and that apply): | 15 Miles Downstrea             | am (check all        | Shortest Overland Dista<br>Surface Water:                   | nce From Any Source to      |  |  |
| ✓ Stream River ✓ Por                                 | nd 🔲 Lake                      |                      | _250_ Feet                                                  |                             |  |  |
| ☐ Bay ☐ Ocean ☐ Oth                                  | ner                            |                      |                                                             | Miles                       |  |  |
| Is There a Suspected Release to Surface              | Water <sup>1</sup> :           |                      | Site is Located in:                                         |                             |  |  |
|                                                      |                                |                      | Annual - 10 yr Flo                                          |                             |  |  |
| ✓ Yes □ No                                           |                                |                      | □ >10yr - 100yr Floo<br>□ >100yr - 500yr Flo                |                             |  |  |
|                                                      |                                |                      | □ >500yr Floodplain                                         |                             |  |  |
| Drinking Water Intake Located Along the              | Surface Water Mig              | ration Path:         | List All Secondary Targe                                    | t Drinking Water Intakes:   |  |  |
| ☐ Yes<br>☑ No                                        |                                |                      | Name: Water Body: Flow (cfs): Population Served:            |                             |  |  |
| Have Primary Target Drinking Water Inta              | ikes Been Identified           | :                    |                                                             |                             |  |  |
| ☐ Yes If Yes, Distance                               | ce to Nearest Drinki           | ng                   |                                                             |                             |  |  |
|                                                      | : Miles <sup>6</sup>           | _                    |                                                             |                             |  |  |
| If Yes, Enter Population Served by Target            | t Intake:                      |                      |                                                             |                             |  |  |
|                                                      |                                |                      | Total within                                                | 15 Miles <sup>4</sup>       |  |  |
| NA People <sup>4</sup>                               |                                |                      |                                                             |                             |  |  |
| Fisheries Located Along the Surface Wat              | er Migration Path:             |                      | List All Secondary Targe                                    | t Fisheries <sup>10</sup> : |  |  |
|                                                      | e to Nearest Fishery           | :                    | Water Body/ Fishery Name                                    |                             |  |  |
|                                                      | Miles                          |                      |                                                             |                             |  |  |
| Have Primary Target Fisheries Been Iden              | tified:                        |                      |                                                             |                             |  |  |
| ☐ Yes ☑ No                                           |                                |                      |                                                             |                             |  |  |
|                                                      | 8. Surface Wate                | r Pathway (cont      | tinued)                                                     |                             |  |  |
| Wetlands Located Along the Surface Wa                | _                              |                      | nvironments Located Alo                                     | ng the Surface Water        |  |  |
| Path:                                                | 1                              | Migration Path:      |                                                             |                             |  |  |
| ☑ Yes<br>□ No                                        |                                | ☐ Yes<br>☑ No        | If Yes, Distance to<br>Environment:                         | Nearest Sensitive<br>Miles  |  |  |
| Have Primary Target Wetlands Been Ide                | entified:                      | lave Primary Targ    | et Sensitive Environmen                                     | ts Been Identified:         |  |  |
| ☐ Yes                                                |                                |                      | Yes                                                         |                             |  |  |
| ☑ No                                                 |                                | ☑ No                 |                                                             |                             |  |  |
| List All Wetlands:                                   |                                | List All Sensitive I | Environments <sup>11</sup> :                                |                             |  |  |

| Water Body : Flow (cfs): Frontage miles:           |                         | <u>Water Body</u> :                                                        |              | Flow (cfs):                                | Sensitive Environment Type:        |  |
|----------------------------------------------------|-------------------------|----------------------------------------------------------------------------|--------------|--------------------------------------------|------------------------------------|--|
|                                                    |                         |                                                                            |              |                                            |                                    |  |
|                                                    |                         |                                                                            |              |                                            |                                    |  |
|                                                    | 9. Soil E               | xposure Pat                                                                | hway         | /                                          |                                    |  |
| Are People Occupying Residence or                  | Number of Worke         | ers Onsite <sup>4</sup> :                                                  |              | Have Terres                                | strial Sensitive Environments Been |  |
| Attending School or Daycare on or                  |                         |                                                                            |              | Identified o                               | on or Within 200 Feet of Areas of  |  |
| Within 200 Feet of Area of Known or                | ☑ None                  |                                                                            |              | Known or S                                 | suspected Contamination:           |  |
| Suspected Contamination:                           | □ 1 - 100<br>□ 101 - 1, |                                                                            |              |                                            |                                    |  |
|                                                    | ☐ > 1,000               | )                                                                          |              |                                            | ☐ Yes                              |  |
| _                                                  |                         |                                                                            |              |                                            | ☑ No                               |  |
| ☐ Yes<br>☑ No                                      |                         |                                                                            |              | If Voc. List                               | Each Terrestrial Sensitive         |  |
| [ NO                                               | Population Withir       | a 1 Milo:                                                                  |              | Environme                                  |                                    |  |
| If Yes, Enter Total Residential                    |                         | i i iville.                                                                |              |                                            |                                    |  |
| Population:                                        |                         | . 7                                                                        |              |                                            |                                    |  |
|                                                    | P6                      | People <sup>7</sup>                                                        |              |                                            |                                    |  |
| People <sup>2</sup>                                |                         |                                                                            |              | *0.6                                       |                                    |  |
|                                                    |                         |                                                                            |              | *Refer to PA Table 7 for environment types |                                    |  |
|                                                    | 10.                     | Air Pathway                                                                | /            |                                            |                                    |  |
| Is there a Suspected Release to Air <sup>1</sup> : |                         | Wetlands Lo                                                                | cated        | Within 4 M                                 | iles of the Site <sup>6</sup> :    |  |
| ☐ Yes ☑ No                                         |                         | ✓ Yes                                                                      |              | If Voc. How                                | w Many Acros                       |  |
|                                                    |                         | ☐ No                                                                       |              | ii tes, nov                                | v Many Acres: Acres                |  |
| Enter Total Population on or Within:               |                         | Other Sensitive Environments Located Within 4 Miles of the Site:           |              |                                            |                                    |  |
| Onsite                                             |                         |                                                                            |              |                                            |                                    |  |
| 0.4/4.84%                                          |                         |                                                                            |              | ☐ Yes<br>☑ No                              |                                    |  |
| 0-1/4 Mile                                         |                         | E NO                                                                       |              |                                            |                                    |  |
| >1/4-1/2 Mile                                      |                         | List All Sensitive Environments Within 1/2 Mile of the Site <sup>6</sup> : |              |                                            |                                    |  |
| >1/2-1 Mile                                        |                         | <u>Distance:</u>                                                           | <u>Sensi</u> | tive Environn                              | nent Type/Wetlands Area (acres):   |  |
| >1-2 Miles                                         | Onsite                  | None                                                                       | e            |                                            |                                    |  |
| >2-3 Miles                                         | 0-1/4 Mile              | _We                                                                        | tlands       |                                            |                                    |  |
| >3-4 Miles                                         |                         | >1/4-1/2 Mile                                                              | · _We        | etlands                                    |                                    |  |
| Total Within 4 Miles <sup>3-5</sup> _8,190_        |                         |                                                                            |              |                                            |                                    |  |

 $<sup>^{1\</sup>text{-}11}$  Refers to question number on the PA scoresheet for each particular pathway

|                                      |                             |                            |                                          |                                | Identification              |              |  |
|--------------------------------------|-----------------------------|----------------------------|------------------------------------------|--------------------------------|-----------------------------|--------------|--|
| Potential H                          | azardous W                  |                            | reliminary A                             | ssessment                      | State: SD                   | CERCLIS #:   |  |
|                                      |                             | Form                       |                                          |                                | CERCLIS Disc                | covery Date: |  |
|                                      |                             | 1. Gen                     | eral Site Informati                      | on                             |                             |              |  |
| Name: Ellsworth A                    | FB                          | Street Address:            | : 1000 N Ellsworth Ro                    | d                              |                             |              |  |
| City:                                |                             | State: SD                  | Zip Code:<br>57769                       | County:<br>Meade<br>Pennington | Co. Code:                   | Cong. Dist:  |  |
| Latitude:<br>44°7' 59.93"            | Longitude:<br>103°5' 54.61" | Approximate A              | rea of Site:<br>Acres<br>Square Ft       |                                | Not Specified NA (GW plume, | etc.)        |  |
| Site Name: Current                   | t Fire Training Area (      | FTA)                       |                                          |                                |                             |              |  |
|                                      |                             | 2. Owner                   | ·/Operator Informa                       | ation                          |                             |              |  |
| Owner: Ellsworth A                   | AFB                         |                            | Operator: same                           |                                |                             |              |  |
| Street Address: 10                   |                             |                            | Street Address:                          |                                |                             |              |  |
| City:                                |                             |                            | City:                                    |                                |                             |              |  |
| State: SD                            | Zip Code:<br>57769          | Telephone:                 | State:                                   | Zip Code:                      | Telephone:                  |              |  |
| Type of Ownership:    Private        |                             |                            | Type of Ownership:    Private            |                                |                             |              |  |
|                                      |                             | 3. Site E                  | <br>Evaluator Informat                   | ion                            |                             |              |  |
| Name of Evaluator<br>Kelly Teplitsky | :                           | Agency/Organi<br>CH2M HILL | zation:                                  |                                | Date Prepare 03/03/2015     | ed:          |  |
| Street Address: 91                   | 91 South Jamaica St         | reet                       | City: Englewood                          | City: Englewood State: CO      |                             |              |  |
| Name of EPA or Sta                   | ate Agency Contact:         |                            | Street Address:                          |                                |                             |              |  |
| City:                                |                             | State:                     |                                          | Telephone:                     |                             |              |  |
|                                      |                             | 4. Site Disp               | osition <i>(for EPA us</i>               | e only)                        |                             |              |  |
|                                      | nse/Removal Assess          | -                          | CERCLIS Recomm                           | endation:                      | Signature:                  |              |  |
| Recommendation:                      | Yes                         |                            | ☐ Higher Priority☐ Lower Priority☐ NFRAP |                                | Name (typed                 | d):          |  |
| Da                                   | □ No<br>te:                 |                            | ☐ RCRA☐ Other:<br>Date:                  |                                | Position:                   |              |  |
|                                      |                             | 5. Gene                    | ral Site Characteris                     |                                | <u> </u>                    |              |  |

| I readminant Lana 03                                                                                                                                                                                                                                                                                                        | se Within 1 Mile  | of Site (check all                                                                                        | Site Setting:                                               | Years of Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| that apply):                                                                                                                                                                                                                                                                                                                |                   |                                                                                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ☐ Industrial ☐ Agriculture ☐ DOI                                                                                                                                                                                                                                                                                            |                   |                                                                                                           | ☐ Urbar                                                     | า                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Beginning Year 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| ☐ Commercial                                                                                                                                                                                                                                                                                                                | Mining            | Other Federal                                                                                             | ☐ Subu                                                      | rban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Forther Wasser and State 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Residential                                                                                                                                                                                                                                                                                                                 |                   | ] Facility:                                                                                               | ☑ Rural                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ending Year present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| ☐ Forest/Fields                                                                                                                                                                                                                                                                                                             | DOE               | <br>Other                                                                                                 |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                             |                   |                                                                                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Type of Site Operatio                                                                                                                                                                                                                                                                                                       | ns (check all tha | apply):                                                                                                   |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waste Generated:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ☐ Manufacturing (must ch                                                                                                                                                                                                                                                                                                    | neck subcategory) |                                                                                                           | □ Datail                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ✓ Onsite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Lumber and Wood                                                                                                                                                                                                                                                                                                             | 0 3.              |                                                                                                           | ☐ Retail<br>☐ Recycling                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Offsite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| ☐ Inorganic Chemic                                                                                                                                                                                                                                                                                                          |                   |                                                                                                           | ☐ Junk/Salvage Yard                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Onsite and Offsite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ☐ Plastic and/or Rul                                                                                                                                                                                                                                                                                                        |                   |                                                                                                           | ☐ Municipal Landfill                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Paints, Varnishes                                                                                                                                                                                                                                                                                                           |                   |                                                                                                           | Other Landfill                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waste Deposition Authorized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ☐ Industrial Organic                                                                                                                                                                                                                                                                                                        |                   |                                                                                                           | ☑ DOD<br>□ DOE                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | By: Present Owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| ☐ Agricultural Chem☐ Miscellaneous Che                                                                                                                                                                                                                                                                                      |                   |                                                                                                           | DOI                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Former Owner ☐ Present & Former Owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Primary Metals                                                                                                                                                                                                                                                                                                              | erriicai Froducts |                                                                                                           | Other Federal Facilit                                       | у                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ☐ Unauthorized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ☐ Metal Coating, Pla                                                                                                                                                                                                                                                                                                        | ating, Engraving  |                                                                                                           | RCRA                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| ☐ Metal Forging, Sta                                                                                                                                                                                                                                                                                                        |                   |                                                                                                           | <ul><li>☐ Treatment, Sto</li><li>☐ Large Quantity</li></ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waste Accessible to the Public:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ☐ Fabricated Structu☐ Electronic Equipm                                                                                                                                                                                                                                                                                     |                   |                                                                                                           | ☐ Small Quantity                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Other Manufactur                                                                                                                                                                                                                                                                                                            |                   |                                                                                                           | ☐ Subtitle D                                                | Contrator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ☐ Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| _                                                                                                                                                                                                                                                                                                                           | 9                 |                                                                                                           | ☐ Municipa                                                  | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ☑ Yes<br>☑ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ☐ Mining ☐ Metals                                                                                                                                                                                                                                                                                                           |                   |                                                                                                           | ☐ Industria                                                 | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Coal                                                                                                                                                                                                                                                                                                                        |                   |                                                                                                           | Converter"                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Distance to Nearest Dwelling,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ☐ Oil and Gas                                                                                                                                                                                                                                                                                                               |                   |                                                                                                           | □ "Protective File □ "Non-or Late Fi                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | School, or Workplace:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| ☐ Non-metallic Mine                                                                                                                                                                                                                                                                                                         | erals             |                                                                                                           | □ Note Specified                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                             |                   |                                                                                                           | ☐ Other                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _2,250 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                             |                   |                                                                                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _2,2301 cct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                             |                   |                                                                                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                             |                   | 6. Waste Cha                                                                                              | racteristics Infor                                          | mation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                             |                   |                                                                                                           | racteristics Infor<br>A Table 1 for WC Sco                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Source Type:                                                                                                                                                                                                                                                                                                                | Sour              |                                                                                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Source Type:<br>(check all that apply)                                                                                                                                                                                                                                                                                      | Sour<br>(include  | (Refer to P<br>ce Waste Quantity:                                                                         | A Table 1 for WC Sco                                        | ore)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| (check all that apply)                                                                                                                                                                                                                                                                                                      |                   | (Refer to P<br>ce Waste Quantity:                                                                         | A Table 1 for WC Sco                                        | ore)<br>General Type of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| (check all that apply)                                                                                                                                                                                                                                                                                                      |                   | (Refer to P<br>ce Waste Quantity:                                                                         | A Table 1 for WC Sco                                        | General Type of<br>(check all that app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oly):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| (check all that apply)  Landfill Surface Impoundment                                                                                                                                                                                                                                                                        |                   | (Refer to P<br>ce Waste Quantity:                                                                         | A Table 1 for WC Sco                                        | General Type of (check all that app   Metals   Organics   Inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pesticides/Herbicides Acids/Bases Oily Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| (check all that apply)                                                                                                                                                                                                                                                                                                      | (include          | (Refer to P<br>ce Waste Quantity:                                                                         | A Table 1 for WC Sco                                        | General Type of (check all that app   Metals   Organics   Inorganics   Solvents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pesticides/Herbicides  Acids/Bases  Oily Waste  Municipal Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co                                                                                                                                                                                                                                             | (include          | (Refer to P<br>ce Waste Quantity:                                                                         | A Table 1 for WC Sco                                        | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pesticides/Herbicides Acids/Bases Oily Waste Municipal Waste Mining Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile                                                                                                                                                                                                | (include          | (Refer to P<br>ce Waste Quantity:                                                                         | A Table 1 for WC Sco                                        | General Type of (check all that app   Metals   Organics   Inorganics   Solvents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile                                                                                                                                                                                  | (include          | (Refer to P<br>ce Waste Quantity:                                                                         | A Table 1 for WC Sco                                        | General Type of (check all that app  Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  The Company of the Company o |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile                                                                                                                                                                                                | (include          | (Refer to P<br>ce Waste Quantity:                                                                         | A Table 1 for WC Sco                                        | General Type of (check all that app  Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  The Company of the Company o |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum)                                                                                                                                                           | ntainers          | (Refer to P<br>ce Waste Quantity:                                                                         | A Table 1 for WC Sco                                        | General Type of (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hospi   Radioactive Wast   Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  The Company of the Company o |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment (unidentified source)                                                                                                                      | ntainers          | (Refer to P<br>ce Waste Quantity:                                                                         | A Table 1 for WC Sco                                        | General Type of (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hospi   Radioactive Wast   Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  te Other_AFFF_ molition Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plume (unidentified source) Contaminated SW/Sedin                                                                          | ntainers          | (Refer to P<br>ce Waste Quantity:                                                                         | A Table 1 for WC Sco                                        | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  te Other_AFFF_ molition Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment (unidentified source)                                                                                                                      | ntainers          | (Refer to P<br>ce Waste Quantity:                                                                         | A Table 1 for WC Sco                                        | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plume (unidentified source) Contaminated SW/Sedin (unidentified source)                                                    | ntainers          | (Refer to P<br>ce Waste Quantity:                                                                         | A Table 1 for WC Sco                                        | General Type of (check all that app     Metals     Organics     Inorganics     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Col Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plume (unidentified source) Contaminated SW/Sedin (unidentified source) Contaminated Soil                                 | ntainers          | (Refer to P<br>ce Waste Quantity:                                                                         | A Table 1 for WC Sco                                        | General Type of (check all that app     Metals     Organics     Inorganics     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Col Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plume (unidentified source) Contaminated SW/Sedin (unidentified Source) Contaminated Soil Other No Sources                | ntainers          | (Refer to Pice Waste Quantity:                                                                            | A Table 1 for WC Sco                                        | General Type of (check all that app     Metals     Organics     Inorganics     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Col Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plume (unidentified source) Contaminated SW/Sedin (unidentified Source) Contaminated Soil Other No Sources                | ntainers e        | (Refer to Pice Waste Quantity: unit)                                                                      | A Table 1 for WC Sco                                        | General Type of (check all that app     Metals     Organics     Inorganics     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Col Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plume (unidentified source) Contaminated SW/Sedin (unidentified Source) Contaminated Soil Other No Sources                | e nent            | (Refer to Pice Waste Quantity: unit)                                                                      | Tier*:  Tier*:                                              | General Type of (check all that app of (check all that app of (check all that app organics or | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Col Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plume (unidentified source) Contaminated SW/Sedin (unidentified source) Contaminated Soil Other No Sources *C=Constitue   | e nent            | (Refer to Pice Waste Quantity: unit)                                                                      | Tier*:  Tier*:                                              | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hosp     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Col Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plume (unidentified source) Contaminated SW/Sedin (unidentified source) Contaminated Soil Other No Sources  *C=Constituee | e nent            | (Refer to Poste Waste Quantity: unit)                                                                     | Tier*:  Tier*:                                              | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hosp     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Check all that apply                                                                                                                                                                                                                                                                                                        | e nent            | (Refer to Pice Waste Quantity: unit)                                                                      | Tier*:  Tier*:                                              | General Type of (check all that app     Metals     Organics     Inorganics     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der     Physical State of that apply):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Check all that apply                                                                                                                                                                                                                                                                                                        | e nent            | (Refer to Poste Waste Quantity: unit)  =Volume, A=Area  7. Grou  Is There a Suspect Ground Water¹:  ✓ Yes | Tier*:  Tier*:                                              | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hosp     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

| Drinking Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Have Primary Tar               | get Drinking          | /1/4-1/4 IVIIIC                                    | IVM                         |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|----------------------------------------------------|-----------------------------|--|--|
| Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water Wells Been Identified:   |                       | >1/2 - 1 Mile                                      | NA                          |  |  |
| Type of Drinking Water Wells Within 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                       | >1/2 - 1 Wille                                     | NA                          |  |  |
| Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ☐ Yes<br>☑ No                  |                       | >1 - 2 Mile                                        | NA                          |  |  |
| (check all that apply):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | If Yes, Enter Prir             | mary Target           | >2 - 3 Mile                                        | NA                          |  |  |
| ☑ Municipal ☐ Private                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Population:                    | , , ,                 | 72 Sivilic                                         |                             |  |  |
| None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | _ People <sup>3</sup> | >3 - 4 Mile                                        | NA                          |  |  |
| Depth to Shallowest Aquifer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nearest Designate              | ed Wellhead           |                                                    |                             |  |  |
| ~ 10 to 50 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Protection Area <sup>6</sup> : |                       | Total Within 4 Miles <sup>4</sup>                  | _NA                         |  |  |
| Karst Terrain/Aquifer Present:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ☐ Under                        | lies Site             |                                                    |                             |  |  |
| That is a second of the second | □ >0-4 N                       |                       | *Use population #s for PA Tab                      | ole 2                       |  |  |
| ☐ Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ☑ None \                       | Within 4 Miles        | *Note nearest well for #5 on                       | GW Pathway Scoresheet       |  |  |
| ☑ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 Sunfa                        | no Motor Dothur       | <u> </u>                                           |                             |  |  |
| Type of Surface Water Draining Site and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | ce Water Pathwa       | -                                                  | nce From Any Source to      |  |  |
| that apply):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 Miles Downstr               | еаті (спеск ап        | Surface Water:                                     | nce From Any Source to      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd 🔲 Lake                      |                       | 1,400 Feet                                         |                             |  |  |
| ☐ Bay ☐ Ocean ☐ Otl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | her                            |                       | N                                                  | Miles                       |  |  |
| Is There a Suspected Release to Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \Mator <sup>1</sup> :          |                       | Site is Located in:                                |                             |  |  |
| is There a suspected Release to Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | water.                         |                       | ☐ Annual - 10 yr Flod                              | odolain                     |  |  |
| ✓ Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                       | □ >10yr - 100yr Floo                               |                             |  |  |
| □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                       | ☐ >100yr - 500yr Floodplain<br>☐ >500yr Floodplain |                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 5                     | ,                                                  |                             |  |  |
| Drinking Water Intake Located Along the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Surface Water M              | igration Path:        | List All Secondary Targe                           | t Drinking Water Intakes:   |  |  |
| ☐ Yes<br>☑ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                       | Name: Water Body: Flow (cfs): Population Served:   |                             |  |  |
| Have Primary Target Drinking Water Into                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | akes Been Identifie            | ed:                   |                                                    | - <u> </u>                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                       |                                                    |                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ce to Nearest Drinl<br>: Mile  |                       |                                                    |                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 3                     |                                                    |                             |  |  |
| If Yes, Enter Population Served by Targe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t Intake:                      |                       |                                                    |                             |  |  |
| NA People <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                       | Total within                                       | 15 Miles <sup>4</sup>       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                       |                                                    |                             |  |  |
| Fisheries Located Along the Surface Wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =                              |                       | List All Secondary Targe                           | t Fisheries <sup>10</sup> : |  |  |
| ☐ Yes ☑ No If Yes, Distanc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e to Nearest Fisher<br>Mile    | •                     | Water Body/ Fishery Name                           | : Flow (cfs):               |  |  |
| Have Primary Target Fisheries Been Ider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | 3                     |                                                    |                             |  |  |
| ☐ Yes ☑ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                       |                                                    |                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 Surface Wat                  | ter Pathway (cor      | ntinued)                                           |                             |  |  |
| Wetlands Located Along the Surface Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                       | nvironments Located Alo                            | ng the Surface Water        |  |  |
| Path:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | Migration Path:       | 2000 Located Alo                                   |                             |  |  |
| ✓ Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | ☐ Yes<br>☑ No         | If Yes, Distance to I<br>Environment:              | Nearest Sensitive<br>Miles  |  |  |
| Have Primary Target Wetlands Been Ide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | entified:                      |                       | get Sensitive Environmen                           | <del></del>                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                       | Yes                                                |                             |  |  |
| ☐ Yes<br>☑ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | ☑ No                  |                                                    |                             |  |  |
| List All Wetlands:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | List All Sensitive    | Environments <sup>11</sup> :                       |                             |  |  |

| Water Body: Flow (cfs): Frontage miles:            |                           | Water Body :                                                               |              | Flow (cfs):                                | Sensitive Environment Type:         |  |
|----------------------------------------------------|---------------------------|----------------------------------------------------------------------------|--------------|--------------------------------------------|-------------------------------------|--|
|                                                    |                           |                                                                            |              |                                            |                                     |  |
|                                                    |                           |                                                                            |              |                                            |                                     |  |
|                                                    | 9. Soil Exp               | osure Pat                                                                  | hway         | /                                          |                                     |  |
| Are People Occupying Residence or                  | Number of Workers         |                                                                            |              |                                            | strial Sensitive Environments Been  |  |
| Attending School or Daycare on or                  |                           |                                                                            |              | Identified o                               | n or Within 200 Feet of Areas of    |  |
| Within 200 Feet of Area of Known or                | None                      |                                                                            |              | Known or S                                 | uspected Contamination:             |  |
| Suspected Contamination:                           | ☑ 1 - 100<br>□ 101 - 1,00 | 0                                                                          |              |                                            |                                     |  |
|                                                    | ☐ > 1,000                 |                                                                            |              |                                            | □ Yes                               |  |
|                                                    |                           |                                                                            |              |                                            | ☑ No                                |  |
| ☐ Yes ☑ No                                         |                           |                                                                            |              | If Voc. List                               | Each Terrestrial Sensitive          |  |
| <u> </u>                                           | Population Within 1       | Milo                                                                       |              | Environme                                  |                                     |  |
| If Yes, Enter Total Residential                    | Fopulation Within 1       | . IVIIIC.                                                                  |              |                                            |                                     |  |
| Population:                                        |                           | . 7                                                                        |              |                                            |                                     |  |
|                                                    | People <sup>7</sup>       |                                                                            |              |                                            |                                     |  |
| People <sup>2</sup>                                |                           |                                                                            |              | *Refer to PA Table 7 for environment types |                                     |  |
|                                                    |                           | , , , , , , , , , , , , , , , , , , ,                                      |              | Table 7 for environment types              |                                     |  |
|                                                    | 10. A                     | ir Pathway                                                                 | /            |                                            |                                     |  |
| Is there a Suspected Release to Air <sup>1</sup> : | W                         | etlands Lo                                                                 | cated        | Within 4 M                                 | iles of the Site <sup>6</sup> :     |  |
| ☐ Yes ☑ No                                         |                           | ✓ Yes                                                                      |              | If Voc. How                                | w Many Acres                        |  |
| Enter Total Population on or Within:               |                           | ☐ No                                                                       |              | If Yes, How Many Acres: Acres              |                                     |  |
| Enter rotal Population on or Within.               | 0                         | Other Sensitive Environments Located Within 4 Miles of the Site:           |              |                                            |                                     |  |
| Onsite                                             |                           | ther sensiti                                                               | VC LI        |                                            | Located Within 4 Miles of the Site. |  |
| 0.4/4.84%                                          |                           |                                                                            |              | ☐ Yes<br>☑ No                              |                                     |  |
| 0-1/4 Mile                                         |                           |                                                                            |              | U NO                                       |                                     |  |
| >1/4-1/2 Mile                                      | Li                        | List All Sensitive Environments Within 1/2 Mile of the Site <sup>6</sup> : |              |                                            |                                     |  |
| >1/2-1 Mile                                        |                           | istance:                                                                   | <u>Sensi</u> | tive Environn                              | nent Type/Wetlands Area (acres):    |  |
| >1-2 Miles                                         |                           | nsite                                                                      | None         | e                                          |                                     |  |
| >2-3 Miles                                         |                           | 0-1/4 MileWetlands                                                         |              |                                            |                                     |  |
| >3-4 Miles                                         | >                         | 1/4-1/2 Mile                                                               | _We          | tlands                                     |                                     |  |
| Total Within 4 Miles <sup>3-5</sup> _8,190_        | *                         | Refer to PA Tab                                                            | le 10 fo     | r calculations on                          | air pathway exposures               |  |

<sup>1-11</sup> Refers to question number on the PA scoresheet for each particular pathway

| _                                    | _                                                                    |                            | _                           |                        | Identification          | า                   |  |  |
|--------------------------------------|----------------------------------------------------------------------|----------------------------|-----------------------------|------------------------|-------------------------|---------------------|--|--|
| Potential H                          | lazardous W                                                          |                            | reliminary <i>I</i>         | Assessment             | State: SD               | CERCLIS #:          |  |  |
|                                      |                                                                      | Form                       |                             | CERCLIS Discovery Date |                         |                     |  |  |
|                                      |                                                                      | 1. Gen                     | eral Site Informa           | tion                   |                         |                     |  |  |
| Name: Ellsworth A                    | AFB                                                                  | Street Address:            | : 1000 N Ellsworth          | Rd                     |                         |                     |  |  |
| City:                                |                                                                      | State: SD                  | Zip Code:<br>57769          | County:<br>Meade       | Co. Code:               | Cong. Dist:         |  |  |
| Latitude:                            | Longitude:                                                           | Approximate A              | rea of Site:                | Status of Site:        |                         |                     |  |  |
| 44°9' 6.40"                          | 103°6' 6.10"                                                         | _83 Ac                     | res                         | ☑ Active □             | Not Specified           |                     |  |  |
|                                      |                                                                      |                            | Square Ft                   | ☐ Inactive ☐           | NA (GW plume,           | etc.)               |  |  |
| Site Name: 70, 80,                   | 90 Row Hangars                                                       | •                          |                             | 1                      |                         |                     |  |  |
| Site Description: H                  | langars where AFFF f                                                 | ire suppression s          | ystems used to be           | present (docks 70, 7   | 71, 72, 73, 74,         | 81, 90, 91, 92, and |  |  |
| contained a 1,000                    | s were supplied with<br>gallon AFFF tank tha<br>h dock had its own 5 | t fed hangars 70,          | 80, and 90 via und          | erground piping. In    |                         | •                   |  |  |
|                                      |                                                                      | 2. Owner                   | /Operator Inform            | nation                 |                         |                     |  |  |
| Owner: Ellsworth                     | AFB                                                                  |                            | Operator: same              | e as owner             |                         |                     |  |  |
| Street Address: 10                   | 000 N Ellsworth Rd                                                   |                            | Street Address:             |                        |                         |                     |  |  |
| City:                                |                                                                      |                            | City:                       | City:                  |                         |                     |  |  |
| State: SD                            | Zip Code:                                                            | Telephone:                 | State:                      | Zip Code:              | Telephone:              |                     |  |  |
|                                      |                                                                      |                            |                             | 2.p 30 ac.             |                         |                     |  |  |
| Type of Ownership                    | <br>o:                                                               |                            | Type of Owners              | ship:                  |                         |                     |  |  |
| ☐ Private                            | ☐ County                                                             |                            | ☐ Private                   | ☐ County               |                         |                     |  |  |
| ☑ Federal Agency                     |                                                                      |                            | ☐ Federal Agency            |                        | I                       |                     |  |  |
| Name: _DOD_<br>☐ State               |                                                                      |                            | Name:<br>☐ State            |                        |                         |                     |  |  |
| ☐ Indian                             | Other                                                                | <del></del>                | Indian                      | Other                  |                         |                     |  |  |
|                                      |                                                                      |                            |                             |                        |                         |                     |  |  |
|                                      |                                                                      |                            | Evaluator Informa           | ation                  | 1_                      |                     |  |  |
| Name of Evaluator<br>Kelly Teplitsky | r:                                                                   | Agency/Organi<br>CH2M HILL | zation:                     |                        | Date Prepare 03/03/2015 | ed:                 |  |  |
| Street Address: 91                   | 91 South Jamaica St                                                  | reet                       | City: Englewood             | d                      | State: CO               |                     |  |  |
| Name of EPA or St                    | ate Agency Contact:                                                  |                            | Street Address:             |                        |                         |                     |  |  |
| City:                                |                                                                      | State:                     |                             | Telephone:             |                         |                     |  |  |
|                                      |                                                                      |                            |                             |                        |                         |                     |  |  |
|                                      |                                                                      |                            | osition <i>(for EPA ເ</i>   |                        | _                       |                     |  |  |
|                                      | nse/Removal Assessi                                                  | nent                       | CERCLIS Recom               |                        | Signature:              |                     |  |  |
| Recommendation                       | :                                                                    |                            | ☐ Higher Prior☐ Lower Prior | •                      | Name (typed             | 1).                 |  |  |
|                                      | Yes                                                                  |                            | □ NFRAP                     | ity 3i                 | ivanie (typeu           | 7.                  |  |  |
|                                      | □ No                                                                 |                            | ☐ RCRA                      |                        | Position:               |                     |  |  |
| Da                                   | ate:                                                                 |                            | ☐ Other:<br>Date:           |                        |                         |                     |  |  |
|                                      |                                                                      | 5. Gene                    | ral Site Character          | <br>ristics            | 1                       |                     |  |  |
| Predominant Land                     | l Use Within 1 Mile o                                                |                            | Site Setting:               |                        | Years of Ope            | ration:             |  |  |

| that apply):                                                                                                                                                                                                                                                                                                              |                                                |                                |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| ☐ Industrial ☐ Commercial ☐ Residential ☐ Forest/Fields                                                                                                                                                                                                                                                                   | ☐ Mining ☑ DOD ☐ ☐ DOE                         | DOI Other Federal Facility:    | ☐ Urbar<br>☐ Subur<br>☑ Rural                                                                                | rban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Beginning Year _?_  Ending Year present                                                                                           |
| Type of Site Operation                                                                                                                                                                                                                                                                                                    |                                                |                                |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waste Generated:                                                                                                                  |
| Type of Site Operation                                                                                                                                                                                                                                                                                                    | ons (check all tha                             | . арріу).                      |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                           | od Products cals ubber Products s ic Chemicals |                                | Retail     Recycling     Junk/Salvage Yard     Municipal Landfill     Other Landfill     DOD     DOE     DOI |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ✓ Onsite ☐ Offsite ☐ Onsite and Offsite  Waste Deposition Authorized  By: ☐ Present Owner ☐ Former Owner ☐ Present & Former Owner |
| ☐ Primary Metals                                                                                                                                                                                                                                                                                                          |                                                |                                | Other Federal Facilit                                                                                        | у                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ☐ Unauthorized                                                                                                                    |
| ☐ Metal Coating, Pl                                                                                                                                                                                                                                                                                                       | 0 0                                            |                                | RCRA                                                                                                         | rage or Dianocal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ☐ Unknown                                                                                                                         |
| ☐ Metal Forging, St☐ Fabricated Struct☐ Electronic Equipr                                                                                                                                                                                                                                                                 | tural Metal Products                           |                                | ☐ Treatment, Sto☐ Large Quantity☐ Small Quantity                                                             | Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Waste Accessible to the Public:                                                                                                   |
| ☐ Other Manufactu                                                                                                                                                                                                                                                                                                         | ıring                                          |                                | ☐ Subtitle D                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Yes                                                                                                                             |
| Mining                                                                                                                                                                                                                                                                                                                    |                                                |                                | ☐ Municipa<br>☐ Industria                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☑ No                                                                                                                              |
| ☐ Metals                                                                                                                                                                                                                                                                                                                  |                                                |                                | ☐ "Converter"                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |
| ☐ Coal☐ Oil and Gas                                                                                                                                                                                                                                                                                                       |                                                |                                | ☐ "Protective File                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Distance to Nearest Dwelling,                                                                                                     |
| ☐ Non-metallic Min                                                                                                                                                                                                                                                                                                        | erals                                          |                                | <ul><li>□ "Non-or Late Fi</li><li>□ Note Specified</li></ul>                                                 | ller"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | School, or Workplace:                                                                                                             |
|                                                                                                                                                                                                                                                                                                                           |                                                |                                | Other                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F 600 Foot                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                           |                                                |                                |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _5,660 Feet                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                           |                                                | 6. Waste Cha                   | racteristics Infor                                                                                           | mation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                           |                                                |                                |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                           |                                                | (Refer to P                    | A Table 1 for WC Sco                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |
| Source Type:                                                                                                                                                                                                                                                                                                              | Sour                                           | (Refer to Page Waste Quantity: | A Table 1 for WC Sco<br>Tier*:                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waste                                                                                                                             |
| Source Type:<br>(check all that apply)                                                                                                                                                                                                                                                                                    | Sour<br>(include                               | ce Waste Quantity:             |                                                                                                              | ore)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                   |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment                                                                                                                                          | ontainers                                      | ce Waste Quantity:             |                                                                                                              | General Type of (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wass   Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  te Other_AFFF_ molition Waste   |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum                                                                                                                     | ontainers                                      | ce Waste Quantity:             |                                                                                                              | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hosp     Radioactive Was     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  te  Other_AFFF_             |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedie                                                                         | ontainers                                      | ce Waste Quantity:             |                                                                                                              | General Type of (check all that app     Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  te Other_AFFF_ molition Waste   |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedii (unidentified source) Contaminated Soil                                 | ontainers                                      | ce Waste Quantity:             |                                                                                                              | General Type of (check all that app of (check all that app of Organics orga | Pesticides/Herbicides                                                                                                             |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedia (unidentified source)                                                   | ontainers                                      | ce Waste Quantity:             |                                                                                                              | General Type of (check all that app     Metals     Organics     Inorganics     Paints/Pigments     Laboratory/Hosp     Radioactive Wass     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pesticides/Herbicides                                                                                                             |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedin (unidentified source) Contaminated Soil Other No Sources                | ontainers                                      | ce Waste Quantity: unit)       |                                                                                                              | General Type of (check all that app     Metals     Organics     Inorganics     Paints/Pigments     Laboratory/Hosp     Radioactive Wass     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pesticides/Herbicides                                                                                                             |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedin (unidentified source) Contaminated Soil Other No Sources                | ontainers e me ment                            | ce Waste Quantity:  unit)      |                                                                                                              | General Type of (check all that app     Metals     Organics     Inorganics     Paints/Pigments     Laboratory/Hosp     Radioactive Was:     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pesticides/Herbicides                                                                                                             |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedin (unidentified source) Contaminated Soil Other No Sources                | ontainers ene ment ent, W=Wastestream, V       | ce Waste Quantity:  unit)      | Tier*:                                                                                                       | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hosp     Radioactive Was:     Construction/Der     Physical State of that apply):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pesticides/Herbicides                                                                                                             |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedii (unidentified source) Contaminated Soil Other No Sources *C=Constitue   | ontainers ene ment ent, W=Wastestream, V       | ce Waste Quantity: unit)       | Tier*:                                                                                                       | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hosp     Radioactive Was:     Construction/Der     Physical State of that apply):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pesticides/Herbicides                                                                                                             |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Trailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedin (unidentified source) Contaminated Soil Other No Sources  *C=Constitue | ontainers ene ment ent, W=Wastestream, V       | ee Waste Quantity:  unit)      | Tier*:                                                                                                       | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hosp     Radioactive Was:     Construction/Der     Physical State of that apply):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pesticides/Herbicides                                                                                                             |

| Drinking Well:                                       | Have Primary Tar               | get Drinking                         | >1/4-1/2 IVIIIC                                    |                             |  |
|------------------------------------------------------|--------------------------------|--------------------------------------|----------------------------------------------------|-----------------------------|--|
| Feet                                                 | Water Wells Beer               |                                      | >1/2 - 1 Mile                                      | NA                          |  |
| Type of Drinking Water Wells Within 4                |                                |                                      | >1/2 - 1 Wille                                     | NA                          |  |
| Miles                                                | ☐ Yes<br>☑ No                  |                                      | >1 - 2 Mile                                        | NA                          |  |
| (check all that apply):                              | If Yes, Enter Prir             | mary Target                          | 2 2 441                                            | N.A                         |  |
| ✓ Municipal                                          | Population:                    | ilaly larget                         | >2 - 3 Mile                                        | NA                          |  |
| ☐ Private ☐ None                                     | •                              | _ People³                            | >3 - 4 Mile                                        | NA                          |  |
| Depth to Shallowest Aquifer:                         | Nearest Designate              | ad Wallhaad                          | -                                                  |                             |  |
| ~ 10 to 50 Feet                                      | Protection Area <sup>6</sup> : |                                      | Total Within 4 Miles <sup>4</sup>                  | _NA                         |  |
|                                                      |                                |                                      |                                                    |                             |  |
| Karst Terrain/Aquifer Present:                       | ☐ Under                        |                                      | *Use population #s for PA Tab                      | ole 2                       |  |
| □ Yes                                                |                                | Within 4 Miles                       | *Note nearest well for #5 on                       |                             |  |
| ✓ No                                                 |                                |                                      |                                                    |                             |  |
|                                                      |                                | ce Water Pathwa                      |                                                    |                             |  |
| Type of Surface Water Draining Site and that apply): | 15 Miles Downstr               | eam (check all                       | Shortest Overland Dista<br>Surface Water:          | nce From Any Source to      |  |
|                                                      | nd 🔲 Lake                      |                                      | _3,685_ Fe                                         |                             |  |
| ☐ Bay ☐ Ocean ☐ Otl                                  | her                            |                                      | N                                                  | Miles                       |  |
| Is There a Suspected Release to Surface              | \Mator <sup>1</sup> :          |                                      | Site is Located in:                                |                             |  |
| is There a suspected Release to Surface              | water .                        |                                      | ☐ Annual - 10 yr Flod                              | odolain                     |  |
| ✓ Yes                                                |                                |                                      | ☐ >10yr - 100yr Floo                               | odplain                     |  |
| □ No                                                 |                                |                                      | ☐ >100yr - 500yr Floodplain<br>☐ >500yr Floodplain |                             |  |
| Drinking Water Intake Located Along the              | e Surface Water M              | igration Path:                       | List All Secondary Targe                           | t Drinking Water Intakes:   |  |
| ☐ Yes                                                |                                |                                      |                                                    |                             |  |
| ☑ No                                                 |                                |                                      | Name: Water Body: Flow                             | v (cfs): Population Served: |  |
| Have Primary Target Drinking Water Into              | akes Been Identifie            | ed:                                  |                                                    |                             |  |
| ☐ Yes If Yes, Distance                               | ce to Nearest Drink            | king                                 |                                                    |                             |  |
|                                                      | :Mile                          |                                      |                                                    |                             |  |
| If Yes, Enter Population Served by Targe             | t Intake:                      |                                      |                                                    |                             |  |
|                                                      |                                |                                      | Total within                                       | 15 Miles <sup>4</sup>       |  |
| NA People <sup>4</sup>                               |                                |                                      |                                                    |                             |  |
| Fisheries Located Along the Surface Wat              | er Migration Path:             |                                      | List All Secondary Targe                           | t Fisheries <sup>10</sup>   |  |
| _                                                    | e to Nearest Fisher            |                                      | Water Body/ Fishery Name                           |                             |  |
|                                                      | Mile                           | S                                    |                                                    |                             |  |
| Have Primary Target Fisheries Been Iden              | itified:                       |                                      |                                                    |                             |  |
| ☐ Yes     ✓ No                                       |                                |                                      |                                                    |                             |  |
|                                                      | 8. Surface Wat                 | ter Pathway (cor                     | ntinued)                                           |                             |  |
| Wetlands Located Along the Surface Wa<br>Path:       | ter Migration                  | Other Sensitive E<br>Migration Path: | nvironments Located Alo                            | ng the Surface Water        |  |
| ✓ Yes                                                |                                | ☐ Yes<br>☑ No                        | If Yes, Distance to I                              | Nearest Sensitive Miles     |  |
| Have Primary Target Wetlands Been Ide                | entified:                      |                                      | —<br>get Sensitive Environmen                      | ts Been Identified:         |  |
| ☐ Yes                                                |                                |                                      | Yes                                                |                             |  |
| ☑ No                                                 |                                |                                      | ☑ No                                               |                             |  |
| List All Wetlands:                                   | List All Sensitive             | Environments <sup>11</sup> :         |                                                    |                             |  |

| Water Body: Flow (cfs): Frontage miles:            | Water Body :                            | Flow (cfs): Sensitive Environment Type:                 |
|----------------------------------------------------|-----------------------------------------|---------------------------------------------------------|
|                                                    |                                         |                                                         |
|                                                    |                                         |                                                         |
|                                                    | 9. Soil Exposure Pathwa                 | av                                                      |
| Are People Occupying Residence or                  | Number of Workers Onsite <sup>4</sup> : | Have Terrestrial Sensitive Environments Been            |
| Attending School or Daycare on or                  | Number of Workers Onsite :              | Identified on or Within 200 Feet of Areas of            |
| Within 200 Feet of Area of Known or                | ☐ None                                  | Known or Suspected Contamination:                       |
| Suspected Contamination:                           | ☑ 1 - 100<br>□ 101 - 1 000              | i '                                                     |
|                                                    | □ 101 - 1,000<br>□ > 1,000              | B.:                                                     |
|                                                    |                                         | ☐ Yes ☑ No                                              |
| ☐ Yes                                              |                                         | _ `                                                     |
| ☑ No                                               |                                         | If Yes, List Each Terrestrial Sensitive                 |
|                                                    | Population Within 1 Mile:               | Environment <sup>5</sup> :                              |
| If Yes, Enter Total Residential                    |                                         |                                                         |
| Population:                                        | People <sup>7</sup>                     |                                                         |
| People <sup>2</sup>                                |                                         |                                                         |
|                                                    |                                         | *Refer to PA Table 7 for environment types              |
|                                                    | 10. Air Pathway                         |                                                         |
| Is there a Suspected Release to Air <sup>1</sup> : | Wetlands Locate                         | d Within 4 Miles of the Site <sup>6</sup> :             |
| ☐ Yes ☑ No                                         | ✓ Yes                                   | 15.7                                                    |
|                                                    | □ No                                    | If Yes, How Many Acres: Acres                           |
| Enter Total Population on or Within:               | Other Countition                        | To the control of Markets A NATIon of the City          |
| Onsite                                             | Other Sensitive E                       | Environments Located Within 4 Miles of the Site:        |
|                                                    |                                         | ☐ Yes                                                   |
| 0-1/4 Mile                                         |                                         | ☑ No                                                    |
| >1/4-1/2 Mile                                      | List All Sensitive                      | Environments Within 1/2 Mile of the Site <sup>6</sup> : |
| >1/2-1 Mile                                        | <u>Distance:</u> <u>Sen</u>             | sitive Environment Type/Wetlands Area (acres):          |
| >1-2 Miles                                         | Onsite No                               | ne                                                      |
| >2-3 Miles                                         | 0-1/4 Mile _W                           | etlands                                                 |
| >3-4 Miles                                         | >1/4-1/2 Mile _W                        | /etlands                                                |
| Total Within 4 Miles <sup>3-5</sup> _5,660         |                                         |                                                         |

<sup>1-11</sup> Refers to question number on the PA scoresheet for each particular pathway

|                                                                         | _                                                |                           | _                                                         |                     | Identification               | n                 |
|-------------------------------------------------------------------------|--------------------------------------------------|---------------------------|-----------------------------------------------------------|---------------------|------------------------------|-------------------|
| Potential                                                               | Hazardous Wa                                     |                           | reliminary A                                              | Assessment          | State: SD                    | CERCLIS #:        |
|                                                                         |                                                  | Form                      |                                                           |                     | CERCLIS Disc                 | overy Date:       |
|                                                                         |                                                  | 1. Ger                    | neral Site Informat                                       | tion                |                              |                   |
| Name: Ellsworth                                                         | AFB                                              | Street Address            | :: 1000 N Ellsworth I                                     | Rd                  |                              |                   |
| City:                                                                   |                                                  | State: SD                 | Zip Code:<br>57769                                        | County:<br>Meade    | Co. Code:                    | Cong. Dist:       |
| Latitude:<br>44°8' 11.54"                                               | Longitude:<br>103°5' 9.42"                       | Approximate A             |                                                           |                     | Not Specified  NA (GW plume, | etc.)             |
| Site Name: Build                                                        | ling 618                                         | _                         |                                                           |                     |                              |                   |
|                                                                         | discharged to a 50,000<br>eleased to the WWTP. T | -                         |                                                           | -                   |                              | . The contents of |
|                                                                         |                                                  | 2. Owne                   | r/Operator Inforn                                         | nation              |                              |                   |
| Owner: Ellswort                                                         | h AFB                                            |                           | Operator: same                                            | as owner            |                              |                   |
| Street Address: 1                                                       | 1000 N Ellsworth Rd                              |                           | Street Address:                                           |                     |                              |                   |
| City:                                                                   |                                                  |                           | City:                                                     |                     |                              |                   |
| State: SD                                                               | Zip Code:                                        | Telephone:                | State:                                                    | Zip Code:           | Telephone:                   |                   |
| Type of Ownersh  ☐ Private ☑ Federal Agency Name: _DOI ☐ State ☐ Indian | ☐ County<br>☐ Municipal                          | fied                      | Type of Owners  Private Federal Agency Name: State Indian | ☐ County☐ Municipal | ified                        |                   |
|                                                                         |                                                  | 3. Site                   | Evaluator Informa                                         | ation               |                              |                   |
| Name of Evaluat<br>Kelly Teplitsky                                      | or:                                              | Agency/Organ<br>CH2M HILL | ization:                                                  |                     | Date Prepare<br>03/03/2015   | ed:               |
| Street Address: 9                                                       | 9191 South Jamaica Str                           | eet                       | City: Englewood                                           | t                   | State: CO                    |                   |
| Name of EPA or                                                          | State Agency Contact:                            |                           | Street Address:                                           |                     |                              |                   |
| City:                                                                   |                                                  | State:                    |                                                           | Telephone:          |                              |                   |
|                                                                         |                                                  | 4. Site Disp              | oosition <i>(for EPA u</i>                                | ise only)           |                              |                   |
| Emergency Resp<br>Recommendatio                                         | onse/Removal Assessn                             |                           | CERCLIS Recom                                             | mendation:          | Signature:                   |                   |
| necommendatio                                                           | ☐ Yes<br>☐ No                                    |                           | ☐ Lower Priori☐ NFRAP                                     | •                   | Name (typed                  | i):               |
|                                                                         | Date:                                            |                           | ☐ RCRA ☐ Other:  Date:                                    |                     | Position:                    |                   |
|                                                                         |                                                  | 5. Gene                   | eral Site Character                                       | istics              |                              |                   |
| Predominant Lai                                                         | nd Use Within 1 Mile o                           | f Site (check all         | Site Setting:                                             |                     | Years of Ope                 | ration:           |

| that apply):                                                                                                                                                                                                         |                                                                                                                |                                   |                                                                                                                                                            |                                                                                                       |                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| ☐ Industrial ☐ Commercial ☐ Residential ☐ Forest/Fields                                                                                                                                                              | ☐ Mining ☐ DOD ☐ ☐ DOE                                                                                         | DOI Other Federal Facility: Other | ☐ Urban<br>☐ Suburban<br>☑ Rural                                                                                                                           |                                                                                                       | Beginning Year _?_  Ending Year 2012  □ Unknown                                                                   |
|                                                                                                                                                                                                                      |                                                                                                                | Other                             |                                                                                                                                                            |                                                                                                       | Unknown                                                                                                           |
| Type of Site Operation                                                                                                                                                                                               | ons (check all that a                                                                                          | apply):                           |                                                                                                                                                            |                                                                                                       | Waste Generated:                                                                                                  |
| Manufacturing (must cl Lumber and Woc Inorganic Chemia Plastic and/or Ru Paints, Varnishes Industrial Organi Agricultural Cher Miscellaneous Ch Primary Metals Metal Coating, Pl Metal Forging, Sl Fabricated Struct | d Products cals bber Products  c Chemicals nicals emical Products  ating, Engraving amping ural Metal Products | [<br>]<br>[<br>]<br>[<br>]        | Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill DOD DOE DOI Other Federal Facility RCRA Treatment, Stor Large Quantity Small Quantity | rage, or Disposal<br>Generator                                                                        | ✓ Onsite                                                                                                          |
| ☐ Electronic Equipr ☐ Other Manufactu ☐ Mining ☐ Metals ☐ Coal                                                                                                                                                       |                                                                                                                |                                   | Subtitle D  Municipal  Industrial  "Converter"                                                                                                             |                                                                                                       | ☐ Yes ☑ No  Distance to Nearest Dwelling,                                                                         |
| ☐ Oil and Gas ☐ Non-metallic Min                                                                                                                                                                                     | erals                                                                                                          |                                   | ☐ "Protective Filer ☐ "Non-or Late Fil ☐ Note Specified —                                                                                                  | ler"                                                                                                  | School, or Workplace:                                                                                             |
|                                                                                                                                                                                                                      |                                                                                                                |                                   | Other                                                                                                                                                      | <u></u>                                                                                               | _3,200 Feet                                                                                                       |
|                                                                                                                                                                                                                      |                                                                                                                |                                   | racteristics Inform<br>A Table 1 for WC Sco                                                                                                                |                                                                                                       | l                                                                                                                 |
| Source Type:                                                                                                                                                                                                         | Source                                                                                                         | Waste Quantity:                   | Tier*:                                                                                                                                                     | General Type of                                                                                       | Waste                                                                                                             |
| (check all that apply)                                                                                                                                                                                               | (include u                                                                                                     | •                                 |                                                                                                                                                            | (check all that app                                                                                   |                                                                                                                   |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Taillings Pile □ Trash Pile (open drum) □ Land Treatment                                          | ontainers                                                                                                      |                                   |                                                                                                                                                            | Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hosp Radioactive Wasi Construction/Der | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  de Other _AFFF_ |
| ☐ Contaminated GW Plum (unidentified source) ☐ Contaminated SW/Sedi                                                                                                                                                  |                                                                                                                |                                   |                                                                                                                                                            | that apply):                                                                                          | f Waste as Deposited (check all                                                                                   |
| (unidentified source)  Contaminated Soil  Other  No Sources                                                                                                                                                          | ent, W=Wastestream, V=                                                                                         | /olume A=Area                     | _                                                                                                                                                          |                                                                                                       | Solid<br>Sludge<br>Powder<br>Liquid<br>Gas                                                                        |
| C-Constitut                                                                                                                                                                                                          | ,astesticam, v=1                                                                                               | ,                                 | nd Water Pathwa                                                                                                                                            | I<br>IV                                                                                               |                                                                                                                   |
| Is Ground Water Use                                                                                                                                                                                                  | d for Drinking                                                                                                 | Is There a Suspect                |                                                                                                                                                            |                                                                                                       | arget Population Served by                                                                                        |
| Within 4 Miles:                                                                                                                                                                                                      | - ······· <b>·</b>                                                                                             | Ground Water <sup>1</sup> :       |                                                                                                                                                            | 1                                                                                                     | Vithdrawn From:                                                                                                   |
| ☑ Yes<br>☐ No                                                                                                                                                                                                        |                                                                                                                | ✓ Yes □ No                        |                                                                                                                                                            | 0 - 1/4 Mile                                                                                          | NA                                                                                                                |
| If Yes, Distance to n                                                                                                                                                                                                | earest                                                                                                         |                                   |                                                                                                                                                            | >1/4 - 1/2 Mile                                                                                       | e NA                                                                                                              |

| Drinking Well:                                       | Have Primary Tar                                    | get Drinking        | >1/4-1/2 IVIIIC                           |                             |  |
|------------------------------------------------------|-----------------------------------------------------|---------------------|-------------------------------------------|-----------------------------|--|
| Feet                                                 | Water Wells Beer                                    | •                   | >1/2 - 1 Mile                             | NA                          |  |
| Type of Drinking Water Wells Within 4                |                                                     |                     | >1/2 - 1 Wille                            | NA                          |  |
| Miles                                                | ☐ Yes<br>☑ No                                       |                     | >1 - 2 Mile                               | NA                          |  |
| (check all that apply):                              |                                                     |                     |                                           |                             |  |
| ☑ Municipal                                          | If Yes, Enter Prir Population:                      | nary rarget         | >2 - 3 Mile                               | NA                          |  |
| ☐ Private ☐ None                                     | •                                                   | People <sup>3</sup> | >3 - 4 Mile                               | NA                          |  |
|                                                      | Nearest Designat                                    | ad Mallbaad         | -                                         |                             |  |
| Depth to Shallowest Aquifer:                         | Nearest Designate<br>Protection Area <sup>6</sup> : |                     | Total Within 4 Miles <sup>4</sup>         | _NA                         |  |
| ~ 10 to 50 Feet                                      | Protection Area :                                   |                     |                                           |                             |  |
| Karst Terrain/Aquifer Present:                       | ☐ Under                                             |                     | *Use population #s for PA Tab             | nla 2                       |  |
| ☐Yes                                                 |                                                     | Within 4 Miles      | *Note nearest well for #5 on              |                             |  |
| ☑ No                                                 |                                                     |                     |                                           |                             |  |
|                                                      |                                                     | ce Water Pathwa     | ау                                        |                             |  |
| Type of Surface Water Draining Site and that apply): | 15 Miles Downstr                                    | eam (check all      | Shortest Overland Dista<br>Surface Water: | nce From Any Source to      |  |
| ✓ Stream ☐ River ✓ Pol                               | nd 🗆 Lake                                           |                     | _1,380_ Fe                                | et                          |  |
|                                                      | her                                                 |                     | N                                         | Miles                       |  |
|                                                      | 1                                                   |                     | Site is Located in:                       |                             |  |
| Is There a Suspected Release to Surface              | water :                                             |                     | Annual - 10 yr Floo                       | odnlain                     |  |
| ✓ Yes                                                |                                                     |                     | □ >10 yr Floo                             |                             |  |
| □ No                                                 |                                                     |                     | □ >100yr - 500yr Floodplain               |                             |  |
|                                                      |                                                     |                     | ☐ >500yr Floodplain                       |                             |  |
| Drinking Water Intake Located Along the              | e Surface Water M                                   | igration Path:      | List All Secondary Targe                  | t Drinking Water Intakes:   |  |
| ☐ Yes<br>☑ No                                        |                                                     |                     | <u>Name: Water Body: Flow</u>             | v (cfs): Population Served: |  |
| Have Primary Target Drinking Water Inta              | akes Been Identifie                                 | ed:                 |                                           |                             |  |
|                                                      |                                                     |                     |                                           |                             |  |
|                                                      | ce to Nearest Drinl<br>: Mile                       |                     |                                           |                             |  |
|                                                      |                                                     | •                   |                                           |                             |  |
| If Yes, Enter Population Served by Targe             | t Intake:                                           |                     |                                           |                             |  |
| NA People <sup>4</sup>                               |                                                     |                     | Total within                              | 15 Miles <sup>4</sup>       |  |
| Fisheries Located Along the Surface Wat              | er Migration Path:                                  |                     | List All Secondary Targe                  | t Fisheries <sup>10</sup> : |  |
| _                                                    | e to Nearest Fisher                                 |                     | Water Body/ Fishery Name                  |                             |  |
| Les Mo                                               | Mile                                                | S                   |                                           |                             |  |
| Have Primary Target Fisheries Been Iden              | itified:                                            |                     |                                           |                             |  |
| ☐ Yes ☑ No                                           |                                                     |                     |                                           |                             |  |
| 8. Surface Water Pathway (con                        |                                                     |                     | ıtinued)                                  |                             |  |
| Wetlands Located Along the Surface Wa                |                                                     | Other Sensitive E   | nvironments Located Alo                   | ng the Surface Water        |  |
| Path:                                                |                                                     | Migration Path:     | If Voc Dictores to                        | Nearest Sensitive           |  |
| ✓ Yes<br>□ No                                        |                                                     | ☐ Yes<br>☑ No       | If Yes, Distance to I<br>Environment:     | Miles                       |  |
| Have Primary Target Wetlands Been Ide                | entified:                                           |                     | get Sensitive Environmen                  | <del></del>                 |  |
| yes □ Yes                                            |                                                     | , ,                 | ☐ Yes                                     |                             |  |
| ☐ Yes ☑ No                                           |                                                     |                     | ☑ No                                      |                             |  |
| List All Wetlands:                                   |                                                     |                     |                                           |                             |  |

| Water Body : Flow (cfs): Frontage miles:           | <u>Water Body</u> :                     | Flow (cfs): Sensitive Environment Type:                 |
|----------------------------------------------------|-----------------------------------------|---------------------------------------------------------|
|                                                    |                                         |                                                         |
|                                                    |                                         |                                                         |
|                                                    | 9. Soil Exposure Pathwa                 |                                                         |
| Are People Occupying Residence or                  | Number of Workers Onsite <sup>4</sup> : | Have Terrestrial Sensitive Environments Been            |
| Attending School or Daycare on or                  | Number of Workers Onsite :              | Identified on or Within 200 Feet of Areas of            |
| Within 200 Feet of Area of Known or                | ✓ None                                  | Known or Suspected Contamination:                       |
| Suspected Contamination:                           | ☐ 1 - 100                               |                                                         |
|                                                    | ☐ 101 - 1,000<br>☐ > 1,000              |                                                         |
|                                                    | 1,000                                   | ☐ Yes ☑ No                                              |
| ☐ Yes                                              |                                         | E No                                                    |
| ☑ No                                               |                                         | If Yes, List Each Terrestrial Sensitive                 |
|                                                    | Population Within 1 Mile:               | Environment⁵:                                           |
| If Yes, Enter Total Residential                    |                                         |                                                         |
| Population:                                        | People <sup>7</sup>                     |                                                         |
| People <sup>2</sup>                                |                                         |                                                         |
|                                                    |                                         | *Refer to PA Table 7 for environment types              |
|                                                    | 10. Air Pathway                         |                                                         |
| Is there a Suspected Release to Air <sup>1</sup> : | Wetlands Locate                         | ed Within 4 Miles of the Site <sup>6</sup> :            |
| ☐ Yes ☑ No                                         | ✓ Yes                                   | If Van Harry Marry Anna                                 |
|                                                    | □ No                                    | If Yes, How Many Acres: Acres                           |
| Enter Total Population on or Within:               | Other Sensitive                         | Environments Located Within 4 Miles of the Site:        |
| Onsite                                             | Other Sensitive                         | Environments Located Within 4 Miles of the Site.        |
|                                                    |                                         | ☐ Yes<br>☑ No                                           |
| 0-1/4 Mile                                         |                                         | ₹ NO                                                    |
| >1/4-1/2 Mile                                      | List All Sensitive                      | Environments Within 1/2 Mile of the Site <sup>6</sup> : |
| >1/2-1 Mile                                        | <u>Distance:</u> <u>Sen</u>             | sitive Environment Type/Wetlands Area (acres):          |
| >1-2 Miles                                         | Onsite No                               | ne                                                      |
| >2-3 Miles                                         | 0-1/4 Mile _W                           | /etlands                                                |
| >3-4 Miles                                         | >1/4-1/2 Mile _W                        | Vetlands                                                |
| Total Within 4 Miles <sup>3-5</sup> _7,210_        |                                         |                                                         |

<sup>1-11</sup> Refers to question number on the PA scoresheet for each particular pathway

| S7769   Meade   Mead   |                   |                        |                  |                      |                       | Identificatio | on                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|------------------|----------------------|-----------------------|---------------|--------------------|
| Street Address: 1000 N Ellsworth Rd   Street Address: 1000 N Ellsworth Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Potential I       | Hazardous Wa           |                  | reliminary           | Assessment            | State: SD     | CERCLIS #:         |
| Street Address: 1000 N Ellsworth Rd   Street Address: 1000 N Ellsworth Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                        | Form             |                      |                       | CERCLIS Disc  | covery Date:       |
| State: SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                        | 1. Gen           | neral Site Informa   | ntion                 | I             |                    |
| S7769   Meade   Mead   | Name: Ellsworth   | AFB                    | Street Address   | : 1000 N Ellsworth   | Rd                    |               |                    |
| Approximate Area of Site:   Status of Site:   A17'   S4.73"   103'6' 23.53"   A7'   Acres   Acres   Acres   Acres   Acres   A17'   Acres   Acres   A18'9' 54.73"   A19'6' 23.53"   A7'   Acres   Acres   A19'6' 23.53"   A17'   Acres   Acres   A19'6' 23.53"   A19'6' 23.5 | City:             |                        | State: SD        | -                    | · ·                   | Co. Code:     | Cong. Dist:        |
| Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Latitude:         | Longitude:             | Approximate A    | L<br>Area of Site:   | Status of Site:       |               |                    |
| Square Ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44°9' 54.73"      | _                      |                  |                      | ☑ Active □            | Not Specified |                    |
| Site Name: Building 88240 Site Description: Building 88240 is located in the munitions storage area on the north side of Ellsworth AFB and formerly contained an AFFF fire suppression system. Any AFFF releases in Building 88240 would have drained via underground piping a surface impoundment located south of Building 88240.  2. Owner/Operator Information  Dwner: Ellsworth AFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                        |                  |                      |                       |               | etc.)              |
| Site Description: Building 88240 is located in the munitions storage area on the north side of Ellsworth AFB and formerly contained an AFFF fire suppression system. Any AFFF releases in Building 88240 would have drained via underground piping a surface impoundment located south of Building 88240.  2. Owner/Operator Information  Owner: Ellsworth AFB Operator: same as owner  Street Address:  City:  City:  City:  State: SD Zip Code: Telephone: State: Zip Code: Telephone:  Type of Ownership: Private Ounty Private Other Other Other Other Other Other  Private Other Other Other Other  State: Sinkie Other  Indian Other  3. Site Evaluator Information  Name: Other Other  State: City: Englewood State: CO  State: CO  State: CO  State: Telephone: State: CO  State: Telephone: County Organization: Date Prepared: City: Englewood State: CO   | Site Name: Buildi | ng 88240               |                  |                      |                       |               | •                  |
| ### Contained an AFFF fire suppression system. Any AFFF releases in Building 88240 would have drained via underground piping as surface impoundment located south of Building 88240.    Comparition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                        | ed in the muniti | ions storage area o  | n the north side of E | Ellsworth AFE | and formerly       |
| Operator: same as owner  Street Address: 1000 N Ellsworth Rd  Street Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                        |                  | _                    | 88240 would have d    | rained via un | derground piping t |
| Street Address: 1000 N Ellsworth Rd  Street Address:  City:  City:  State: SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                        | 2. Owne          | r/Operator Infor     | mation                |               |                    |
| City:  City:  State: SD  Zip Code:  Telephone:  State:  Type of Ownership:  Private Private Pederal Agency Municipal Name: Indian  State Other Indian  State City:  State  3. Site Evaluator Information  Name of Evaluator: Kelly Teplitsky CH2M HILL City: Englewood  State: City: Street Address:  City: State:  CERCLIS Recommendation:  Recommendation:  Pess Nome (typed): Name (typed | Owner: Ellsworth  | AFB                    |                  | Operator: same       | e as owner            |               |                    |
| State: SD   Zip Code:   Telephone:   State:   Zip Code:   Telephone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Street Address: 1 | 000 N Ellsworth Rd     |                  | Street Address       | :                     |               |                    |
| Type of Ownership:   Private                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | City:             |                        |                  | City:                |                       |               |                    |
| Private                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | State: SD         | Zip Code:              | Telephone:       | State:               | Zip Code:             | Telephone:    |                    |
| Private                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Type of Ownershi  | <b>I</b>               |                  | Type of Owner        | ship:                 |               |                    |
| Federal Agency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                        |                  |                      | -                     |               |                    |
| State   Other   State   Indian   Other   State   Indian   Other   Indian   Indian   Other   Indian   Other   Indian   Other   Indian   Other   |                   |                        |                  |                      |                       |               |                    |
| Indian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                        | fied             | Name:                |                       |               |                    |
| Name of Evaluator: Kelly Teplitsky CH2M HILL City: Englewood Name of EPA or State Agency Contact:  Street Address: City: State:  Telephone:  4. Site Disposition (for EPA use only)  Emergency Response/Removal Assessment Recommendation:   Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ☐ Indian          | Other                  |                  |                      | ∐ Other               | ·             |                    |
| CH2M HILL   O3/03/2015     Street Address: 9191 South Jamaica Street   City: Englewood   State: CO     Name of EPA or State Agency Contact:   Street Address:     City:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                        | 3. Site          | <br>Evaluator Inform | ation                 |               |                    |
| Street Address: 9191 South Jamaica Street  City: Englewood  Street Address:  City: State: Telephone:  4. Site Disposition (for EPA use only)  Emergency Response/Removal Assessment Recommendation:    Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Name of Evaluato  | or:                    | Agency/Organ     | ization:             |                       | Date Prepar   | ed:                |
| Name of EPA or State Agency Contact:  Street Address:  Telephone:  4. Site Disposition (for EPA use only)  Emergency Response/Removal Assessment Recommendation:    Higher Priority SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kelly Teplitsky   |                        | CH2M HILL        |                      |                       | 03/03/2015    |                    |
| City: State: Telephone:  4. Site Disposition (for EPA use only)  Emergency Response/Removal Assessment Recommendation: Signature:    Higher Priority SI   Lower Priority SI   Name (typed):   NFRAP   RCRA   Other: Date: Date: Signature:    Date: State: Telephone: Signature: Signat                   | Street Address: 9 | 191 South Jamaica Str  | eet              | City: Englewoo       | d                     | State: CO     |                    |
| ### A. Site Disposition (for EPA use only)  ###################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Name of EPA or S  | tate Agency Contact:   |                  | Street Address       | :                     |               |                    |
| Emergency Response/Removal Assessment Recommendation:    Higher Priority SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | City:             |                        | State:           |                      | Telephone:            |               |                    |
| Emergency Response/Removal Assessment Recommendation:    Higher Priority SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                        | 4 Cita Diam      | acition /f-:: FD4    |                       |               |                    |
| Recommendation:    Higher Priority SI   Lower Priority SI   Name (typed):   NFRAP   RCRA   Position:   Other: Date: Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:   Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Emorgono: Docum   | onco/Domoval Assess    | •                |                      | •                     | Cianatura     |                    |
| Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                        | ient             |                      |                       | Signature:    |                    |
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Recommendation    |                        |                  | _                    |                       | Name (type    | d):                |
| Date: Position:    Other: Date: Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | _                      |                  |                      | -                     | (-71-0        | ·<br>              |
| Date:  5. General Site Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | □ №                    |                  |                      |                       | Position:     |                    |
| 5. General Site Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                 | oate:                  |                  |                      |                       |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        | 5. Gene          |                      |                       | <u> </u>      |                    |
| , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Predominant Lan   | d Use Within 1 Mile of |                  | Site Setting:        |                       | Years of Ope  | eration:           |

| that apply):                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                    |                                            |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ Industrial                                                                                                                                                                                                                                                                                                                                             | Industrial Agriculture DOI Urbar       |                                                                    |                                            | 1                                                                                                                                                                          | Beginning Year _?_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Commercial                                                                                                                                                                                                                                                                                                                                               | ☐ Mining                               | Other Federal                                                      | ☐ Subur                                    | ban                                                                                                                                                                        | Ending Year present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul><li>☐ Residential</li><li>☐ Forest/Fields</li></ul>                                                                                                                                                                                                                                                                                                  | ☑ DOD ☐ □ DOE                          | Facility:                                                          | ✓ Rural                                    |                                                                                                                                                                            | Lituing real present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| L Forest/Fields                                                                                                                                                                                                                                                                                                                                          |                                        | Other                                                              |                                            |                                                                                                                                                                            | ☐ Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Type of Site Operation                                                                                                                                                                                                                                                                                                                                   | ons (check all that                    | apply):                                                            |                                            |                                                                                                                                                                            | Waste Generated:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ☐ Manufacturing (must ch                                                                                                                                                                                                                                                                                                                                 | neck subcategory)                      | 1                                                                  | Retail                                     |                                                                                                                                                                            | ☑ Onsite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ☐ Lumber and Woo                                                                                                                                                                                                                                                                                                                                         | d Products                             | [                                                                  | Recycling                                  |                                                                                                                                                                            | ☐ Offsite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ☐ Inorganic Chemic                                                                                                                                                                                                                                                                                                                                       |                                        |                                                                    | Junk/Salvage Yard                          |                                                                                                                                                                            | Onsite and Offsite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ☐ Plastic and/or Ru                                                                                                                                                                                                                                                                                                                                      |                                        |                                                                    | ☐ Municipal Landfill ☐ Other Landfill      |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ☐ Paints, Varnishes<br>☐ Industrial Organi                                                                                                                                                                                                                                                                                                               |                                        |                                                                    |                                            |                                                                                                                                                                            | Waste Deposition Authorized  Present Owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ☐ Agricultural Chen                                                                                                                                                                                                                                                                                                                                      |                                        | [                                                                  | ☐ DOE                                      |                                                                                                                                                                            | By: Present Owner  Former Owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ☐ Miscellaneous Ch                                                                                                                                                                                                                                                                                                                                       | emical Products                        |                                                                    | DOI                                        |                                                                                                                                                                            | Present & Former Owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ☐ Primary Metals                                                                                                                                                                                                                                                                                                                                         |                                        |                                                                    | ☐ Other Federal Facility<br>☐ RCRA         | У                                                                                                                                                                          | Unauthorized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul><li>☐ Metal Coating, PI</li><li>☐ Metal Forging, St</li></ul>                                                                                                                                                                                                                                                                                        |                                        | ı                                                                  | ☐ Treatment, Sto                           | rage, or Disposal                                                                                                                                                          | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                          | ural Metal Products                    |                                                                    | ☐ Large Quantity                           |                                                                                                                                                                            | Waste Accessible to the Public:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ☐ Electronic Equipm                                                                                                                                                                                                                                                                                                                                      | nent                                   |                                                                    | ☐ Small Quantity                           | Generator                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ☐ Other Manufactu                                                                                                                                                                                                                                                                                                                                        | ring                                   |                                                                    | ☐ Subtitle D                               |                                                                                                                                                                            | ☐ Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ☐ Mining                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                                    | ☐ Municipal<br>☐ Industrial                |                                                                                                                                                                            | ☑ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ☐ Metals                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                                    | ☐ "Converter"                              | !                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ☐ Coal                                                                                                                                                                                                                                                                                                                                                   |                                        |                                                                    | ☐ "Protective Filer                        | -11                                                                                                                                                                        | Distance to Nearest Dwelling,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Oil and Gas                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                    | Non-or Late Fil                            | ler"                                                                                                                                                                       | School, or Workplace:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ☐ Non-metallic Min                                                                                                                                                                                                                                                                                                                                       | erais                                  |                                                                    | ☐ Note Specified                           |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                    | Other                                      |                                                                                                                                                                            | _7,000 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                          |                                        | C 1444 Ob                                                          |                                            |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                    | racteristics Infor<br>A Table 1 for WC Sco |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Source Type:                                                                                                                                                                                                                                                                                                                                             | Source                                 | Masta Ovantituu                                                    | Tier*:                                     | 6 LT (                                                                                                                                                                     | \A/+ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                        | e Waste Quantity:                                                  | ner:                                       | General Type of                                                                                                                                                            | waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (check all that apply)                                                                                                                                                                                                                                                                                                                                   | (include i                             |                                                                    | rier :                                     | (check all that app                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                    | ner*:<br>                                  |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Landfill                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                                    | ——————————————————————————————————————     | (check all that app<br>Metals Organics                                                                                                                                     | oly):  ☐ Pesticides/Herbicides ☐ Acids/Bases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                    | ——————————————————————————————————————     | (check all that app  Metals Organics Inorganics                                                                                                                            | Pesticides/Herbicides Acids/Bases Oily Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ☐ Landfill ☐ Surface Impoundment ☐ Drums ☐ Tanks and Non-Dum Co                                                                                                                                                                                                                                                                                          | (include i                             |                                                                    | ——————————————————————————————————————     | (check all that app                                                                                                                                                        | Pesticides/Herbicides Acids/Bases Oily Waste Municipal Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ☐ Landfill ☐ Surface Impoundment ☐ Drums ☐ Tanks and Non-Dum Co ☐ Chemical Waste Pile                                                                                                                                                                                                                                                                    | (include i                             |                                                                    | ——————————————————————————————————————     | (check all that app  Metals Organics Inorganics                                                                                                                            | Pesticides/Herbicides Acids/Bases Oily Waste Municipal Waste Mining Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ☐ Landfill ☐ Surface Impoundment ☐ Drums ☐ Tanks and Non-Dum Co ☐ Chemical Waste Pile ☐ Scrap Metal or Junk Pile                                                                                                                                                                                                                                         | (include i                             |                                                                    |                                            | (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wasi                                                     | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  The Company of the Company o |
| ☐ Landfill ☐ Surface Impoundment ☐ Drums ☐ Tanks and Non-Dum Co ☐ Chemical Waste Pile                                                                                                                                                                                                                                                                    | (include i                             |                                                                    | ——————————————————————————————————————     | (check all that app                                                                                                                                                        | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  The Company of the Company o |
| ☐ Landfill ☐ Surface Impoundment ☐ Drums ☐ Tanks and Non-Dum Co ☐ Chemical Waste Pile ☐ Scrap Metal or Junk Pile ☐ Tailings Pile ☐ Trash Pile (open drum) ☐ Land Treatment                                                                                                                                                                               | ontainers                              |                                                                    | ——————————————————————————————————————     | (check all that app                                                                                                                                                        | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  The Other AFFF  molition Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Tailings Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum                                                                                                                                                        | ontainers                              |                                                                    |                                            | (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wast   Construction/Der                                  | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  The Company of the Company o |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Tailings Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum (unidentified source)                                                                                                                                  | ontainers                              |                                                                    |                                            | (check all that app                                                                                                                                                        | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  The Other AFFF  molition Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Tailings Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum                                                                                                                                                        | ontainers                              |                                                                    |                                            | (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wast   Construction/Der   Physical State of that apply): | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum (unidentified source) □ Contaminated SW/Sedir (unidentified source) □ Contaminated Soil                                                                                | ontainers                              |                                                                    |                                            | (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wast   Construction/Der   Physical State of that apply): | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum (unidentified source) □ Contaminated SW/Sedir (unidentified source) □ Contaminated Soil □ Other                                                                        | ontainers                              |                                                                    |                                            | (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wast   Construction/Der   Physical State of that apply): | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Trailings Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum (unidentified source) □ Contaminated SW/Sedir (unidentified source) □ Contaminated Soil □ Other □ No Sources                                          | ontainers                              | unit)                                                              |                                            | (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wast   Construction/Der   Physical State of that apply): | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Trailings Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum (unidentified source) □ Contaminated SW/Sedir (unidentified source) □ Contaminated Soil □ Other □ No Sources                                          | ontainers                              | volume, A=Area                                                     |                                            | (check all that app                                                                                                                                                        | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum (unidentified source) □ Contaminated SW/Sedir (unidentified source) □ Contaminated Soil □ Other □ No Sources  *C=Constitue                                             | ontainers  ment ent, W=Wastestream, V= | volume, A=Area                                                     |                                            | (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wasi   Construction/Der  Physical State of that apply):  | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum (unidentified source) □ Contaminated SW/Sedir (unidentified source) □ Contaminated Soil □ Other □ No Sources  *C=Constitue                                             | ontainers  ment ent, W=Wastestream, V= | volume, A=Area  7. Grour                                           |                                            | (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wast   Construction/Der  Physical State of that apply):  | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum (unidentified source) □ Contaminated SW/Sedir (unidentified source) □ Contaminated Soil □ Other □ No Sources  *C=Constitue                                             | ontainers  ment ent, W=Wastestream, V= | volume, A=Area  7. Grour  Is There a Suspect                       |                                            | (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wast   Construction/Der  Physical State of that apply):  | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum (unidentified source) □ Contaminated Swi/Sedir (unidentified source) □ Contaminated Soil □ Other □ No Sources  *C=Constitue  Is Ground Water Use Within 4 Miles: □ Yes | ontainers  ment ent, W=Wastestream, V= | volume, A=Area  7. Grour  Is There a Suspect Ground Water¹:  ✓ Yes |                                            | (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wast   Construction/Der  Physical State of that apply):  | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum (unidentified source) □ Contaminated Swi/Sedir (unidentified source) □ Contaminated Soil □ Other □ No Sources  *C=Constitue  Is Ground Water Use Within 4 Miles:       | ontainers  ment ent, W=Wastestream, V= | volume, A=Area  7. Grour  Is There a Suspect                       |                                            | (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wast   Construction/Der  Physical State of that apply):  | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum (unidentified source) □ Contaminated Swi/Sedir (unidentified source) □ Contaminated Soil □ Other □ No Sources  *C=Constitue  Is Ground Water Use Within 4 Miles: □ Yes | ontainers  ent, W=Wastestream, V=      | volume, A=Area  7. Grour  Is There a Suspect Ground Water¹:  ✓ Yes |                                            | (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wast   Construction/Der  Physical State of that apply):  | Pesticides/Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Drinking Well:                           | Have Primary Tar               | get Drinking          | >1/4 - 1/2 IVIIIC                                           |                             |  |
|------------------------------------------|--------------------------------|-----------------------|-------------------------------------------------------------|-----------------------------|--|
| Feet                                     | Water Wells Beer               |                       | >1/2 - 1 Mile                                               | NA                          |  |
| Type of Drinking Water Wells Within 4    |                                |                       | >1/2 - 1 Wille                                              | NA                          |  |
| Miles                                    | ☐ Yes<br>☑ No                  |                       | >1 - 2 Mile                                                 | NA                          |  |
| (check all that apply):                  | If Yes, Enter Prir             | nary Target           | >2 - 3 Mile                                                 | NA                          |  |
| ☑ Municipal ☐ Private                    | Population:                    |                       |                                                             |                             |  |
| None                                     |                                | _ People <sup>3</sup> | >3 - 4 Mile                                                 | NA                          |  |
| Depth to Shallowest Aquifer:             | Nearest Designate              | ed Wellhead           | T-1-1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                    | NI A                        |  |
| ~ 10 to 50 Feet                          | Protection Area <sup>6</sup> : |                       | Total Within 4 Miles <sup>4</sup>                           | _NA                         |  |
| Karst Terrain/Aquifer Present:           | ☐ Under                        | lies Site             |                                                             |                             |  |
| ☐ Yes ☑ No                               | □ >0-4 N                       |                       | *Use population #s for PA Tall *Note nearest well for #5 on |                             |  |
|                                          | 8. Surfac                      | ce Water Pathwa       | av                                                          |                             |  |
| Type of Surface Water Draining Site and  |                                |                       | <u>.                                      </u>              | nce From Any Source to      |  |
| that apply):                             |                                | `                     | Surface Water:                                              | ,                           |  |
| ☑ Stream ☐ River ☑ Pol                   | nd 🗆 Lake                      |                       | _300_ Feet                                                  | :                           |  |
|                                          | her                            |                       |                                                             |                             |  |
|                                          | 1                              |                       | C'ha la La astad la                                         |                             |  |
| Is There a Suspected Release to Surface  | Water <sup>+</sup> :           |                       | Site is Located in:                                         |                             |  |
| ✓ Yes                                    |                                |                       | ☐ Annual - 10 yr Floo ☐ >10yr - 100yr Floo                  |                             |  |
| □ No                                     |                                |                       | >100yr - 500yr Floodplain                                   |                             |  |
|                                          |                                |                       | ☐ >500yr Floodplain                                         |                             |  |
| Drinking Water Intake Located Along the  | e Surface Water M              | igration Path:        | List All Secondary Targe                                    | t Drinking Water Intakes:   |  |
| ☐ Yes<br>☑ No                            |                                |                       | Name: Water Body: Flov                                      | v (cfs): Population Served: |  |
| Have Primary Target Drinking Water Into  | akas Raan Idantifia            | ıd:                   |                                                             |                             |  |
|                                          |                                |                       |                                                             |                             |  |
|                                          | ce to Nearest Drink            |                       |                                                             |                             |  |
| water intake                             | : Mile                         | S°                    |                                                             |                             |  |
| If Yes, Enter Population Served by Targe | t Intake:                      |                       |                                                             |                             |  |
| NA Pagala4                               |                                |                       | Total within                                                | 15 Miles <sup>4</sup>       |  |
| NA People <sup>4</sup>                   |                                |                       |                                                             |                             |  |
| Fisheries Located Along the Surface Wat  | er Migration Path              |                       | List All Secondary Targe                                    | + Fisheries <sup>10</sup> : |  |
| If Ves Distance                          | e to Nearest Fisher            |                       | Water Body/ Fishery Name                                    |                             |  |
| Yes No II Tes, Distance                  | Mile                           | •                     |                                                             |                             |  |
| Have Primary Target Fisheries Been Iden  | itified:                       |                       |                                                             |                             |  |
| ☐ Yes     ✓ No                           |                                |                       |                                                             |                             |  |
| 8. Surface Water Pathway (cor            |                                |                       | l<br>ntinued)                                               |                             |  |
| Wetlands Located Along the Surface Wa    |                                |                       | nvironments Located Alo                                     | ng the Surface Water        |  |
| Path:                                    | ice migration                  | Migration Path:       |                                                             |                             |  |
| ☑ Yes<br>□ No                            |                                | ☐ Yes<br>☑ No         | If Yes, Distance to Environment:                            | Nearest Sensitive<br>Miles  |  |
| Have Primary Target Wetlands Been Ide    | entified:                      | Have Primary Tar      | get Sensitive Environmen                                    | ts Been Identified:         |  |
| yes □ Yes                                |                                |                       | ☐ Yes                                                       |                             |  |
| ☑ No                                     |                                |                       | ☑ No                                                        |                             |  |
| List All Wetlands:                       |                                | List All Sensitive    | Environments <sup>11</sup> :                                |                             |  |

| Water Body: Flow (cfs): Frontage miles:                                | Water Body : Flo                  | w (cfs): Sensitive Environment Type:               |  |  |
|------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|--|--|
|                                                                        |                                   |                                                    |  |  |
|                                                                        |                                   |                                                    |  |  |
|                                                                        | O Cail Funa aura Bakhusau         |                                                    |  |  |
| Are Decade Occupying Decidence or                                      | 9. Soil Exposure Pathway          | e Terrestrial Sensitive Environments Been          |  |  |
| Are People Occupying Residence or<br>Attending School or Daycare on or | Number of Workers Offsite .       | ntified on or Within 200 Feet of Areas of          |  |  |
| Within 200 Feet of Area of Known or                                    |                                   | wn or Suspected Contamination:                     |  |  |
| Suspected Contamination:                                               | ☑ 1 - 100                         | wit of Suspected Contamination.                    |  |  |
|                                                                        | □ 101 - 1,000<br>□ > 1.000        |                                                    |  |  |
|                                                                        | ☐ > 1,000                         | ☐ Yes<br>☑ No                                      |  |  |
| ☐Yes                                                                   |                                   | ☑ NO                                               |  |  |
| ☑ No                                                                   |                                   | Yes, List Each Terrestrial Sensitive               |  |  |
|                                                                        | Population Within 1 Mile:         | vironment <sup>5</sup> :                           |  |  |
| If Yes, Enter Total Residential                                        |                                   |                                                    |  |  |
| Population:                                                            | People <sup>7</sup>               |                                                    |  |  |
| People <sup>2</sup>                                                    |                                   |                                                    |  |  |
| г соріс                                                                | *R                                | *Refer to PA Table 7 for environment types         |  |  |
|                                                                        | 10. Air Pathway                   |                                                    |  |  |
| Is there a Suspected Release to Air <sup>1</sup> :                     | Wetlands Located Wit              | hin 4 Miles of the Site <sup>6</sup> :             |  |  |
| ☐ Yes                                                                  | ✓ Yes                             |                                                    |  |  |
| ✓ No                                                                   | □ No If Y                         | es, How Many Acres: Acres                          |  |  |
| Enter Total Population on or Within:                                   | 21 2 11 5                         |                                                    |  |  |
| Onsite                                                                 | Other Sensitive Enviro            | nments Located Within 4 Miles of the Site:         |  |  |
|                                                                        |                                   | Yes                                                |  |  |
| 0-1/4 Mile                                                             |                                   | ☑ No                                               |  |  |
| >1/4-1/2 Mile                                                          | List All Sensitive Enviro         | onments Within 1/2 Mile of the Site <sup>6</sup> : |  |  |
| >1/2-1 Mile                                                            | <u>Distance:</u> <u>Sensitive</u> | Environment Type/Wetlands Area (acres):            |  |  |
| >1-2 Miles                                                             | Onsite None                       |                                                    |  |  |
| >2-3 Miles                                                             | 0-1/4 Mile _Wetland               | ls                                                 |  |  |
| >3-4 Miles                                                             | >1/4-1/2 Mile _Wetlan             | ds                                                 |  |  |
| Total Within 4 Miles <sup>3-5</sup> _4,970_                            |                                   |                                                    |  |  |

<sup>1-11</sup> Refers to question number on the PA scoresheet for each particular pathway

| _                   | _                     |                       |                            |                    | Identification    |                 |
|---------------------|-----------------------|-----------------------|----------------------------|--------------------|-------------------|-----------------|
| Potential F         | lazardous W           |                       | reliminary A               | ssessment          | State: SD         | CERCLIS #:      |
|                     |                       | Form                  |                            |                    | CERCLIS Disco     | very Date:      |
|                     |                       | 1. Gen                | eral Site Informati        | on                 | <u> </u>          |                 |
| Name: Ellsworth A   | <b>\</b> FB           | Street Address        | : 1000 N Ellsworth Ro      | d                  |                   |                 |
| City:               |                       | State: SD             | Zip Code:<br>57769         | County:<br>Meade   | Co. Code:         | Cong. Dist:     |
| Latitude:           | Longitude:            | Approximate A         | rea of Site:               | Status of Site:    |                   | ı               |
| 44°9' 40.63"        | 103°5' 49.46"         | less than 1           | Acres                      | ☐ Active ☐         | Not Specified     |                 |
|                     |                       |                       | Square Ft                  |                    | NA (GW plume, e   | tc.)            |
| Site Name: Forme    | r Fire Station 2      |                       |                            | _                  |                   |                 |
| Site Description: F | ormer Fire Station 2, | located in buildi     | ng 88538, was under        | air mobility comr  | mand starting i   | n 1957 and was  |
| -                   |                       |                       | sed to support the m       |                    | _                 |                 |
| not have access to  | and did not service   | the airfield. It is u | ınknown if this statio     | on had a crash tru | ck but a fire tru | ick was located |
|                     |                       |                       | ould have been used        |                    |                   |                 |
|                     |                       | ,                     |                            |                    |                   |                 |
|                     |                       |                       |                            |                    |                   |                 |
|                     |                       | 2. Owner              | r/Operator Informa         | ation              |                   |                 |
| Owner: Ellsworth    | AFB                   |                       | Operator: same a           | as owner           |                   |                 |
| Street Address: 10  | 000 N Ellsworth Rd    |                       | Street Address:            |                    |                   |                 |
| City:               |                       |                       | City:                      |                    |                   |                 |
| State: SD           | Zip Code:             | Telephone:            | State:                     | Zip Code:          | Telephone:        |                 |
| Type of Ownership   | <br>p:                |                       | Type of Ownersh            | ip:                |                   |                 |
| ☐ Private           | ☐ County              |                       | ☐ Private                  | ☐ County           |                   |                 |
| ☑ Federal Agency    | ☐ Municipa            | l                     | ☐ Federal Agency           | ☐ Municipa         | I                 |                 |
| Name: _DOD_         | Not Spec              | ified                 | Name: Not Specified        |                    |                   |                 |
| ☐ State<br>☐ Indian | Other                 |                       | ☐ State ☐ Indian           | Other              | <del></del>       |                 |
| Indian              |                       |                       | - Indian                   |                    |                   |                 |
|                     |                       | 3. Site               | <b>Evaluator Informat</b>  | ion                |                   |                 |
| Name of Evaluato    | r:                    | Agency/Organi         | ization:                   |                    | Date Prepared     | l:              |
| Kelly Teplitsky     |                       | CH2M HILL             |                            |                    | 03/03/2015        |                 |
| Street Address: 91  | 191 South Jamaica St  | reet                  | City: Englewood            |                    | State: CO         |                 |
|                     |                       |                       |                            |                    |                   |                 |
| Name of EPA or St   | tate Agency Contact:  |                       | Street Address:            |                    |                   |                 |
|                     |                       |                       |                            |                    |                   |                 |
| City:               |                       | State:                |                            | Telephone:         |                   |                 |
|                     |                       |                       |                            |                    |                   |                 |
|                     |                       | 4. Site Disp          | osition <i>(for EPA us</i> | e only)            |                   |                 |
| Emergency Respo     | nse/Removal Assessi   | ment                  | CERCLIS Recomm             | endation:          | Signature:        |                 |
| Recommendation      | :                     |                       | ☐ Higher Priority          | y SI               |                   |                 |
|                     | Yes                   |                       | Lower Priority             | SI                 | Name (typed)      | :               |
|                     | □ No                  |                       | ☐ NFRAP<br>☐ RCRA          |                    | D't'              |                 |
| 5.                  | ato:                  |                       | Other:                     |                    | Position:         |                 |
|                     | ate:                  |                       | Date:                      | <u> </u>           |                   |                 |
|                     |                       | 5. Gene               | ral Site Characteris       | stics              |                   |                 |
| Predominant Land    | d Use Within 1 Mile o | f Site (check all     | Site Setting:              |                    | Years of Opera    | ation:          |

| that apply):                                                                                                                                                               |                                                                                    |                                     |                                                                                                         |                                |                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ Industrial ☐ Commercial ☐ Residential ☐ Forest/Fields                                                                                                                    | ☑ DOD ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐                                          | DOI Dither Federal Facility: Dither | ☐ Urban<br>☐ Suburi<br>☑ Rural                                                                          |                                | Beginning Year 1957  Ending Year 1994  Unknown                                                                                              |
| Type of Site Operation                                                                                                                                                     | ons (check all that a                                                              |                                     |                                                                                                         |                                | Waste Generated:                                                                                                                            |
| ☐ Manufacturing (must c☐ Lumber and Woo                                                                                                                                    | 0 3,                                                                               | _                                   | Retail Recycling                                                                                        |                                | ☑ Onsite ☐ Offsite                                                                                                                          |
| ☐ Inorganic Chemi ☐ Plastic and/or Ru                                                                                                                                      | cals                                                                               | ]<br>]                              | ☐ Junk/Salvage Yard<br>☐ Municipal Landfill                                                             |                                | ☐ Onsite and Offsite                                                                                                                        |
| Paints, Varnishes Industrial Organ Agricultural Cher Miscellaneous Ch Primary Metals Metal Coating, P Metal Forging, S Fabricated Struc                                    | c Chemicals nicals nemical Products lating, Engraving tamping tural Metal Products | ]<br>]<br>]                         | ☐ Other Landfill ☐ DOD ☐ DOE ☐ DOI ☐ Other Federal Facility ☐ RCRA ☐ Treatment, Stor ☐ Large Quantity ( | rage, or Disposal<br>Generator | Waste Deposition Authorized By: Present Owner  Former Owner  Present & Former Owner  Unauthorized  Unknown  Waste Accessible to the Public: |
| ☐ Electronic Equipi ☐ Other Manufactu ☐ Mining ☐ Metals                                                                                                                    |                                                                                    |                                     | Small Quantity ( Subtitle D Municipal Industrial                                                        |                                | ☐ Yes<br>☑ No                                                                                                                               |
| Coal Oil and Gas Non-metallic Mir                                                                                                                                          | erals                                                                              |                                     | ☐ "Converter" ☐ "Protective Filer ☐ "Non-or Late File ☐ Note Specified                                  |                                | Distance to Nearest Dwelling,<br>School, or Workplace:                                                                                      |
|                                                                                                                                                                            |                                                                                    |                                     | Other                                                                                                   |                                | _4,550 Feet                                                                                                                                 |
|                                                                                                                                                                            |                                                                                    |                                     | racteristics Inforr<br>A Table 1 for WC Sco                                                             |                                |                                                                                                                                             |
| Source Type:                                                                                                                                                               | Source                                                                             | Waste Quantity:                     | Tier*:                                                                                                  | General Type of                | Waste                                                                                                                                       |
| (check all that apply)                                                                                                                                                     | (include u                                                                         |                                     | THE T                                                                                                   | (check all that app            |                                                                                                                                             |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Tailings Pile □ Trash Pile (open drum) □ Land Treatment | ontainers                                                                          |                                     |                                                                                                         |                                | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  Explosives  To Other _AFFF_                                   |
| ☐ Contaminated GW Plun (unidentified source) ☐ Contaminated SW/Sedi                                                                                                        |                                                                                    |                                     |                                                                                                         | Physical State of that apply): | f Waste as Deposited (check all                                                                                                             |
| (unidentified source)  Contaminated Soil  Other  No Sources                                                                                                                | ent, W=Wastestream, V=\                                                            | Volume A-Area                       |                                                                                                         |                                | Solid<br>Sludge<br>Powder<br>Liquid<br>Gas                                                                                                  |
| C-Constitut                                                                                                                                                                | , w-wastestream, v-v                                                               |                                     | nd Water Pathwa                                                                                         | l<br>V                         |                                                                                                                                             |
| Is Ground Water Use                                                                                                                                                        | d for Drinking                                                                     | Is There a Suspect                  |                                                                                                         | ·                              | Farget Population Served by                                                                                                                 |
| Within 4 Miles:                                                                                                                                                            | d for Drillkillig                                                                  | Ground Water <sup>1</sup> :         | ieu neiease lu                                                                                          | -                              | Nithdrawn From:                                                                                                                             |
| ☑ Yes<br>☐ No                                                                                                                                                              |                                                                                    | ☐ Yes<br>☑ No                       |                                                                                                         | 0 - 1/4 Mile                   | NA                                                                                                                                          |
| If Yes, Distance to n                                                                                                                                                      | earest                                                                             |                                     |                                                                                                         | >1/4 - 1/2 Mile                | e NA                                                                                                                                        |

| Drinking Well:                                       | Have Primary Tar                                 | get Drinking                | /1/4-1/2 IVIIIC                                           |                             |  |
|------------------------------------------------------|--------------------------------------------------|-----------------------------|-----------------------------------------------------------|-----------------------------|--|
| Feet                                                 | Water Wells Beer                                 | •                           | >1/2 - 1 Mile                                             | NA                          |  |
| Type of Drinking Water Wells Within 4                |                                                  |                             | >1/2 - 1 Wille                                            | NA                          |  |
| Miles                                                | ☐ Yes<br>☑ No                                    |                             | >1 - 2 Mile                                               | NA                          |  |
| (check all that apply):                              | _                                                | mam. Tanzat                 |                                                           |                             |  |
| ✓ Municipal                                          | If Yes, Enter Prine Population:                  | nary rarget                 | >2 - 3 Mile                                               | NA                          |  |
| ☐ Private<br>☐ None                                  | •                                                | People <sup>3</sup>         | >3 - 4 Mile                                               | NA                          |  |
|                                                      | Nearest Designat                                 | ad Mallbaad                 | -                                                         |                             |  |
| Depth to Shallowest Aquifer:                         | Nearest Designate Protection Area <sup>6</sup> : | ed weimead                  | Total Within 4 Miles <sup>4</sup>                         | _NA                         |  |
| ~ 10 to 50 Feet                                      | Protection Area :                                |                             |                                                           |                             |  |
| Karst Terrain/Aquifer Present:                       | ☐ Under<br>☐ >0-4 f                              |                             | *Use population #s for PA Tal                             | olo 2                       |  |
| ☐Yes                                                 | ✓ None Within 4 Miles                            |                             | *Note nearest well for #5 on                              |                             |  |
| ☑ No                                                 |                                                  |                             |                                                           | ·<br>                       |  |
|                                                      |                                                  | e Water Pathwa              | ау                                                        |                             |  |
| Type of Surface Water Draining Site and that apply): | 15 Miles Downstr                                 | eam (check all              | Shortest Overland Dista<br>Surface Water:                 | nce From Any Source to      |  |
| ✓ Stream                                             | nd 🗆 Lake                                        |                             | _2,100_ Fe                                                | et                          |  |
|                                                      | her                                              |                             |                                                           | Miles                       |  |
|                                                      | 1                                                |                             | Site is Located in:                                       |                             |  |
| Is There a Suspected Release to Surface              | Water <sup>-</sup> :                             |                             |                                                           | a dalah                     |  |
| ☐ Yes                                                |                                                  |                             | ☐ Annual - 10 yr Floodplain<br>☐ >10yr - 100yr Floodplain |                             |  |
| ☑ No                                                 |                                                  |                             | □ >100yr - 500yr Floodplain                               |                             |  |
|                                                      |                                                  |                             | ☐ >500yr Floodplain                                       |                             |  |
| Drinking Water Intake Located Along the              | List All Secondary Targe                         | t Drinking Water Intakes:   |                                                           |                             |  |
| ☐ Yes<br>☑ No                                        | <u>Name</u> : <u>Water Body</u> : <u>Flov</u>    | v (cfs): Population Served: |                                                           |                             |  |
| Have Primary Target Drinking Water Inta              | akes Been Identifie                              | d:                          |                                                           |                             |  |
|                                                      |                                                  |                             |                                                           |                             |  |
|                                                      | ce to Nearest Drinl<br>: Mile                    |                             |                                                           | <del></del>                 |  |
|                                                      |                                                  | 3                           |                                                           |                             |  |
| If Yes, Enter Population Served by Targe             | t Intake:                                        |                             |                                                           | <del></del>                 |  |
| NA People <sup>4</sup>                               |                                                  |                             | Total within                                              | 15 Miles <sup>4</sup>       |  |
| Fisheries Located Along the Surface Wat              | er Migration Path                                |                             | List All Secondary Targe                                  | + Fisheries <sup>10</sup> : |  |
| _                                                    | e to Nearest Fisher                              |                             | Water Body/ Fishery Name                                  |                             |  |
| Yes Mino                                             | Mile                                             | •                           |                                                           |                             |  |
| Have Primary Target Fisheries Been Ider              | ntified:                                         |                             |                                                           |                             |  |
| ☐ Yes ☑ No                                           |                                                  |                             |                                                           |                             |  |
|                                                      | 8. Surface Wat                                   | ter Pathway (cor            | <br>ntinued)                                              |                             |  |
| Wetlands Located Along the Surface Wa                |                                                  |                             | nvironments Located Alo                                   | ng the Surface Water        |  |
| Path:                                                | <b>5</b>                                         | Migration Path:             |                                                           | -                           |  |
|                                                      |                                                  | Yes                         | If Yes, Distance to                                       |                             |  |
| □No                                                  |                                                  | ☑ No                        | Environment:                                              | Miles                       |  |
| Have Primary Target Wetlands Been Ide                | entified:                                        | Have Primary Tar            | get Sensitive Environmen                                  | ts Been Identified:         |  |
| ☐ Yes<br>☑ No                                        |                                                  |                             | ☐ Yes<br>☑ No                                             |                             |  |
| List All Wetlands:                                   |                                                  | List All Sensitive          | Environments <sup>11</sup> :                              |                             |  |

| Water Body: Flow (cfs): Frontage miles:            | <u>Water Body</u> :                     | Flow (cfs): Sensitive Environment Type:                 |
|----------------------------------------------------|-----------------------------------------|---------------------------------------------------------|
|                                                    |                                         | <del></del>                                             |
|                                                    |                                         |                                                         |
|                                                    | 9. Soil Exposure Pathwa                 |                                                         |
| Are People Occupying Residence or                  | Number of Workers Onsite <sup>4</sup> : | Have Terrestrial Sensitive Environments Been            |
| Attending School or Daycare on or                  | Number of Workers Unsite :              | Identified on or Within 200 Feet of Areas of            |
| Within 200 Feet of Area of Known or                | ✓ None                                  | Known or Suspected Contamination:                       |
| Suspected Contamination:                           | ☐ 1 - 100                               |                                                         |
|                                                    | □ 101 - 1,000<br>□ > 1,000              | _                                                       |
|                                                    | 1,000                                   | ☐ Yes ☑ No                                              |
| ☐ Yes                                              |                                         | ₩ NO                                                    |
| ☑ No                                               |                                         | If Yes, List Each Terrestrial Sensitive                 |
|                                                    | Population Within 1 Mile:               | Environment <sup>5</sup> :                              |
| If Yes, Enter Total Residential                    |                                         |                                                         |
| Population:                                        | _0 People <sup>7</sup>                  |                                                         |
| People <sup>2</sup>                                |                                         |                                                         |
|                                                    |                                         | *Refer to PA Table 7 for environment types              |
|                                                    | 10. Air Pathway                         |                                                         |
| Is there a Suspected Release to Air <sup>1</sup> : | Wetlands Locate                         | ed Within 4 Miles of the Site <sup>6</sup> :            |
| □ Yes                                              | ✓ Yes                                   |                                                         |
| ✓ No                                               | □ No                                    | If Yes, How Many Acres: Acres                           |
| Enter Total Population on or Within:               | 01 6 11                                 | 5 i la              |
| Onsite                                             | Other Sensitive                         | Environments Located Within 4 Miles of the Site:        |
|                                                    |                                         | ☐ Yes<br>☑ No                                           |
| 0-1/4 Mile                                         |                                         | ☑ NO                                                    |
| >1/4-1/2 Mile                                      | List All Sensitive                      | Environments Within 1/2 Mile of the Site <sup>6</sup> : |
| >1/2-1 Mile                                        | <u>Distance:</u> <u>Sen</u>             | sitive Environment Type/Wetlands Area (acres):          |
| >1-2 Miles                                         | Onsite No                               | ne                                                      |
| >2-3 Miles                                         | 0-1/4 Mile _W                           | /etlands                                                |
| >3-4 Miles                                         | >1/4-1/2 Mile _W                        | Vetlands                                                |
| Total Within 4 Miles <sup>3-5</sup> _5,010_        |                                         |                                                         |

<sup>1-11</sup> Refers to question number on the PA scoresheet for each particular pathway

|                                                                                              |                             |                                                   |                                           |                   | Identificatio                | n                   |
|----------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------|-------------------------------------------|-------------------|------------------------------|---------------------|
| Potential                                                                                    | Hazardous W                 |                                                   | Preliminary A                             | ssessment         | State: SD                    | CERCLIS #:          |
|                                                                                              |                             | Form                                              |                                           |                   | CERCLIS Disc                 | overy Date:         |
|                                                                                              |                             | 1. Ger                                            | neral Site Informati                      | on                | l                            |                     |
| Name: Ellsworth                                                                              | n AFB                       | Street Address                                    | s: 1000 N Ellsworth Ro                    | d                 |                              |                     |
| City:                                                                                        |                             | State: SD                                         | Zip Code:<br>57769                        | County:<br>Meade  | Co. Code:                    | Cong. Dist:         |
| Latitude:<br>44°9' 26.51"                                                                    | Longitude:<br>103°6' 40.85" |                                                   | Area of Site: _Less<br>Acres<br>Square Ft |                   | Not Specified  NA (GW plume, | etc.)               |
| Site Name: Form                                                                              | ner Fire Storage Area       |                                                   |                                           |                   |                              |                     |
|                                                                                              | ed here but other mis       |                                                   |                                           | e by the departme | ent. Additiona               | illy, this site may |
|                                                                                              |                             | 2. Owne                                           | r/Operator Informa                        | ation             |                              |                     |
| Owner: Ellswort                                                                              | h AFB                       |                                                   | Operator: same a                          | as owner          |                              |                     |
| Street Address:                                                                              | 1000 N Ellsworth Rd         |                                                   | Street Address:                           |                   |                              |                     |
| City:                                                                                        |                             |                                                   | City:                                     |                   |                              |                     |
| State: SD                                                                                    | Zip Code:                   | Telephone:                                        | State:                                    | Zip Code:         | Telephone:                   |                     |
| Type of Owners                                                                               | hip:                        |                                                   | Type of Ownersh                           | ip:               | l                            |                     |
| ☐ Private ☐ County ☐ Federal Agency ☐ Municipal ☐ Name: _DOD ☐ Not Specified ☐ State ☐ Other |                             | ☐ Private ☐ Federal Agency Name: ☐ State ☐ Indian | ☐ County ☐ Municipa ☐ Not Spec ☐ Other    | ified             |                              |                     |
|                                                                                              |                             | 3. Site                                           | <b>Evaluator Informat</b>                 | ion               |                              |                     |
| Name of Evaluat<br>Kelly Teplitsky                                                           | tor:                        | Agency/Organ<br>CH2M HILL                         | ization:                                  |                   | Date Prepare 03/03/2015      | ed:                 |
| Street Address:                                                                              | 9191 South Jamaica St       | reet                                              | City: Englewood                           |                   | State: CO                    |                     |
| Name of EPA or                                                                               | State Agency Contact:       |                                                   | Street Address:                           |                   | I                            |                     |
| City:                                                                                        |                             | State:                                            |                                           | Telephone:        |                              |                     |
|                                                                                              |                             | 4. Site Disp                                      | oosition <i>(for EPA us</i>               | e only)           |                              |                     |
| Emergency Resp<br>Recommendation                                                             | oonse/Removal Assess<br>on: | ment                                              | CERCLIS Recomm                            |                   | Signature:                   |                     |
|                                                                                              | ☐ Yes<br>☐ No               |                                                   | ☐ Lower Priority☐ NFRAP                   |                   | Name (typed                  | 1):                 |
|                                                                                              | Date:                       |                                                   | ☐ RCRA ☐ Other:  Date:                    |                   | Position:                    |                     |
|                                                                                              |                             | 5. Gene                                           | eral Site Characteris                     |                   |                              |                     |
| Predominant La                                                                               | nd Use Within 1 Mile o      | of Site (check all                                | Site Setting:                             |                   | Years of Ope                 | ration:             |

|                                      | _                                                   |                | _                                                                       |                    | Identification  | า                   |
|--------------------------------------|-----------------------------------------------------|----------------|-------------------------------------------------------------------------|--------------------|-----------------|---------------------|
| Potential                            | Hazardous W                                         |                | reliminary A                                                            | ssessment          | State: SD       | CERCLIS #:          |
|                                      |                                                     | Form           |                                                                         |                    | CERCLIS Disc    | overy Date:         |
|                                      |                                                     | 1. Gen         | eral Site Information                                                   | on                 |                 |                     |
| Name: Ellsworth                      | n AFB                                               | Street Address | : 1000 N Ellsworth Ro                                                   | b                  |                 |                     |
| City:                                |                                                     | State: SD      | Zip Code:<br>57769                                                      | County:<br>Meade   | Co. Code:       | Cong. Dist:         |
| Latitude:<br>44°8' 44.06"            | Longitude:<br>103°5' 30.36"                         | 1 ' '          | rea of Site: _Less<br>Acres<br>Square Ft                                |                    | Not Specified   |                     |
| C': N 5                              | 5: 6: :: 5: :11:                                    | 7506           | Square Ft                                                               | ☑ Inactive         | ] NA (GW plume, | etc.)               |
|                                      | ner Fire Station Buildin<br>: The building was buil |                | 2+:1 2000 and dama!:                                                    | shed in 2007. Fire | danartmant      | rahialas wara       |
|                                      | and maintained in thi                               | _              | _                                                                       |                    |                 | l any spills inside |
|                                      |                                                     | 2. Owner       | r/Operator Informa                                                      | ation              |                 |                     |
| Owner: Ellswort                      | h AFB                                               |                | Operator: same a                                                        | is owner           |                 |                     |
| Street Address:                      | 1000 N Ellsworth Rd                                 |                | Street Address:                                                         |                    |                 |                     |
| City:                                |                                                     |                | City:                                                                   |                    |                 |                     |
| State: SD                            | Zip Code:                                           | Telephone:     | State:                                                                  | Zip Code:          | Telephone:      |                     |
| Type of Ownersl                      | <b>I</b> hip:                                       |                | Type of Ownersh                                                         | ip:                |                 |                     |
| ☐ Private ☑ Federal Agency Name: DOI | ☐ County ☐ Municipa D_ ☐ Not Spe                    |                | ☐ Private ☐ County ☐ Federal Agency ☐ Municipal ☐ Name: ☐ Not Specified |                    |                 |                     |
| State Indian                         | ☐ Other                                             |                | ☐ State<br>☐ Indian                                                     | Other              |                 |                     |
|                                      |                                                     | 3. Site        | Evaluator Informat                                                      | ion                |                 |                     |
| Name of Evaluat                      | tor:                                                | Agency/Organi  | zation:                                                                 |                    | Date Prepare    | ed:                 |
| Kelly Teplitsky                      |                                                     | CH2M HILL      |                                                                         | 03/03/2015         |                 |                     |
| Street Address: 9                    | 9191 South Jamaica St                               | reet           | City: Englewood                                                         |                    | State: CO       |                     |
| Name of EPA or                       | State Agency Contact:                               |                | Street Address:                                                         |                    |                 |                     |
| City:                                |                                                     | State:         |                                                                         | Telephone:         |                 |                     |
|                                      |                                                     | 4. Site Disp   | osition (for EPA us                                                     | e only)            |                 |                     |
| Emergency Resp<br>Recommendation     | oonse/Removal Assess                                | ment           | CERCLIS Recomm                                                          |                    | Signature:      |                     |
| Recommendation                       | Yes                                                 |                | ☐ Higher Priority☐ Lower Priority☐ NFRAP                                |                    | Name (typed     | ):                  |
|                                      | □ No Date:                                          |                | RCRA Other: Date:                                                       |                    | Position:       |                     |
|                                      |                                                     | 5. Gene        | ral Site Characteris                                                    |                    | <u>I</u>        |                     |
| Predominant La                       | nd Use Within 1 Mile                                |                | Site Setting:                                                           |                    | Years of Ope    | ration:             |

| that apply):                                                                                                                                                                                                                                                                                               |                                              |                                    |                                             |                                                                                                                                                                                                  |                                                                                                                                 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| ☐ Industrial                                                                                                                                                                                                                                                                                               | ☐ Agriculture ☐ [                            | 001                                | ☐ Urban                                     | ı                                                                                                                                                                                                | Beginning Year 1956                                                                                                             |  |
| ☐ Commercial                                                                                                                                                                                                                                                                                               | _                                            | Other Federal                      | ☐ Subur                                     | ban                                                                                                                                                                                              | Ending Year 2000                                                                                                                |  |
| <ul><li>☐ Residential</li><li>☐ Forest/Fields</li></ul>                                                                                                                                                                                                                                                    | ☑ DOD ☐ I                                    | Facility:                          | ✓ Rural                                     |                                                                                                                                                                                                  | Linding real 2000                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                            |                                              | Other                              |                                             |                                                                                                                                                                                                  | ☐ Unknown                                                                                                                       |  |
| Type of Site Operation                                                                                                                                                                                                                                                                                     | ons (check all that a                        | ipply):                            |                                             |                                                                                                                                                                                                  | Waste Generated:                                                                                                                |  |
| ☐ Manufacturing (must ch                                                                                                                                                                                                                                                                                   | heck subcategory)                            | ]                                  | Retail                                      |                                                                                                                                                                                                  | Onsite                                                                                                                          |  |
| Lumber and Woo                                                                                                                                                                                                                                                                                             |                                              |                                    | Recycling                                   |                                                                                                                                                                                                  | ☐ Offsite ☐ Onsite and Offsite                                                                                                  |  |
| ☐ Inorganic Chemic ☐ Plastic and/or Ru                                                                                                                                                                                                                                                                     |                                              |                                    | ☐ Junk/Salvage Yard<br>☐ Municipal Landfill |                                                                                                                                                                                                  | Offsite and Offsite                                                                                                             |  |
| ☐ Paints, Varnishes                                                                                                                                                                                                                                                                                        |                                              |                                    | Other Landfill                              |                                                                                                                                                                                                  | Waste Deposition Authorized                                                                                                     |  |
| ☐ Industrial Organi                                                                                                                                                                                                                                                                                        |                                              |                                    | ☑ DOD                                       |                                                                                                                                                                                                  | By: Present Owner                                                                                                               |  |
| ☐ Agricultural Chen☐ Miscellaneous Ch                                                                                                                                                                                                                                                                      |                                              | _                                  | □ DOE<br>□ DOI                              |                                                                                                                                                                                                  | Former Owner                                                                                                                    |  |
| ☐ Primary Metals                                                                                                                                                                                                                                                                                           | lemical Products                             | _                                  | Other Federal Facility                      | <i>J</i>                                                                                                                                                                                         | <ul><li>☐ Present &amp; Former Owner</li><li>☐ Unauthorized</li></ul>                                                           |  |
| ☐ Metal Coating, PI                                                                                                                                                                                                                                                                                        | ating, Engraving                             | [                                  | RCRA                                        |                                                                                                                                                                                                  | Unknown                                                                                                                         |  |
| ☐ Metal Forging, St                                                                                                                                                                                                                                                                                        |                                              |                                    | ☐ Treatment, Stor                           | •                                                                                                                                                                                                | Waste Accessible to the Public:                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                            | tural Metal Products                         |                                    | ☐ Large Quantity☐ Small Quantity            |                                                                                                                                                                                                  |                                                                                                                                 |  |
| ☐ Electronic Equipn☐ Other Manufactu                                                                                                                                                                                                                                                                       |                                              |                                    | Subtitle D                                  |                                                                                                                                                                                                  | Yes                                                                                                                             |  |
| ☐ Mining                                                                                                                                                                                                                                                                                                   | 9                                            |                                    | ☐ Municipal                                 |                                                                                                                                                                                                  | ☑ Yes<br>☑ No                                                                                                                   |  |
| ☐ Metals                                                                                                                                                                                                                                                                                                   |                                              |                                    | ☐ Industrial                                |                                                                                                                                                                                                  | _                                                                                                                               |  |
| Coal                                                                                                                                                                                                                                                                                                       |                                              |                                    | ☐ "Converter" ☐ "Protective Filer           | .0                                                                                                                                                                                               | Distance to Nearest Dwelling,                                                                                                   |  |
| ☐ Oil and Gas                                                                                                                                                                                                                                                                                              |                                              |                                    | □ "Non-or Late Fil                          |                                                                                                                                                                                                  | School, or Workplace:                                                                                                           |  |
| ☐ Non-metallic Min                                                                                                                                                                                                                                                                                         | erals                                        |                                    | ☐ Note Specified                            |                                                                                                                                                                                                  | · ·                                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                            |                                              |                                    | ☐ Other                                     | <del></del>                                                                                                                                                                                      | _20 Feet                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                            |                                              |                                    |                                             |                                                                                                                                                                                                  |                                                                                                                                 |  |
| 6. Waste Characteristics Information                                                                                                                                                                                                                                                                       |                                              |                                    |                                             |                                                                                                                                                                                                  |                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                            |                                              | o. waste chai                      | acteristics inion                           | nation                                                                                                                                                                                           |                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                            |                                              | (Refer to PA                       | A Table 1 for WC Sco                        | re)                                                                                                                                                                                              |                                                                                                                                 |  |
| Source Type:                                                                                                                                                                                                                                                                                               | Source                                       |                                    |                                             |                                                                                                                                                                                                  | Waste                                                                                                                           |  |
| Source Type:<br>(check all that apply)                                                                                                                                                                                                                                                                     | Source<br>(include u                         | (Refer to PA                       | A Table 1 for WC Sco                        | re)                                                                                                                                                                                              |                                                                                                                                 |  |
| (check all that apply)                                                                                                                                                                                                                                                                                     |                                              | (Refer to PA                       | A Table 1 for WC Sco                        | re) General Type of (check all that app    Metals                                                                                                                                                | oly):                                                                                                                           |  |
| (check all that apply)                                                                                                                                                                                                                                                                                     |                                              | (Refer to PA                       | A Table 1 for WC Sco                        | General Type of (check all that app   Metals   Organics                                                                                                                                          | Dly):  ☐ Pesticides/Herbicides ☐ Acids/Bases                                                                                    |  |
| (check all that apply)  Landfill Surface Impoundment Drums                                                                                                                                                                                                                                                 | (include u                                   | (Refer to PA                       | A Table 1 for WC Sco                        | General Type of (check all that app   Metals   Organics   Inorganics                                                                                                                             | Pesticides/Herbicides Acids/Bases Oily Waste                                                                                    |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co                                                                                                                                                                                                                            | (include u                                   | (Refer to PA                       | A Table 1 for WC Sco                        | General Type of (check all that app   Metals   Organics                                                                                                                                          | Dly):  ☐ Pesticides/Herbicides ☐ Acids/Bases                                                                                    |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co                                                                                                                                                                                                                            | (include u                                   | (Refer to PA                       | A Table 1 for WC Sco                        | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi                                                                 | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives                                |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile                                                                                                                                                                               | (include u                                   | (Refer to PA                       | A Table 1 for WC Sco                        | General Type of (check all that app     Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hospi   Radioactive Wast                                                        | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  te  Other _AFFF_          |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum)                                                                                                                                          | (include u                                   | (Refer to PA                       | A Table 1 for WC Sco                        | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi                                                                 | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  te  Other _AFFF_          |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment                                                                                                                           | ontainers                                    | (Refer to PA                       | A Table 1 for WC Sco                        | General Type of (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hospi   Radioactive Wast   Construction/Der                                       | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  te Other_AFFF_ molition Waste |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum                                                                                                      | ontainers                                    | (Refer to PA                       | A Table 1 for WC Sco                        | General Type of (check all that app   Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hospi   Radioactive Wast   Construction/Der                                       | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  te  Other _AFFF_          |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment                                                                                                                           | ontainers                                    | (Refer to PA                       | A Table 1 for WC Sco                        | General Type of (check all that app Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der                                                       | Pesticides/Herbicides                                                                                                           |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source)                                    | ontainers                                    | (Refer to PA                       | A Table 1 for WC Sco                        | General Type of (check all that app Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der                                                       | Pesticides/Herbicides                                                                                                           |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source) Contaminated Soil                  | ontainers                                    | (Refer to PA                       | A Table 1 for WC Sco                        | General Type of (check all that app Metals Organics Inorganics Solvents Paints/Pigments Aboratory/Hospi Radioactive Wast Construction/Der                                                        | Pesticides/Herbicides                                                                                                           |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source)                                    | ontainers                                    | (Refer to PA                       | A Table 1 for WC Sco                        | General Type of (check all that app Metals Organics Inorganics Solvents Paints/Pigments Radioactive Wast Construction/Der                                                                        | Pesticides/Herbicides                                                                                                           |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified Source) Contaminated Soil Other No Sources | ontainers                                    | (Refer to PA                       | A Table 1 for WC Sco                        | General Type of (check all that app Metals Organics Inorganics Solvents Paints/Pigments Radioactive Wast Construction/Der                                                                        | Pesticides/Herbicides                                                                                                           |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified Source) Contaminated Soil Other No Sources | ontainers                                    | (Refer to PA                       | A Table 1 for WC Sco                        | General Type of (check all that app Metals Organics Inorganics Solvents Paints/Pigments Adioactive Wast Construction/Der Physical State of that apply):                                          | Pesticides/Herbicides                                                                                                           |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified Source) Contaminated Soil Other No Sources | ontainers  me  ment  ent, W=Wastestream, V=V | (Refer to PA                       | Tier*:                                      | General Type of (check all that app Metals Organics Inorganics Solvents Paints/Pigments Addioactive Wast Construction/Der Physical State of that apply):                                         | Pesticides/Herbicides                                                                                                           |  |
| Check all that apply                                                                                                                                                                                                                                                                                       | ontainers  me  ment  ent, W=Wastestream, V=V | (Refer to PA Waste Quantity: nit)  | Tier*:                                      | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                       | Pesticides/Herbicides                                                                                                           |  |
| Check all that apply                                                                                                                                                                                                                                                                                       | ontainers  me  ment  ent, W=Wastestream, V=V | (Refer to PA Waste Quantity:  nit) | Tier*:                                      | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                       | Pesticides/Herbicides                                                                                                           |  |
| Check all that apply                                                                                                                                                                                                                                                                                       | ontainers  me  ment  ent, W=Wastestream, V=V | (Refer to PA Waste Quantity: nit)  | Tier*:                                      | General Type of (check all that app     Metals     Organics     Inorganics     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der     Physical State of that apply): | Pesticides/Herbicides                                                                                                           |  |
| Check all that apply                                                                                                                                                                                                                                                                                       | ontainers  me  ment  ent, W=Wastestream, V=V | (Refer to PA Waste Quantity:  nit) | Tier*:                                      | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                       | Pesticides/Herbicides                                                                                                           |  |

| Drinking Well: Have Primary Target Drinking          |                                |                          | ~1/4 - 1/ ₹ IAIIIC                                         |                             |  |
|------------------------------------------------------|--------------------------------|--------------------------|------------------------------------------------------------|-----------------------------|--|
| Feet                                                 | mave rimary rangee Dimking     |                          |                                                            | NA                          |  |
| Type of Drinking Water Wells Within 4                | □Yes                           | -                        | >1/2 - 1 Mile                                              | INA                         |  |
| Miles                                                | ☑ Yes<br>☑ No                  |                          | >1 - 2 Mile                                                | NA                          |  |
| (check all that apply):                              | If Yes, Enter Prin             | nary Target              | >2 - 3 Mile                                                | NA                          |  |
| ✓ Municipal □ Private                                | Population:                    |                          | ZZ - J WINC                                                |                             |  |
| ☐ None                                               |                                | _People <sup>3</sup>     | >3 - 4 Mile                                                | NA                          |  |
| Depth to Shallowest Aquifer:                         | Nearest Designate              | ed Wellhead              | Total Within 4 Miles <sup>4</sup>                          | NA                          |  |
| ~ 10 to 50 Feet                                      | Protection Area <sup>6</sup> : |                          | Total Within 4 Willes                                      |                             |  |
| Karst Terrain/Aquifer Present:                       | ☐ Underl                       |                          |                                                            |                             |  |
| ☐ Yes                                                | ☐ >0-4 N<br>☑ None \           | Ailes<br>Within 4 Miles  | *Use population #s for PA Ta  *Note nearest well for #5 on |                             |  |
| ☑ No                                                 |                                |                          | Note hearest well for #5 on                                | GW Fathway Scoresheet       |  |
|                                                      |                                | e Water Pathwa           |                                                            |                             |  |
| Type of Surface Water Draining Site and that apply): | 15 Miles Downstre              | eam (check all           | Shortest Overland Dista<br>Surface Water:                  | nce From Any Source to      |  |
| ✓ Stream River ✓ Pol                                 | nd 🔲 Lake                      |                          | _2,930_ Fe                                                 |                             |  |
| ☐ Bay ☐ Ocean ☐ Oth                                  | ner                            |                          |                                                            | Miles                       |  |
| Is There a Suspected Release to Surface              | Water <sup>1</sup> :           |                          | Site is Located in:                                        |                             |  |
|                                                      |                                |                          | Annual - 10 yr Floodplain                                  |                             |  |
| ☐ Yes<br>☑ No                                        |                                |                          | ☐ >10yr - 100yr Floodplain<br>☐ >100yr - 500yr Floodplain  |                             |  |
|                                                      |                                |                          | ☐ > 100yr - 500yr Floodplain<br>☐ >500yr Floodplain        |                             |  |
| Drinking Water Intake Located Along the              | gration Path:                  | List All Secondary Targe | t Drinking Water Intakes:                                  |                             |  |
| ☐ Yes<br>☑ No                                        |                                |                          |                                                            |                             |  |
| Have Primary Target Drinking Water Inta              | ikes Been Identifie            | d:                       |                                                            |                             |  |
| ☐ Yes If Yes, Distance                               | ce to Nearest Drink            | king                     |                                                            |                             |  |
|                                                      | :Miles                         | _                        |                                                            |                             |  |
| If Yes, Enter Population Served by Targe             | t Intake:                      |                          |                                                            |                             |  |
|                                                      |                                |                          | Total within                                               | 15 Miles <sup>4</sup>       |  |
| NA People <sup>4</sup>                               |                                |                          | Total Willing                                              |                             |  |
| Fisheries Located Along the Surface Wat              | er Migration Path:             |                          | List All Secondary Targe                                   | t Fisheries <sup>10</sup> : |  |
|                                                      | e to Nearest Fisher            |                          | Water Body/ Fishery Name                                   |                             |  |
|                                                      | Miles                          | 5                        |                                                            |                             |  |
| Have Primary Target Fisheries Been Iden              | tified:                        |                          |                                                            |                             |  |
| ☐ Yes     ☑ No                                       |                                |                          |                                                            |                             |  |
|                                                      | 8. Surface Wat                 | er Pathway (con          | tinued)                                                    |                             |  |
| Wetlands Located Along the Surface Wa                | ter Migration                  |                          | nvironments Located Alo                                    | ng the Surface Water        |  |
| Path:                                                |                                | Migration Path:          | If Van Distance                                            | Noowoot Caraltina           |  |
| ✓ Yes<br>□ No                                        |                                | ☐ Yes<br>☑ No            | If Yes, Distance to<br>Environment:                        | Nearest Sensitive<br>Miles  |  |
| Have Primary Target Wetlands Been Ide                | entified:                      |                          | et Sensitive Environmen                                    |                             |  |
| Yes                                                  |                                |                          | Yes                                                        |                             |  |
| ☐ Yes<br>☑ No                                        |                                |                          | ☑ No                                                       |                             |  |
| List All Wetlands:                                   |                                | List All Sensitive       | Environments <sup>11</sup> :                               |                             |  |

| Water Body: Flow (cfs): Frontage miles:            |                         | <u>Water Body</u> :                                                        |       | Flow (cfs):                                  | Sensitive Environment Type:                  |  |
|----------------------------------------------------|-------------------------|----------------------------------------------------------------------------|-------|----------------------------------------------|----------------------------------------------|--|
|                                                    |                         |                                                                            |       |                                              |                                              |  |
|                                                    |                         |                                                                            |       |                                              |                                              |  |
|                                                    | 9. Soil E               | xposure Pat                                                                | hway  | <i>y</i>                                     |                                              |  |
| Are People Occupying Residence or                  | Number of Worke         | ers Onsite <sup>4</sup> :                                                  |       | Have Terres                                  | strial Sensitive Environments Been           |  |
| Attending School or Daycare on or                  |                         | 1                                                                          |       | Identified on or Within 200 Feet of Areas of |                                              |  |
| Within 200 Feet of Area of Known or                | ☑ None<br>☐ 1 - 100     |                                                                            |       | Known or Suspected Contamination:            |                                              |  |
| Suspected Contamination:                           | ☐ 1 - 100<br>☐ 101 - 1, | 000                                                                        |       |                                              |                                              |  |
|                                                    | ☐ > 1,000               | )                                                                          |       | ☐ Yes                                        |                                              |  |
| _                                                  |                         |                                                                            |       |                                              | ☑ No                                         |  |
| ☐ Yes<br>☑ No                                      |                         |                                                                            |       | If Voc List                                  | Each Terrestrial Sensitive                   |  |
| E NO                                               | Population Withir       | a 1 Milo:                                                                  |       | Environme                                    |                                              |  |
| If Yes, Enter Total Residential                    |                         | i i iville.                                                                |       |                                              |                                              |  |
| Population:                                        |                         | . 7                                                                        |       |                                              |                                              |  |
|                                                    | _0 Peopl                | e'                                                                         |       |                                              |                                              |  |
| People <sup>2</sup>                                |                         |                                                                            |       | *                                            | - 11 - 6                                     |  |
|                                                    |                         |                                                                            |       | Refer to PA                                  | Table 7 for environment types                |  |
|                                                    | 10.                     | Air Pathway                                                                | /     |                                              |                                              |  |
| Is there a Suspected Release to Air <sup>1</sup> : |                         | Wetlands Lo                                                                | cated | l Within 4 M                                 | iles of the Site <sup>6</sup> :              |  |
| ☐ Yes ☑ No                                         |                         | ✓ Yes                                                                      |       |                                              | Many Acros                                   |  |
|                                                    |                         | ☐ No                                                                       |       | ii tes, nov                                  | v Many Acres: Acres                          |  |
| Enter Total Population on or Within:               |                         | Other Sensitive Environments Located Within 4 Miles of the Site:           |       |                                              |                                              |  |
| Onsite                                             |                         |                                                                            |       |                                              |                                              |  |
| 0.4/4.84%                                          |                         | ☐ Yes<br>☑ No                                                              |       |                                              |                                              |  |
| 0-1/4 Mile                                         |                         |                                                                            |       | ₩ NO                                         |                                              |  |
| >1/4-1/2 Mile                                      |                         | List All Sensitive Environments Within 1/2 Mile of the Site <sup>6</sup> : |       |                                              | s Within 1/2 Mile of the Site <sup>6</sup> : |  |
| >1/2-1 Mile                                        |                         | <u>Distance:</u> Sensitive Environment Type/Wetlands Area (acres):         |       | nent Type/Wetlands Area (acres):             |                                              |  |
| >1-2 Miles                                         |                         | Onsite                                                                     | None  | e                                            |                                              |  |
| >2-3 Miles                                         |                         | 0-1/4 Mile                                                                 | _We   | tlands                                       |                                              |  |
| >3-4 Miles                                         |                         | >1/4-1/2 Mile                                                              | · _We | etlands                                      |                                              |  |
| Total Within 4 Miles <sup>3-5</sup> _6,210_        |                         |                                                                            |       |                                              |                                              |  |

 $<sup>^{1\</sup>text{-}11}$  Refers to question number on the PA scoresheet for each particular pathway

|                                                                                                    | _                                                      |                                                                                                                                                                                         | _                                         |                    | Identification               | n                   |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|------------------------------|---------------------|
| Potential                                                                                          | Hazardous W                                            |                                                                                                                                                                                         | reliminary A                              | ssessment          | State: SD                    | CERCLIS #:          |
|                                                                                                    |                                                        | Form                                                                                                                                                                                    |                                           |                    | CERCLIS Disc                 | overy Date:         |
|                                                                                                    |                                                        | 1. Ger                                                                                                                                                                                  | eral Site Informati                       | on                 |                              |                     |
| Name: Ellsworth                                                                                    | n AFB                                                  | Street Address                                                                                                                                                                          | : 1000 N Ellsworth Ro                     | d                  |                              |                     |
| City:                                                                                              |                                                        | State: SD                                                                                                                                                                               | Zip Code:<br>57769                        | County:<br>Meade   | Co. Code:                    | Cong. Dist:         |
| Latitude:<br>44°8' 47.24"                                                                          | Longitude:<br>103°5' 40.94"                            | than 1                                                                                                                                                                                  | Area of Site: _Less<br>Acres<br>Square Ft |                    | Not Specified  NA (GW plume, | etc.)               |
|                                                                                                    | ent Fire Station (Buildi<br>: The current fire station |                                                                                                                                                                                         |                                           |                    |                              |                     |
|                                                                                                    | g was built in 2000 at<br>ire department in a st       |                                                                                                                                                                                         | -                                         | d out of the forme | er location (Bu              | uilding 7506). AFFF |
|                                                                                                    |                                                        | 2. Owne                                                                                                                                                                                 | r/Operator Informa                        | ation              |                              |                     |
| Owner: Ellswort                                                                                    |                                                        |                                                                                                                                                                                         | Operator: same a                          | as owner           |                              |                     |
| Street Address:                                                                                    | 1000 N Ellsworth Rd                                    |                                                                                                                                                                                         | Street Address:                           |                    |                              |                     |
| City:                                                                                              |                                                        |                                                                                                                                                                                         | City:                                     |                    |                              |                     |
| State: SD                                                                                          | Zip Code:                                              | Telephone:                                                                                                                                                                              | State:                                    | Zip Code:          | Telephone:                   |                     |
| Type of Ownersl                                                                                    | <b>I</b> hip:                                          |                                                                                                                                                                                         | Type of Ownersh                           | ip:                |                              |                     |
| Private □ County □ Federal Agency □ Municipal Name: _DOD □ Not Specified □ State □ Other □ Other □ |                                                        | ☐ Private         ☐ County           ☐ Federal Agency         ☐ Municipal           Name:         ☐ Not Specified           ☐ State         ☐ Other           ☐ Indian         ☐ Indian |                                           |                    |                              |                     |
|                                                                                                    |                                                        | 3. Site                                                                                                                                                                                 | Evaluator Informat                        | ion                |                              |                     |
| Name of Evaluat<br>Kelly Teplitsky                                                                 | tor:                                                   | Agency/Organ<br>CH2M HILL                                                                                                                                                               | ization:                                  |                    | Date Prepare 03/03/2015      | ed:                 |
| Street Address:                                                                                    | 9191 South Jamaica St                                  | reet                                                                                                                                                                                    | City: Englewood                           |                    | State: CO                    |                     |
| Name of EPA or                                                                                     | State Agency Contact:                                  |                                                                                                                                                                                         | Street Address:                           |                    |                              |                     |
| City:                                                                                              |                                                        | State:                                                                                                                                                                                  |                                           | Telephone:         |                              |                     |
|                                                                                                    |                                                        | 4. Site Disp                                                                                                                                                                            | osition <i>(for EPA us</i>                | e only)            |                              |                     |
| Emergency Resp<br>Recommendation                                                                   | oonse/Removal Assess                                   | ment                                                                                                                                                                                    | CERCLIS Recomm  ☐ Higher Priority         |                    | Signature:                   |                     |
| necommendation                                                                                     | ☐ Yes<br>☐ No                                          |                                                                                                                                                                                         | Lower Priority                            |                    | Name (typed                  | l):                 |
|                                                                                                    | Date:                                                  |                                                                                                                                                                                         | ☐ RCRA☐ Other:<br>Date:                   |                    | Position:                    |                     |
|                                                                                                    |                                                        | 5. Gene                                                                                                                                                                                 | ral Site Characteris                      |                    | 1                            |                     |
| Predominant La                                                                                     | nd Use Within 1 Mile                                   | of Site (check all                                                                                                                                                                      | Site Setting:                             |                    | Years of Ope                 | ration:             |

| ☐ Industrial                                                                                                                                                                                                                                                                                                                                          | ☐ Agriculture ☐ [    | 001                                                               | ☐ Urban                                                  | 1                                                                                                                                     | Beginning Year 2000                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Commercial                                                                                                                                                                                                                                                                                                                                            | _                    | Other Federal                                                     | ☐ Subur                                                  | ban                                                                                                                                   | Ending Year present                                                                                                              |
| <ul><li>☐ Residential</li><li>☐ Forest/Fields</li></ul>                                                                                                                                                                                                                                                                                               | ☑ DOD ☐ ☐ DOE        | acility:                                                          | ✓ Rural                                                  |                                                                                                                                       | Lituing real present                                                                                                             |
| - Torest/Tielus                                                                                                                                                                                                                                                                                                                                       |                      | Other                                                             |                                                          |                                                                                                                                       | ☐ Unknown                                                                                                                        |
| Type of Site Operatio                                                                                                                                                                                                                                                                                                                                 | ns (check all that a | pply):                                                            |                                                          |                                                                                                                                       | Waste Generated:                                                                                                                 |
| ☐ Manufacturing (must ch                                                                                                                                                                                                                                                                                                                              | neck subcategory)    | [                                                                 | Retail                                                   |                                                                                                                                       | ☑ Onsite                                                                                                                         |
| ☐ Lumber and Woo                                                                                                                                                                                                                                                                                                                                      | d Products           |                                                                   | Recycling                                                |                                                                                                                                       | Offsite                                                                                                                          |
| ☐ Inorganic Chemic                                                                                                                                                                                                                                                                                                                                    |                      |                                                                   | Junk/Salvage Yard                                        |                                                                                                                                       | ☐ Onsite and Offsite                                                                                                             |
| ☐ Plastic and/or Rul☐ Paints, Varnishes                                                                                                                                                                                                                                                                                                               |                      |                                                                   | ☐ Municipal Landfill<br>☐ Other Landfill                 |                                                                                                                                       | Wasta Danasitian Authorized                                                                                                      |
| ☐ Industrial Organic                                                                                                                                                                                                                                                                                                                                  |                      |                                                                   | ☑ DOD                                                    |                                                                                                                                       | Waste Deposition Authorized  By: Present Owner                                                                                   |
| ☐ Agricultural Chem                                                                                                                                                                                                                                                                                                                                   |                      |                                                                   | □ DOE                                                    |                                                                                                                                       | Former Owner                                                                                                                     |
| ☐ Miscellaneous Ch                                                                                                                                                                                                                                                                                                                                    | emical Products      |                                                                   | <ul><li>□ DOI</li><li>□ Other Federal Facility</li></ul> | .,                                                                                                                                    | Present & Former Owner                                                                                                           |
| ☐ Primary Metals                                                                                                                                                                                                                                                                                                                                      | oting Engraving      |                                                                   | □ RCRA                                                   | у                                                                                                                                     | Unauthorized                                                                                                                     |
| ☐ Metal Coating, Pla☐ Metal Forging, Sta                                                                                                                                                                                                                                                                                                              |                      |                                                                   | ☐ Treatment, Stor                                        | rage, or Disposal                                                                                                                     | Unknown                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                       | ural Metal Products  |                                                                   | ☐ Large Quantity                                         |                                                                                                                                       | Waste Accessible to the Public:                                                                                                  |
| ☐ Electronic Equipm                                                                                                                                                                                                                                                                                                                                   |                      |                                                                   | Small Quantity                                           | Generator                                                                                                                             |                                                                                                                                  |
| ☐ Other Manufactur                                                                                                                                                                                                                                                                                                                                    | ring                 |                                                                   | ☐ Subtitle D<br>☐ Municipal                              |                                                                                                                                       | Yes                                                                                                                              |
| ☐ Mining                                                                                                                                                                                                                                                                                                                                              |                      |                                                                   | ☐ Industrial                                             |                                                                                                                                       | ☑ No                                                                                                                             |
| ☐ Metals                                                                                                                                                                                                                                                                                                                                              |                      |                                                                   | ☐ "Converter"                                            |                                                                                                                                       | 5                                                                                                                                |
| Coal                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                   | ☐ "Protective Filer                                      |                                                                                                                                       | Distance to Nearest Dwelling,                                                                                                    |
| ☐ Oil and Gas☐ Non-metallic Mine                                                                                                                                                                                                                                                                                                                      | erals                |                                                                   | □ "Non-or Late Fil                                       | ler"                                                                                                                                  | School, or Workplace:                                                                                                            |
| Non-metanic wine                                                                                                                                                                                                                                                                                                                                      | ei ais               |                                                                   | □ Note Specified                                         |                                                                                                                                       |                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                       |                      |                                                                   | Other                                                    | <del></del>                                                                                                                           | _0 Feet                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                       |                      | 6 Waste Chai                                                      | racteristics Infor                                       | mation                                                                                                                                |                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                       |                      | (Refer to PA                                                      | A Table 1 for WC Sco                                     | ore)                                                                                                                                  |                                                                                                                                  |
| Source Type:                                                                                                                                                                                                                                                                                                                                          | Source               | Waste Quantity:                                                   | Tier*:                                                   | General Type of                                                                                                                       | Waste                                                                                                                            |
| (check all that apply)                                                                                                                                                                                                                                                                                                                                | (include u           |                                                                   |                                                          |                                                                                                                                       |                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                       |                      | nit)                                                              |                                                          | (check all that app                                                                                                                   |                                                                                                                                  |
| □ Landfill                                                                                                                                                                                                                                                                                                                                            | ·                    | nit)                                                              |                                                          | ☐ Metals                                                                                                                              | oly):                                                                                                                            |
| ☐ Landfill ☐ Surface Impoundment                                                                                                                                                                                                                                                                                                                      |                      | nit)                                                              | _                                                        | ☐ Metals ☐ Organics                                                                                                                   | oly):  ☐ Pesticides/Herbicides ☐ Acids/Bases                                                                                     |
| ☐ Surface Impoundment ☐ Drums                                                                                                                                                                                                                                                                                                                         |                      | nit)                                                              |                                                          | ☐ Metals ☐ Organics ☐ Inorganics                                                                                                      | Pesticides/Herbicides Acids/Bases Oily Waste                                                                                     |
| ☐ Surface Impoundment ☐ Drums ☐ Tanks and Non-Dum Co                                                                                                                                                                                                                                                                                                  | intainers            | nit)                                                              |                                                          | ☐ Metals ☐ Organics                                                                                                                   | oly):  ☐ Pesticides/Herbicides ☐ Acids/Bases                                                                                     |
| ☐ Surface Impoundment ☐ Drums ☐ Tanks and Non-Dum Co ☐ Chemical Waste Pile                                                                                                                                                                                                                                                                            |                      | nit)                                                              |                                                          | ☐ Metals ☐ Organics ☐ Inorganics ☐ Solvents ☐ Paints/Pigments ☐ Laboratory/Hosp                                                       | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives                                 |
| ☐ Surface Impoundment ☐ Drums ☐ Tanks and Non-Dum Co ☐ Chemical Waste Pile ☐ Scrap Metal or Junk Pile                                                                                                                                                                                                                                                 |                      | nit)                                                              |                                                          | ☐ Metals ☐ Organics ☐ Inorganics ☐ Solvents ☐ Paints/Pigments ☐ Laboratory/Hosp ☐ Radioactive Wasi                                    | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  Teles  Other _AFFF_        |
| □ Surface Impoundment     □ Drums     □ Tanks and Non-Dum Co     □ Chemical Waste Pile     □ Scrap Metal or Junk Pile     □ Tailings Pile     □ Trash Pile (open drum)                                                                                                                                                                                |                      | nit)                                                              |                                                          | ☐ Metals ☐ Organics ☐ Inorganics ☐ Solvents ☐ Paints/Pigments ☐ Laboratory/Hosp                                                       | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  Teles  Other _AFFF_        |
| □ Surface Impoundment     □ Drums     □ Tanks and Non-Dum Co     □ Chemical Waste Pile     □ Scrap Metal or Junk Pile     □ Tailings Pile     □ Trash Pile (open drum)     □ Land Treatment                                                                                                                                                           | ·                    | nit)                                                              |                                                          | Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hosp Radioactive Wast Construction/Der                                 | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  The Other AFFF  molition Waste |
| □ Surface Impoundment     □ Drums     □ Tanks and Non-Dum Co     □ Chemical Waste Pile     □ Scrap Metal or Junk Pile     □ Tailings Pile     □ Trash Pile (open drum)     □ Land Treatment     □ Contaminated GW Plum                                                                                                                                | ·                    | nit)                                                              |                                                          | Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hosp Radioactive Wast Construction/Der                                 | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  Teles  Other _AFFF_        |
| □ Surface Impoundment     □ Drums     □ Tanks and Non-Dum Co     □ Chemical Waste Pile     □ Scrap Metal or Junk Pile     □ Tailings Pile     □ Trash Pile (open drum)     □ Land Treatment                                                                                                                                                           | e                    | nit)                                                              |                                                          | Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hosp Radioactive Wast Construction/Der                                 | Pesticides/Herbicides                                                                                                            |
| □ Surface Impoundment     □ Drums     □ Tanks and Non-Dum Co     □ Chemical Waste Pile     □ Scrap Metal or Junk Pile     □ Tailings Pile     □ Trash Pile (open drum)     □ Land Treatment     □ Contaminated GW Plum     (unidentified source)     □ Contaminated SW/Sedin                                                                          | e                    | nit)                                                              |                                                          | Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hosp Radioactive Wast Construction/Der                                 | Pesticides/Herbicides                                                                                                            |
| □ Surface Impoundment     □ Drums     □ Tanks and Non-Dum Co     □ Chemical Waste Pile     □ Scrap Metal or Junk Pile     □ Tailings Pile     □ Trash Pile (open drum)     □ Land Treatment     □ Contaminated GW Plum     (unidentified source)     □ Contaminated SW/Sedin     (unidentified source)     □ Contaminated Soil                        | e                    | nit)                                                              |                                                          | Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hosp Radioactive Wast Construction/Der  Physical State of that apply): | Pesticides/Herbicides                                                                                                            |
| □ Surface Impoundment     □ Drums     □ Tanks and Non-Dum Co     □ Chemical Waste Pile     □ Scrap Metal or Junk Pile     □ Tailings Pile     □ Trash Pile (open drum)     □ Land Treatment     □ Contaminated GW Plum     (unidentified source)     □ Contaminated SW/Sedin                                                                          | e                    | nit)                                                              |                                                          | Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hosp Radioactive Wast Construction/Der  Physical State of that apply): | Pesticides/Herbicides                                                                                                            |
| □ Surface Impoundment     □ Drums     □ Tanks and Non-Dum Co     □ Chemical Waste Pile     □ Scrap Metal or Junk Pile     □ Trailings Pile     □ Trash Pile (open drum)     □ Land Treatment     □ Contaminated GW Plum (unidentified source)     □ Contaminated SW/Sedin (unidentified source)     □ Contaminated Soil     □ Other     □ No Sources  | e                    |                                                                   |                                                          | Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hosp Radioactive Wast Construction/Der  Physical State of that apply): | Pesticides/Herbicides                                                                                                            |
| □ Surface Impoundment     □ Drums     □ Tanks and Non-Dum Co     □ Chemical Waste Pile     □ Scrap Metal or Junk Pile     □ Trailings Pile     □ Trash Pile (open drum)     □ Land Treatment     □ Contaminated GW Plum (unidentified source)     □ Contaminated SW/Sedin (unidentified source)     □ Contaminated Soil     □ Other     □ No Sources  | e                    | olume, A=Area                                                     |                                                          | Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hosp Radioactive Wast Construction/Der  Physical State of that apply): | Pesticides/Herbicides                                                                                                            |
| □ Surface Impoundment     □ Drums     □ Tanks and Non-Dum Co     □ Chemical Waste Pile     □ Scrap Metal or Junk Pile     □ Trash Pile (open drum)     □ Land Treatment     □ Contaminated GW Plum     (unidentified source)     □ Contaminated SW/Sedin     (unidentified source)     □ Contaminated Soil     □ Other     □ No Sources  *C=Constitue | nent                 | olume, A=Area                                                     | ad Water Pathwa                                          | Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wast   Construction/Der                   | Pesticides/Herbicides                                                                                                            |
| □ Surface Impoundment     □ Drums     □ Tanks and Non-Dum Co     □ Chemical Waste Pile     □ Scrap Metal or Junk Pile     □ Trailings Pile     □ Trash Pile (open drum)     □ Land Treatment     □ Contaminated GW Plum (unidentified source)     □ Contaminated SW/Sedin (unidentified source)     □ Contaminated Soil     □ Other     □ No Sources  | nent                 | olume, A=Area  7. Grour                                           |                                                          | Metals   Organics   Inorganics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wast   Construction/Der      | Pesticides/Herbicides                                                                                                            |
| □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum (unidentified source) □ Contaminated SW/Sedin (unidentified source) □ Contaminated Soil □ Other □ No Sources  *C=Constitue                                                     | nent                 | olume, A=Area  7. Grour  Is There a Suspect Ground Water¹:        |                                                          | Metals   Organics   Inorganics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wast   Construction/Der      | Pesticides/Herbicides                                                                                                            |
| Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum (unidentified source) □ Contaminated SW/Sedin (unidentified source) □ Contaminated Soil □ Other □ No Sources  *C=Constitue  Is Ground Water Used Within 4 Miles: □ Yes           | nent                 | olume, A=Area  7. Grour  Is There a Suspect Ground Water¹:  □ Yes |                                                          | Metals   Organics   Inorganics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wast   Construction/Der      | Pesticides/Herbicides                                                                                                            |
| □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Trash Pile (open drum) □ Land Treatment □ Contaminated GW Plum (unidentified source) □ Contaminated SW/Sedin (unidentified source) □ Contaminated Soil □ Other □ No Sources  *C=Constitue                                                     | nent                 | olume, A=Area  7. Grour  Is There a Suspect Ground Water¹:        |                                                          | Metals   Organics   Inorganics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wast   Construction/Der      | Pesticides/Herbicides                                                                                                            |

| Drinking Well:                                       | Have Primary Tar                                    | get Drinking        | \1/4- T/7 IAIIIC                                       |                                       |  |
|------------------------------------------------------|-----------------------------------------------------|---------------------|--------------------------------------------------------|---------------------------------------|--|
| Feet                                                 | Water Wells Beer                                    | -                   | >1/2 - 1 Mile                                          | NA                                    |  |
| Type of Drinking Water Wells Within 4                |                                                     |                     | >1/2 - 1 Wille                                         | NA                                    |  |
| Miles                                                | ☐ Yes<br>☑ No                                       |                     | >1 - 2 Mile                                            | NA                                    |  |
| (check all that apply):                              |                                                     |                     |                                                        |                                       |  |
| ☑ Municipal                                          | If Yes, Enter Prir<br>Population:                   | nary Target         | >2 - 3 Mile                                            | NA                                    |  |
| ☐ Private ☐ None                                     | •                                                   | People <sup>3</sup> | >3 - 4 Mile                                            | NA                                    |  |
|                                                      | Nearest Designat                                    | ad Mallboad         | 1                                                      |                                       |  |
| Depth to Shallowest Aquifer:                         | Nearest Designate<br>Protection Area <sup>6</sup> : | ea weimeaa          | Total Within 4 Miles <sup>4</sup>                      | _NA                                   |  |
| ~ 10 to 50 Feet                                      | Protection Area:                                    |                     |                                                        |                                       |  |
| Karst Terrain/Aquifer Present:                       | ☐ Under                                             |                     | *Use population #s for PA Tab                          | ale 2                                 |  |
| □Yes                                                 |                                                     | Within 4 Miles      | *Note nearest well for #5 on                           |                                       |  |
| ☑ No                                                 |                                                     |                     |                                                        | ·                                     |  |
|                                                      |                                                     | e Water Pathwa      | ny                                                     |                                       |  |
| Type of Surface Water Draining Site and that apply): | 15 Miles Downstr                                    | eam (check all      | Shortest Overland Dista<br>Surface Water:              | nce From Any Source to                |  |
| ✓ Stream                                             | nd 🔲 Lake                                           |                     | _2,950_ Fe                                             | et                                    |  |
|                                                      | ner                                                 |                     | N                                                      | Miles                                 |  |
| Is There a Suspected Release to Surface              | \\/atar <sup>1</sup> .                              |                     | Site is Located in:                                    |                                       |  |
| is There a suspected Release to Surface              | vvater:                                             |                     |                                                        | odolain                               |  |
| ☐ Yes                                                |                                                     |                     | ☐ Annual - 10 yr Floodplain ☐ >10yr - 100yr Floodplain |                                       |  |
| ✓ No                                                 |                                                     |                     | ☐ >100yr - 500yr Floodplain ☐ >500yr Floodplain        |                                       |  |
| Drinking Water Intake Located Along the              | igration Dath:                                      | •                   | t Drinking Water Intakes:                              |                                       |  |
| Drinking water intake Located Along the              | Surface Water ivi                                   | igiation i atii.    | List All Secondary range                               | Dilliking Water intakes.              |  |
| ☐ Yes<br>☑ No                                        |                                                     |                     | Name: Water Body: Flow                                 | v (cfs): Population Served:           |  |
| Have Primary Target Drinking Water Inta              | akes Been Identifie                                 | d:                  |                                                        |                                       |  |
| ☐ Yes If Yes, Distance                               | ce to Nearest Drink                                 | cing .              |                                                        |                                       |  |
|                                                      | : Mile                                              |                     |                                                        |                                       |  |
| If Yes, Enter Population Served by Targe             | t Intake:                                           |                     |                                                        |                                       |  |
|                                                      |                                                     |                     | Total within                                           | 15 Miles <sup>4</sup>                 |  |
| NA People <sup>4</sup>                               |                                                     |                     | Total Within                                           |                                       |  |
| Fisheries Located Along the Surface Wat              | er Migration Path                                   | ,                   | List All Secondary Targe                               | t Eicharias <sup>10</sup> :           |  |
| If Vac Distance                                      | e to Nearest Fisher                                 |                     | Water Body/ Fishery Name                               |                                       |  |
| Yes No II Yes, Distance                              | Mile                                                | •                   |                                                        | · · · · · · · · · · · · · · · · · · · |  |
| Have Primary Target Fisheries Been Iden              | tified:                                             |                     |                                                        |                                       |  |
| ☐ Yes ☑ No                                           |                                                     |                     |                                                        |                                       |  |
|                                                      | 8. Surface Wat                                      | ter Pathway (con    | ntinued)                                               |                                       |  |
| Wetlands Located Along the Surface Wa<br>Path:       |                                                     |                     | nvironments Located Alo                                | ng the Surface Water                  |  |
| ✓ Yes                                                |                                                     | Yes                 | If Yes, Distance to                                    | Nearest Sensitive                     |  |
| □No                                                  |                                                     | ☑ No                | Environment:                                           | Miles                                 |  |
| Have Primary Target Wetlands Been Ide                | entified:                                           | Have Primary Targ   | get Sensitive Environmen                               | ts Been Identified:                   |  |
| ☐ Yes<br>☑ No                                        |                                                     |                     | ☐ Yes<br>☑ No                                          |                                       |  |
| List All Wetlands:                                   |                                                     | List All Sensitive  | Environments <sup>11</sup> :                           |                                       |  |

| Water Body: Flow (cfs): Frontage miles:                               | <u>Water Body</u> :                     | Flow (cfs): Sensitive Environment Type:                 |  |  |
|-----------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|--|--|
|                                                                       |                                         |                                                         |  |  |
|                                                                       |                                         |                                                         |  |  |
|                                                                       |                                         |                                                         |  |  |
|                                                                       | 9. Soil Exposure Pathwa                 | <u> </u>                                                |  |  |
| Are People Occupying Residence or                                     | Number of Workers Onsite <sup>4</sup> : | Have Terrestrial Sensitive Environments Been            |  |  |
| Attending School or Daycare on or Within 200 Feet of Area of Known or | □ None                                  | Identified on or Within 200 Feet of Areas of            |  |  |
| Suspected Contamination:                                              | ☑ 1 - 100                               | Known or Suspected Contamination:                       |  |  |
| Suspected Contamination.                                              | <u> </u>                                |                                                         |  |  |
|                                                                       | □ > 1,000                               | ☐ Yes                                                   |  |  |
| □Yes                                                                  |                                         | ☑ No                                                    |  |  |
| ☑ No                                                                  |                                         | If Yes, List Each Terrestrial Sensitive                 |  |  |
|                                                                       | Population Within 1 Mile:               | Environment <sup>5</sup> :                              |  |  |
| If Yes, Enter Total Residential                                       | ·                                       |                                                         |  |  |
| Population:                                                           | _0 People <sup>7</sup>                  |                                                         |  |  |
| De colo?                                                              | _01 copic                               |                                                         |  |  |
| People <sup>2</sup>                                                   |                                         | *Refer to PA Table 7 for environment types              |  |  |
|                                                                       |                                         | need to 111 table 7 to enhance types                    |  |  |
|                                                                       | 10. Air Pathway                         |                                                         |  |  |
| Is there a Suspected Release to Air <sup>1</sup> :                    | Wetlands Locate                         | ed Within 4 Miles of the Site <sup>6</sup> :            |  |  |
| ☐ Yes ☑ No                                                            |                                         | If Yes, How Many Acres: Acres                           |  |  |
| Enter Total Population on or Within:                                  | □ No                                    | ii res, now wany Acres Acres                            |  |  |
| Enter rotal Population on or within.                                  | Other Sensitive                         | Environments Located Within 4 Miles of the Site:        |  |  |
| Onsite                                                                | other sensitive i                       |                                                         |  |  |
| 0.1/4.84:1-                                                           |                                         | ☐ Yes<br>☑ No                                           |  |  |
| 0-1/4 Mile                                                            |                                         | E 100                                                   |  |  |
| >1/4-1/2 Mile                                                         | List All Sensitive                      | Environments Within 1/2 Mile of the Site <sup>6</sup> : |  |  |
| >1/2-1 Mile                                                           | <u>Distance:</u> <u>Sen</u>             | sitive Environment Type/Wetlands Area (acres):          |  |  |
| >1-2 Miles                                                            | Onsite No                               | ne                                                      |  |  |
| >2-3 Miles                                                            | 0-1/4 Mile _W                           | Vetlands                                                |  |  |
| >3-4 Miles                                                            | >1/4-1/2 Mile _W                        | Vetlands                                                |  |  |
| Total Within 4 Miles <sup>3-5</sup> _6,210_                           |                                         |                                                         |  |  |

<sup>1-11</sup> Refers to question number on the PA scoresheet for each particular pathway

| _                                  | _                                                   |                                       |                                                            |                        | Identification               | า                 |
|------------------------------------|-----------------------------------------------------|---------------------------------------|------------------------------------------------------------|------------------------|------------------------------|-------------------|
| Potential                          | Hazardous W                                         |                                       | Preliminary A                                              | ssessment              | State: SD                    | CERCLIS #:        |
|                                    |                                                     | Form                                  |                                                            |                        | CERCLIS Disco                | overy Date:       |
|                                    |                                                     | 1. Ger                                | neral Site Informati                                       | on                     | •                            |                   |
| Name: Ellsworth                    | n AFB                                               | Street Address                        | s: 1000 N Ellsworth Ro                                     | d                      |                              |                   |
| City:                              |                                                     | State: SD                             | Zip Code:<br>57769                                         | County:<br>Meade       | Co. Code:                    | Cong. Dist:       |
| Latitude:<br>44°9' 8.92"           | Longitude:<br>103°6' 36.22"                         | * *                                   | Area of Site: _Less<br>Acres<br>Square Ft                  |                        | Not Specified  NA (GW plume, | etc.)             |
| Site Name: B-52                    | Crash (1970)                                        |                                       |                                                            |                        |                              |                   |
| _                                  | e crash occurred along<br>e, it is unknown if the t | · · · · · · · · · · · · · · · · · · · |                                                            | Because this occur     | red in 1970, tl              | ne same year AFFF |
|                                    |                                                     | 2. Owne                               | r/Operator Informa                                         | ation                  |                              |                   |
| Owner: Ellswort                    | h AFB                                               |                                       | Operator: same a                                           | as owner               |                              |                   |
| Street Address:                    | 1000 N Ellsworth Rd                                 |                                       | Street Address:                                            | Street Address:        |                              |                   |
| City:                              |                                                     |                                       | City:                                                      |                        |                              |                   |
| State: SD                          | Zip Code:                                           | Telephone:                            | State:                                                     | Zip Code:              | Telephone:                   |                   |
| Type of Ownership:    Private      |                                                     |                                       | Type of Ownersh  Private Federal Agency Name: State Indian | ☐ County<br>☐ Municipa | ified                        |                   |
|                                    |                                                     | 3. Site                               | Evaluator Informat                                         | ion                    |                              |                   |
| Name of Evaluat<br>Kelly Teplitsky | tor:                                                | Agency/Organ<br>CH2M HILL             | ization:                                                   |                        | Date Prepare 03/03/2015      | ed:               |
| Street Address:                    | 9191 South Jamaica St                               | reet                                  | City: Englewood                                            |                        | State: CO                    |                   |
| Name of EPA or                     | State Agency Contact:                               |                                       | Street Address:                                            |                        | l                            |                   |
| City:                              |                                                     | State:                                |                                                            | Telephone:             |                              |                   |
|                                    |                                                     | 4. Site Disp                          | position <i>(for EPA us</i>                                | e only)                |                              |                   |
| Emergency Resp<br>Recommendation   | oonse/Removal Assessr                               |                                       | CERCLIS Recomm                                             | nendation:             | Signature:                   |                   |
|                                    | ☐ Yes<br>☐ No                                       |                                       | ☐ Lower Priority☐ NFRAP                                    |                        | Name (typed                  | ):                |
|                                    | Date:                                               |                                       | ☐ RCRA ☐ Other:  Date:                                     |                        | Position:                    |                   |
|                                    |                                                     | 5. Gene                               | eral Site Characteris                                      | stics                  |                              |                   |
| Predominant La                     | nd Use Within 1 Mile o                              | f Site (check all                     | Site Setting:                                              |                        | Years of Ope                 | ration:           |

| that apply):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                  | İ                                                                                                                                                                     |                                                                                                                      | ı                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D □ F:<br>E _ =               | OI ther Federal acility: ther                    | ☐ Urban<br>☐ Subur<br>☑ Rural                                                                                                                                         |                                                                                                                      | Beginning Year NA  Ending Year NA                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                                  |                                                                                                                                                                       |                                                                                                                      |                                                            |
| Type of Site Operations (ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eck all that a                | pply):                                           |                                                                                                                                                                       |                                                                                                                      | Waste Generated:                                           |
| □ Manufacturing (must check subsets of the production of the primary Metals     □ Metal Forging, Stamping     □ Fabricated Structural Metal of the production of the pro | oducts cals Products ngraving |                                                  | Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill DOD DOE DOI Other Federal Facility RCRA Treatment, Stor Large Quantity Small Quantity Subtitle D | rage, or Disposal<br>Generator                                                                                       | ✓ Onsite                                                   |
| ☐ Mining ☐ Metals ☐ Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                                  | ☐ Municipal☐ Industrial☐ "Converter"                                                                                                                                  |                                                                                                                      | ☐ Yes ☐ No  Distance to Nearest Dwelling,                  |
| ☐ Oil and Gas ☐ Non-metallic Minerals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                  | ☐ "Protective Filer ☐ "Non-or Late Fil ☐ Note Specified ☐ Other                                                                                                       | er"                                                                                                                  | School, or Workplace:  1,100 Feet                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                                  |                                                                                                                                                                       |                                                                                                                      |                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                                  | aracteristics Infori<br>PA Table 1 for WC Sco                                                                                                                         |                                                                                                                      |                                                            |
| Source Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Source                        | Waste Quantity:                                  | Tier*:                                                                                                                                                                | General Type of                                                                                                      | Wasta                                                      |
| (check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (include un                   | · ·                                              | Hei .                                                                                                                                                                 | (check all that app                                                                                                  |                                                            |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Containers □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Tailings Pile □ Trash Pile (open drum) □ Land Treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                                  |                                                                                                                                                                       | Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hospi   Radioactive Wast   Construction/Der | Pesticides/Herbicides                                      |
| ☐ Land Treatment ☐ Contaminated GW Plume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                                  |                                                                                                                                                                       | that apply):                                                                                                         | F Waste as Deposited (check all Solid Sludge Powder Liquid |
| *C=Constituent, W=V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vastestream, V=Vo             | olume, A=Area                                    |                                                                                                                                                                       |                                                                                                                      | Gas                                                        |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · ·                         |                                                  | nd Water Pathwa                                                                                                                                                       | ny                                                                                                                   |                                                            |
| Is Ground Water Used for I<br>Within 4 Miles:   Yes  No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Drinking                      | Is There a Suspec<br>Ground Water <sup>1</sup> : |                                                                                                                                                                       | List Secondary T<br>Ground Water V                                                                                   | arget Population Served by<br>Vithdrawn From:              |
| If Yes, Distance to nearest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                                  |                                                                                                                                                                       | 0 - 1/4 Mile<br>>1/4 - 1/2 Mila                                                                                      | NA<br>NA                                                   |

| Drinking Well:                                                                                 | Have Primary Tar               | get Drinking              | >1/4-1/2 IVIIIC                                            | IVA                         |  |
|------------------------------------------------------------------------------------------------|--------------------------------|---------------------------|------------------------------------------------------------|-----------------------------|--|
| Feet                                                                                           | Water Wells Beer               | •                         | >1/2 - 1 Mile                                              | NA                          |  |
| Type of Drinking Water Wells Within 4                                                          |                                |                           | >1/2 - 1 Wille                                             | NA                          |  |
| Miles                                                                                          | ☐ Yes<br>☑ No                  |                           | >1 - 2 Mile                                                | NA                          |  |
| (check all that apply):                                                                        |                                |                           |                                                            |                             |  |
| ✓ Municipal                                                                                    | If Yes, Enter Prir Population: | mary Target               | >2 - 3 Mile                                                | NA                          |  |
| ☐ Private                                                                                      | •                              | People <sup>3</sup>       | >3 - 4 Mile                                                | NA                          |  |
| □ None                                                                                         |                                |                           |                                                            |                             |  |
| Depth to Shallowest Aquifer:                                                                   | Nearest Designate              |                           | Total Within 4 Miles <sup>4</sup>                          | _NA                         |  |
| ~ 10 to 50 Feet                                                                                | Protection Area <sup>6</sup> : |                           |                                                            |                             |  |
| Karst Terrain/Aquifer Present:                                                                 | Under                          |                           | *                                                          |                             |  |
| □Yes                                                                                           | □ >0-4 N<br>☑ None V           | wiles<br>Within 4 Miles   | *Use population #s for PA Tab *Note nearest well for #5 on |                             |  |
| ☑ No                                                                                           |                                |                           | The territory were the first of the territory was one      | on radinal ocoresineer      |  |
|                                                                                                | 8. Surfac                      | ce Water Pathwa           | ay .                                                       |                             |  |
| Type of Surface Water Draining Site and                                                        | 15 Miles Downstr               | eam (check all            |                                                            | nce From Any Source to      |  |
| that apply):                                                                                   |                                |                           | Surface Water:                                             |                             |  |
|                                                                                                | nd 🔲 Lake                      |                           | _1,875 Fee                                                 | t                           |  |
| ☐ Bay ☐ Ocean ☐ Otl                                                                            | her                            |                           | N                                                          | Miles                       |  |
| Is There a Suspected Release to Surface                                                        | \\/\ata\ <sup>1</sup> .        |                           | Site is Located in:                                        |                             |  |
| is There a suspected Release to Surface                                                        | water:                         |                           | Annual - 10 yr Floodplain                                  |                             |  |
| ☐ Yes                                                                                          |                                |                           | ☐ >10yr - 100yr Floodplain                                 |                             |  |
| ☑ No                                                                                           |                                |                           | >100yr - 500yr Floodplain                                  |                             |  |
|                                                                                                |                                |                           | ☐ >500yr Floodplain                                        |                             |  |
| Drinking Water Intake Located Along the                                                        | List All Secondary Targe       | t Drinking Water Intakes: |                                                            |                             |  |
| ☐ Yes                                                                                          |                                |                           |                                                            |                             |  |
| ☑ No                                                                                           |                                |                           | Name: Water Body: Flow (cfs): Population Served:           |                             |  |
| Have Primary Target Drinking Water Inta                                                        | akes Reen Identifie            | ·d·                       |                                                            |                             |  |
|                                                                                                |                                |                           |                                                            |                             |  |
|                                                                                                | ce to Nearest Drink            |                           |                                                            |                             |  |
| water intake                                                                                   | :Mile                          | S                         |                                                            |                             |  |
| If Yes, Enter Population Served by Targe                                                       | t Intake:                      |                           |                                                            |                             |  |
| NA Boorlo                                                                                      |                                |                           | Total within 15 Miles <sup>4</sup>                         |                             |  |
| NA People <sup>4</sup>                                                                         |                                |                           |                                                            |                             |  |
| Fisheries Located Along the Surface Wat                                                        | er Migration Dath              | •                         | List All Cocondom, Torgo                                   | + Fisheries <sup>10</sup> . |  |
| If Vac Distance                                                                                | e to Nearest Fisher            |                           | List All Secondary Targe Water Body/ Fishery Name          |                             |  |
| ☐ Yes ☑ No II Yes, Distance                                                                    | Mile                           | •                         | water body, Fishery Hame                                   | . <u>110W (c15)</u> .       |  |
| Have Primary Target Fisheries Been Iden                                                        | itified:                       |                           |                                                            |                             |  |
| ☐ Yes ☑ No                                                                                     |                                |                           |                                                            |                             |  |
|                                                                                                |                                |                           |                                                            |                             |  |
| 8. Surface Water Pathway (continued)                                                           |                                |                           |                                                            |                             |  |
| Wetlands Located Along the Surface Water Migration  Other Sensitive End Path:  Migration Path: |                                |                           | nvironments Located Alo                                    | ng the Surface Water        |  |
| ✓ Yes<br>□ No                                                                                  |                                | ☐ Yes<br>☑ No             | If Yes, Distance to I<br>Environment:                      | Nearest Sensitive Miles     |  |
| Have Primary Target Wetlands Been Ide                                                          | entified:                      | Have Primary Tars         | get Sensitive Environmen                                   | ts Been Identified:         |  |
| ☐ Yes                                                                                          |                                | , , ,                     | ☐ Yes                                                      |                             |  |
| □ Yes ☑ No                                                                                     |                                |                           | ☑ No                                                       |                             |  |
| List All Wetlands:                                                                             | Environments <sup>11</sup> :   |                           |                                                            |                             |  |

| Water Body: Flow (cfs): Frontage miles:                                | <u>Water Body</u> :                     | Flow (cfs): Sensitive Environment Type:                                                      |  |  |
|------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------|--|--|
|                                                                        |                                         |                                                                                              |  |  |
|                                                                        |                                         |                                                                                              |  |  |
|                                                                        | O Cail Francisco Bathre                 |                                                                                              |  |  |
| Ass Decide Constitution Decidence                                      | 9. Soil Exposure Pathwa                 |                                                                                              |  |  |
| Are People Occupying Residence or<br>Attending School or Daycare on or | Number of Workers Onsite <sup>4</sup> : | Have Terrestrial Sensitive Environments Been<br>Identified on or Within 200 Feet of Areas of |  |  |
| Within 200 Feet of Area of Known or                                    | ✓ None                                  | Known or Suspected Contamination:                                                            |  |  |
| Suspected Contamination:                                               | <u> </u>                                | Known of Suspected Contamination.                                                            |  |  |
|                                                                        | □ 101 - 1,000<br>□ > 1,000              |                                                                                              |  |  |
|                                                                        | > 1,000                                 | Yes                                                                                          |  |  |
| ☐Yes                                                                   |                                         | ☑ No                                                                                         |  |  |
| ☑ No                                                                   |                                         | If Yes, List Each Terrestrial Sensitive                                                      |  |  |
|                                                                        | Population Within 1 Mile:               | Environment <sup>5</sup> :                                                                   |  |  |
| If Yes, Enter Total Residential                                        |                                         |                                                                                              |  |  |
| Population:                                                            | _0 People <sup>7</sup>                  |                                                                                              |  |  |
| People <sup>2</sup>                                                    |                                         | · <del></del>                                                                                |  |  |
| 1 εορίε                                                                |                                         | *Refer to PA Table 7 for environment types                                                   |  |  |
|                                                                        | 10. Air Pathway                         |                                                                                              |  |  |
| Is there a Suspected Release to Air <sup>1</sup> :                     |                                         | ed Within 4 Miles of the Site <sup>6</sup> :                                                 |  |  |
| Yes                                                                    | ✓ Yes                                   | or within 1 wines of the site !                                                              |  |  |
| ☑ No                                                                   | □ No                                    | If Yes, How Many Acres: Acres                                                                |  |  |
| Enter Total Population on or Within:                                   |                                         |                                                                                              |  |  |
| Onsite                                                                 | Other Sensitive                         | Environments Located Within 4 Miles of the Site:                                             |  |  |
| 0.1/4.84:1-                                                            |                                         | ☐ Yes<br>☑ No                                                                                |  |  |
| 0-1/4 Mile                                                             |                                         | E NO                                                                                         |  |  |
| >1/4-1/2 Mile                                                          | List All Sensitive                      | List All Sensitive Environments Within 1/2 Mile of the Site <sup>6</sup> :                   |  |  |
| >1/2-1 Mile                                                            | <u>Distance:</u> <u>Sen</u>             | sitive Environment Type/Wetlands Area (acres):                                               |  |  |
| >1-2 Miles                                                             | Onsite No                               | ne                                                                                           |  |  |
| >2-3 Miles                                                             | 0-1/4 Mile _W                           | /etlands                                                                                     |  |  |
| >3-4 Miles                                                             | >1/4-1/2 Mile _W                        | Vetlands                                                                                     |  |  |
| Total Within 4 Miles <sup>3-5</sup> _6,250_                            |                                         |                                                                                              |  |  |

<sup>1-11</sup> Refers to question number on the PA scoresheet for each particular pathway

|                                                                                           |                                         |                                                                                                                                                                                         |                                           |                  | Identificatio                | n            |
|-------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------|------------------------------|--------------|
| Potential                                                                                 | Hazardous W                             |                                                                                                                                                                                         | reliminary A                              | ssessment        | State: SD                    | CERCLIS #:   |
|                                                                                           |                                         | Form                                                                                                                                                                                    |                                           |                  | CERCLIS Disc                 | covery Date: |
|                                                                                           |                                         | 1. Ger                                                                                                                                                                                  | neral Site Informati                      | on               |                              |              |
| Name: Ellsworth                                                                           | n AFB                                   | Street Address                                                                                                                                                                          | : 1000 N Ellsworth Ro                     | d                |                              |              |
| City:                                                                                     |                                         | State: SD                                                                                                                                                                               | Zip Code:<br>57769                        | County:<br>Meade | Co. Code:                    | Cong. Dist:  |
| Latitude:<br>44°7' 43.33"                                                                 | Longitude:<br>103°5' 58.77"             | Approximate A                                                                                                                                                                           | Area of Site: _Less<br>Acres<br>Square Ft |                  | Not Specified  NA (GW plume, | etc.)        |
| Site Name: B-1 (                                                                          | crash (1988)<br>: In 1988, a B-1 crashe |                                                                                                                                                                                         |                                           | 1 6.1            |                              |              |
|                                                                                           |                                         |                                                                                                                                                                                         |                                           |                  |                              |              |
| 511                                                                                       | 1 450                                   | 2. Owne                                                                                                                                                                                 | r/Operator Informa                        |                  |                              |              |
| Owner: Ellswort                                                                           |                                         |                                                                                                                                                                                         | Operator: same a                          | as owner         |                              |              |
| Street Address:                                                                           | 1000 N Ellsworth Rd                     |                                                                                                                                                                                         | Street Address:                           |                  |                              |              |
| City:                                                                                     |                                         |                                                                                                                                                                                         | City:                                     |                  |                              |              |
| State: SD                                                                                 | Zip Code:                               | Telephone:                                                                                                                                                                              | State:                                    | Zip Code:        | Telephone:                   |              |
| Type of Owners                                                                            | hip:                                    |                                                                                                                                                                                         | Type of Ownersh                           | ip:              |                              |              |
| Private □ County □ Federal Agency □ Municipal Name: _DOD_ □ Not Specified □ State □ Other |                                         | ☐ Private         ☐ County           ☐ Federal Agency         ☐ Municipal           Name:         ☐ Not Specified           ☐ State         ☐ Other           ☐ Indian         ☐ Indian |                                           |                  |                              |              |
|                                                                                           |                                         | 3. Site                                                                                                                                                                                 | Evaluator Informat                        | ion              |                              |              |
| Name of Evalua                                                                            | tor:                                    | Agency/Organ                                                                                                                                                                            | ization:                                  |                  | Date Prepar                  | ed:          |
| Kelly Teplitsky                                                                           |                                         | CH2M HILL                                                                                                                                                                               | 03/03/2015                                |                  |                              |              |
| Street Address:                                                                           | 9191 South Jamaica S                    | treet                                                                                                                                                                                   | City: Englewood                           |                  | State: CO                    |              |
| Name of EPA or                                                                            | State Agency Contact                    | :                                                                                                                                                                                       | Street Address:                           |                  |                              |              |
| City:                                                                                     |                                         | State:                                                                                                                                                                                  | - 1                                       | Telephone:       |                              |              |
|                                                                                           |                                         | 4. Site Disp                                                                                                                                                                            | oosition <i>(for EPA us</i>               | e only)          |                              |              |
| Emergency Resp<br>Recommendation                                                          | oonse/Removal Assess<br>on:             | ment                                                                                                                                                                                    | CERCLIS Recomm                            |                  | Signature:                   |              |
|                                                                                           | ☐ Yes<br>☐ No                           |                                                                                                                                                                                         | ☐ Lower Priority☐ NFRAP                   |                  | Name (type                   | d):          |
|                                                                                           | Date:                                   |                                                                                                                                                                                         | ☐ RCRA<br>☐ Other:<br>Date:               |                  | Position:                    |              |
|                                                                                           |                                         | 5. Gene                                                                                                                                                                                 | eral Site Characteris                     |                  | 1                            |              |
| Predominant La                                                                            | nd Use Within 1 Mile                    | of Site (check all                                                                                                                                                                      | Site Setting:                             |                  | Years of Ope                 | eration:     |

| lub - 4 1 - N                                                          |                         |                             | I                                                               |                         | 1                                                |
|------------------------------------------------------------------------|-------------------------|-----------------------------|-----------------------------------------------------------------|-------------------------|--------------------------------------------------|
| that apply):                                                           | 7 Agriculturo □ -       | .01                         | ☐ Urbai                                                         | า                       | Beginning Year NA                                |
| _                                                                      | Agriculture D  Mining C | OI<br>other Federal         | ☐ Subu                                                          |                         |                                                  |
|                                                                        | 3 000                   | acility:                    | ☑ Rural                                                         |                         | Ending Year NA                                   |
| Forest/Fields                                                          | DOEC                    | other                       |                                                                 |                         | ☐ Unknown                                        |
| Type of Site Operation                                                 | s (check all that a     | pply):                      | L                                                               |                         | Waste Generated:                                 |
| ☐ Manufacturing (must chec                                             | ck subcategory)         |                             | ☐ Retail                                                        |                         | ✓ Onsite                                         |
| ☐ Lumber and Wood                                                      | Products                |                             | Recycling                                                       |                         | Offsite                                          |
| ☐ Inorganic Chemical                                                   |                         |                             | ☐ Junk/Salvage Yard                                             |                         | ☐ Onsite and Offsite                             |
| ☐ Plastic and/or Rubb                                                  | er Products             |                             | <ul><li>☐ Municipal Landfill</li><li>☐ Other Landfill</li></ul> |                         | )                                                |
| <ul><li>☐ Paints, Varnishes</li><li>☐ Industrial Organic (</li></ul>   | Chemicals               |                             | ☑ DOD                                                           |                         | Waste Deposition Authorized  By: ☑ Present Owner |
| ☐ Agricultural Chemic                                                  |                         |                             | ☐ DOE                                                           |                         | By: ☐ Present Owner ☐ Former Owner               |
| ☐ Miscellaneous Chen                                                   | nical Products          |                             | DOI                                                             |                         | Present & Former Owner                           |
| ☐ Primary Metals                                                       |                         |                             | Other Federal Facilit                                           | У                       | Unauthorized                                     |
| ☐ Metal Coating, Plati                                                 |                         |                             | ☐ RCRA☐ Treatment, Sto                                          | rage, or Disposal       | ☐ Unknown                                        |
| <ul><li>☐ Metal Forging, Stan</li><li>☐ Fabricated Structure</li></ul> |                         |                             | ☐ Large Quantity                                                |                         | Waste Accessible to the Public:                  |
| ☐ Electronic Equipme                                                   |                         |                             | ☐ Small Quantity                                                |                         |                                                  |
| Other Manufacturin                                                     |                         |                             | ☐ Subtitle D                                                    |                         | ☐ Yes                                            |
| Mining                                                                 |                         |                             | Municipa                                                        |                         | ☑ No                                             |
| ☐ Metals                                                               |                         |                             | ☐ Industria                                                     | l                       |                                                  |
| ☐ Coal                                                                 |                         |                             | □ "Converter" □ "Protective File                                | r"                      | Distance to Nearest Dwelling,                    |
| ☐ Oil and Gas                                                          |                         |                             | ☐ "Non-or Late Fi                                               |                         | School, or Workplace:                            |
| ■ Non-metallic Minera                                                  | als                     |                             | ■ Note Specified                                                |                         |                                                  |
|                                                                        |                         |                             | ☐ Other                                                         | <u></u>                 | 1,550 Feet                                       |
|                                                                        |                         |                             |                                                                 |                         | 2,000_ 1 000                                     |
|                                                                        |                         |                             | aracteristics Infor                                             |                         |                                                  |
| Carrier True                                                           | <b>C</b>                | •                           | PA Table 1 for WC Sco                                           |                         | NA/ 4 -                                          |
| Source Type:                                                           |                         | Waste Quantity:             | Tier*:                                                          | General Type of         |                                                  |
| (check all that apply)                                                 | (include un             | iit)                        |                                                                 | (check all that app     | oly):                                            |
| Landfill                                                               |                         |                             |                                                                 | ☐ Metals                | ☐ Pesticides/Herbicides                          |
| Surface Impoundment                                                    |                         |                             |                                                                 | Organics                | ☐ Acids/Bases                                    |
| ☐ Drums                                                                |                         |                             | <del></del>                                                     | ☐ Inorganics ☐ Solvents | ☐ Oily Waste<br>☐ Municipal Waste                |
| ☐ Tanks and Non-Dum Cont                                               | ainers                  |                             |                                                                 | ☐ Paints/Pigments       |                                                  |
| Chemical Waste Pile                                                    |                         |                             |                                                                 | ☐ Laboratory/Hosp       | ital Waste                                       |
| <ul><li>☐ Scrap Metal or Junk Pile</li><li>☐ Tailings Pile</li></ul>   |                         |                             |                                                                 | Radioactive Wast        |                                                  |
| ☐ Tailings Pile<br>☐ Trash Pile (open drum)                            |                         |                             |                                                                 | ☐ Construction/Der      | molition Waste                                   |
| ☐ Land Treatment                                                       |                         |                             |                                                                 |                         |                                                  |
| ☐ Contaminated GW Plume                                                |                         |                             |                                                                 | Physical State of       | f Waste as Deposited (check all                  |
| (unidentified source)                                                  |                         |                             |                                                                 | that apply):            |                                                  |
| Contaminated SW/Sedime                                                 | ent                     |                             |                                                                 |                         | Solid                                            |
| (unidentified source)  Contaminated Soil                               |                         |                             |                                                                 |                         | Sludge                                           |
| Other                                                                  |                         |                             |                                                                 | _                       | Powder                                           |
| ■ No Sources                                                           |                         | <del></del>                 |                                                                 |                         | Liquid                                           |
| *C=Constituent                                                         | , W=Wastestream, V=Vo   | olume, A=Area               |                                                                 |                         | Gas                                              |
|                                                                        |                         | 7. Grou                     | ınd Water Pathwa                                                | ay                      |                                                  |
| Is Ground Water Used                                                   | for Drinking            | Is There a Suspe            | cted Release to                                                 | List Secondary T        | arget Population Served by                       |
| Within 4 Miles:                                                        | _                       | Ground Water <sup>1</sup> : |                                                                 | -                       | Vithdrawn From:                                  |
|                                                                        |                         | ☑ Yes                       |                                                                 |                         |                                                  |
| ☑ Yes<br>☐ No                                                          |                         | ☑ Yes                       |                                                                 | 1                       |                                                  |
|                                                                        |                         | 3.10                        |                                                                 | 0 - 1/4 Mile            | NA                                               |
| If Yes, Distance to nea                                                | rest                    | 1                           |                                                                 |                         |                                                  |
|                                                                        |                         |                             |                                                                 | >1/4 - 1/2 Mile         | e NA l                                           |

| Drinking Well: Have Primary Target Drinking                           |                                | get Drinking                 | /1/4 - 1/ ₹ IAIIIC                                          |                                                    |  |
|-----------------------------------------------------------------------|--------------------------------|------------------------------|-------------------------------------------------------------|----------------------------------------------------|--|
| Feet Water Wells Been Identif                                         |                                |                              | >1/2 - 1 Mile                                               | NA                                                 |  |
| Type of Drinking Water Wells Within 4                                 |                                |                              | / I/2 I IVIIIC                                              |                                                    |  |
| Miles                                                                 |                                |                              | >1 - 2 Mile                                                 | NA                                                 |  |
| (check all that apply):                                               | If Yes, Enter Prin             | nary Target                  | >2 - 3 Mile                                                 | NA                                                 |  |
| ☑ Municipal<br>□ Private                                              | Population:                    | Da a mla 3                   |                                                             |                                                    |  |
| ☐ None                                                                |                                | _People <sup>3</sup>         | >3 - 4 Mile                                                 | NA                                                 |  |
| Depth to Shallowest Aquifer:                                          | Nearest Designate              | ed Wellhead                  | Total Within 4 Miles <sup>4</sup>                           | NA                                                 |  |
| ~ 10 to 50 Feet                                                       | Protection Area <sup>6</sup> : |                              |                                                             |                                                    |  |
| Karst Terrain/Aquifer Present:                                        | Underl                         |                              | *                                                           |                                                    |  |
| ☐ Yes                                                                 | ☐ >0-4 N<br>☑ None V           | Ailes<br>Vithin 4 Miles      | *Use population #s for PA Tal  *Note nearest well for #5 on |                                                    |  |
| ✓ No                                                                  |                                |                              | Note hearest wenter his on                                  |                                                    |  |
|                                                                       |                                | e Water Pathwa               | •                                                           |                                                    |  |
| Type of Surface Water Draining Site and that apply):                  | 15 Miles Downstre              | eam (check all               | Shortest Overland Dista<br>Surface Water:                   | ince From Any Source to                            |  |
| ✓ Stream ☐ River ✓ Por                                                | nd □ Lake                      |                              | _1,300 Fee                                                  | t                                                  |  |
|                                                                       | ner                            |                              | [                                                           | Miles                                              |  |
| Is There a Suspected Release to Surface                               | Water <sup>1</sup> :           |                              | Site is Located in:                                         |                                                    |  |
| is There a suspected Release to Surface                               | vvater .                       |                              | □ Annual - 10 yr Floodplain                                 |                                                    |  |
| ☐ Yes                                                                 |                                |                              | ☐ >10yr - 100yr Floodplain                                  |                                                    |  |
| ₩ NO                                                                  | ☑ No                           |                              |                                                             | ☐ >100yr - 500yr Floodplain<br>☐ >500yr Floodplain |  |
| Drinking Water Intake Located Along the Surface Water Migration Path: |                                |                              | List All Secondary Targe                                    | t Drinking Water Intakes:                          |  |
|                                                                       |                                |                              |                                                             |                                                    |  |
| ☐ Yes<br>☑ No                                                         |                                |                              | Name: Water Body: Flow (cfs): Population Served:            |                                                    |  |
| Have Primary Target Drinking Water Inta                               | akes Been Identifie            | d:                           |                                                             |                                                    |  |
| ☐ Yes If Yes, Distance                                                | ce to Nearest Drink            | ting                         |                                                             |                                                    |  |
|                                                                       | : Miles                        | -                            |                                                             |                                                    |  |
| If Yes, Enter Population Served by Target                             | t Intake:                      |                              |                                                             |                                                    |  |
| NA Boorlo                                                             |                                |                              | Total within 15 Miles <sup>4</sup>                          |                                                    |  |
| NA People <sup>4</sup>                                                |                                |                              |                                                             |                                                    |  |
| Fisheries Located Along the Surface Wat                               | er Migration Path:             |                              | List All Secondary Targe                                    | t Fisheries <sup>10</sup> :                        |  |
|                                                                       | e to Nearest Fisher            | y:                           | Water Body/ Fishery Name                                    |                                                    |  |
|                                                                       | Miles                          | 5                            |                                                             |                                                    |  |
| Have Primary Target Fisheries Been Iden                               | tinea:                         |                              |                                                             |                                                    |  |
| ☐ Yes ☑ No                                                            |                                |                              |                                                             |                                                    |  |
| 8. Surface Water Pathway (continued)                                  |                                |                              |                                                             |                                                    |  |
|                                                                       |                                |                              | nvironments Located Alo                                     | ong the Surface Water                              |  |
| Path:                                                                 | If Voc Distance to             | Nagraat Canaltina            |                                                             |                                                    |  |
| ✓ Yes  □ No                                                           |                                | ☐ Yes<br>☑ No                | If Yes, Distance to<br>Environment:                         | Nearest Sensitive Miles                            |  |
| Have Primary Target Wetlands Been Ide                                 | entified:                      | Have Primary Targ            | et Sensitive Environmen                                     |                                                    |  |
| ☐ Yes                                                                 |                                |                              | Yes                                                         |                                                    |  |
| ☑ No                                                                  |                                |                              | ✓ No                                                        |                                                    |  |
| List All Wetlands:                                                    | List All Sensitive             | Environments <sup>11</sup> : |                                                             |                                                    |  |

| Water Body : Flow (cfs): Frontage miles:           | <u>Water Body</u> :                     | Flow (cfs): Sensitive Environment Type:                                    |  |  |
|----------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------|--|--|
|                                                    |                                         |                                                                            |  |  |
|                                                    |                                         |                                                                            |  |  |
|                                                    |                                         |                                                                            |  |  |
|                                                    | 9. Soil Exposure Pathw                  | ay                                                                         |  |  |
| Are People Occupying Residence or                  | Number of Workers Onsite <sup>4</sup> : | Have Terrestrial Sensitive Environments Been                               |  |  |
| Attending School or Daycare on or                  |                                         | Identified on or Within 200 Feet of Areas of                               |  |  |
| Within 200 Feet of Area of Known or                | ☑ None<br>□ 1 - 100                     | Known or Suspected Contamination:                                          |  |  |
| Suspected Contamination:                           | □ 101 - 1,000                           |                                                                            |  |  |
|                                                    | □ > 1,000                               | □ Yes                                                                      |  |  |
| _                                                  |                                         | ☑ No                                                                       |  |  |
| ☐ Yes ☑ No                                         |                                         | If you list Fook Townstaid Consiting                                       |  |  |
| ₩ NO                                               | D. L. M. M. A. A. M. I.                 | If Yes, List Each Terrestrial Sensitive Environment <sup>5</sup> :         |  |  |
| If Yes, Enter Total Residential                    | Population Within 1 Mile:               | LIMIOIIIIEIL .                                                             |  |  |
| Population:                                        |                                         |                                                                            |  |  |
| - opaidiem                                         | People <sup>7</sup>                     |                                                                            |  |  |
| People <sup>2</sup>                                |                                         |                                                                            |  |  |
|                                                    |                                         | *Refer to PA Table 7 for environment types                                 |  |  |
|                                                    | 10. Air Pathway                         |                                                                            |  |  |
| Is there a Suspected Release to Air <sup>1</sup> : | Wetlands Locate                         | ed Within 4 Miles of the Site <sup>6</sup> :                               |  |  |
| Yes                                                | ✓ Yes                                   |                                                                            |  |  |
| ☑ No                                               | □ No                                    | If Yes, How Many Acres: Acres                                              |  |  |
| Enter Total Population on or Within:               | 211 2 111                               |                                                                            |  |  |
| Onsite                                             | Other Sensitive                         | Environments Located Within 4 Miles of the Site:                           |  |  |
| 0.1/4.84:10                                        |                                         | ☐ Yes<br>☑ No                                                              |  |  |
| 0-1/4 Mile                                         |                                         |                                                                            |  |  |
| >1/4-1/2 Mile                                      | List All Sensitive                      | List All Sensitive Environments Within 1/2 Mile of the Site <sup>6</sup> : |  |  |
| >1/2-1 Mile                                        | <u>Distance:</u> <u>Ser</u>             | nsitive Environment Type/Wetlands Area (acres):                            |  |  |
| >1-2 Miles                                         | Onsite No                               | one                                                                        |  |  |
| >2-3 Miles                                         | 0-1/4 MileV                             | Vetlands                                                                   |  |  |
| >3-4 Miles                                         | >1/4-1/2 Mile _V                        | Vetlands                                                                   |  |  |
| Total Within 4 Miles <sup>3-5</sup> _7,530_        |                                         |                                                                            |  |  |

<sup>1-11</sup> Refers to question number on the PA scoresheet for each particular pathway

| _                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                |                    | Identificatio | n                |
|------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------|---------------|------------------|
| Potential        | Hazardous W                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | reliminary A                     | ssessment          | State: SD     | CERCLIS #:       |
|                  |                                                    | Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                    | CERCLIS Disc  | overy Date:      |
|                  |                                                    | 1. Ger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eral Site Informati              | on                 |               |                  |
| Name: Ellsworth  | n AFB                                              | Street Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 1000 N Ellsworth Ro            | d                  |               |                  |
| City:            |                                                    | State: SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zip Code:<br>57769               | County:<br>Meade   | Co. Code:     | Cong. Dist:      |
| Latitude:        | Longitude:                                         | Approximate A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Area of Site: _Less              | Status of Site:    | 1             |                  |
| 44°8' 30.33"     | 103°6' 8.94"                                       | than 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Acres                            | ☐ Active ☐         | Not Specified |                  |
|                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Square Ft                        |                    | NA (GW plume, | etc.)            |
| Site Name: Delta | a Taxiway West Crash                               | (2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | •                  |               |                  |
|                  | : In August 2000, a P-1<br>was spilled at the scer |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | naca an in in isani c            | . aner on Delta Ta | www.          | pproximately 100 |
|                  |                                                    | 2. Owne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r/Operator Informa               | ation              |               |                  |
| Owner: Ellswort  | th AFB                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Operator: same a                 |                    |               |                  |
| Street Address:  | 1000 N Ellsworth Rd                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Street Address:                  |                    |               |                  |
| City:            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | City:                            | City:              |               |                  |
| State: SD        | Zip Code:                                          | Telephone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | State:                           | Zip Code:          | Telephone:    |                  |
|                  |                                                    | The state of the s |                                  |                    |               |                  |
| Type of Owners   | hip:                                               | l .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Type of Ownersh                  | iip:               |               |                  |
| ☐ Private        | ☐ County                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Private                        | ☐ County           |               |                  |
| ☑ Federal Agency | ☐ Municip                                          | al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ☐ Federal Agency ☐ Municipal     |                    |               |                  |
| Name: _DO        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Name: Not Specified  State Other |                    |               |                  |
| ☐ Indian         | Other_                                             | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | □ Indian                         | □ Other            |               |                  |
|                  |                                                    | 3. Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br>Evaluator Informat           | ion                |               |                  |
| Name of Evalua   | tor:                                               | Agency/Organ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                    | Date Prepare  | ed:              |
| Kelly Teplitsky  |                                                    | CH2M HILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | 03/03/2015         |               |                  |
| Street Address:  | 9191 South Jamaica S                               | treet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | City: Englewood                  |                    | State: CO     |                  |
| Name of EPA or   | State Agency Contact                               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Street Address:                  |                    |               |                  |
| City:            |                                                    | State:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | Telephone:         |               |                  |
|                  |                                                    | 4. Site Disc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | osition <i>(for EPA us</i>       | e only)            |               |                  |
| Emergency Resp   | oonse/Removal Assess                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CERCLIS Recomm                   |                    | Signature:    |                  |
| Recommendation   | on:                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Higher Priority                |                    |               |                  |
|                  | ☐ Yes                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lower Priority                   | <i>i</i> SI        | Name (typed   | d):              |
|                  | □ No                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ NFRAP<br>☐ RCRA                |                    | Position:     |                  |
|                  | Date:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Other:<br>Date:                |                    | . 031011.     |                  |
|                  |                                                    | 5. Gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eral Site Characteris            |                    | l             |                  |
| Predominant La   | nd Use Within 1 Mile                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Site Setting:                    |                    | Years of Ope  | eration:         |

| that apply):                                                                                                                                                                     |                                                                                                                                    |                                     |                                                                                                                                                                                                                                                |                                            |                                                                                                       |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------|
| ☐ Industrial ☐ Commercial ☐ Residential ☐ Forest/Fields                                                                                                                          | ☑ DOD ☐ E                                                                                                                          | DOI Dither Federal Facility: Dither | ☐ Urban<br>☐ Suburi<br>☑ Rural                                                                                                                                                                                                                 |                                            | Beginning Year NA  Ending Year NA  Unknown                                                            |               |
| Type of Site Operation                                                                                                                                                           | ons (check all that a                                                                                                              | apply):                             |                                                                                                                                                                                                                                                |                                            | Waste Generated:                                                                                      |               |
|                                                                                                                                                                                  |                                                                                                                                    | _                                   |                                                                                                                                                                                                                                                |                                            |                                                                                                       |               |
| Manufacturing (must c                                                                                                                                                            | od Products cals cals libber Products c Chemicals nicals lemical Products lating, Engraving lamping lural Metal Products ment ring |                                     | Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill DOD DOE DOI Other Federal Facility RCRA Treatment, Stor Large Quantity ( Small Quantity ( Subtitle D Municipal Industrial "Converter" "Protective Filer "Non-or Late File | age, or Disposal<br>Generator<br>Generator | ✓ Onsite                                                                                              | ner<br>ublic: |
|                                                                                                                                                                                  |                                                                                                                                    |                                     | Other                                                                                                                                                                                                                                          |                                            | 2,500 Feet                                                                                            |               |
| 6. Waste Characteristics Information                                                                                                                                             |                                                                                                                                    |                                     |                                                                                                                                                                                                                                                |                                            |                                                                                                       |               |
|                                                                                                                                                                                  |                                                                                                                                    |                                     | A Table 1 for WC Sco                                                                                                                                                                                                                           |                                            |                                                                                                       |               |
| Source Type:                                                                                                                                                                     |                                                                                                                                    | Waste Quantity:                     | Tier*:                                                                                                                                                                                                                                         | General Type of                            |                                                                                                       |               |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment |                                                                                                                                    | nit)                                |                                                                                                                                                                                                                                                | (check all that app                        | ☐ Pesticides/Herbid☐ Acids/Bases☐ Oily Waste☐ Municipal Waste☐ Mining Waste☐ Explosives☐ Other _AFFF_ |               |
| ☐ Contaminated GW Plun (unidentified source) ☐ Contaminated SW/Sedi (unidentified source) ☐ Contaminated Soil                                                                    |                                                                                                                                    |                                     | _                                                                                                                                                                                                                                              | that apply):                               | f Waste as Deposited (check<br>Solid<br>Sludge                                                        | all           |
| Other No Sources                                                                                                                                                                 |                                                                                                                                    |                                     |                                                                                                                                                                                                                                                | Powder<br>Liquid                           |                                                                                                       |               |
| *C=Constituent, W=Wastestream, V=Volume, A=Area                                                                                                                                  |                                                                                                                                    |                                     |                                                                                                                                                                                                                                                |                                            | Gas                                                                                                   |               |
|                                                                                                                                                                                  |                                                                                                                                    | 7. Groun                            | d Water Pathwa                                                                                                                                                                                                                                 | y                                          |                                                                                                       |               |
| Is Ground Water Use                                                                                                                                                              | d for Drinking                                                                                                                     | Is There a Suspect                  | ted Release to                                                                                                                                                                                                                                 | List Secondary T                           | arget Population Served by                                                                            |               |
| Within 4 Miles:                                                                                                                                                                  |                                                                                                                                    | Ground Water <sup>1</sup> :         |                                                                                                                                                                                                                                                | Ground Water V                             | Vithdrawn From:                                                                                       |               |
| ✓ Yes □ No                                                                                                                                                                       |                                                                                                                                    | ☑ Yes<br>☐ No                       |                                                                                                                                                                                                                                                | 0 - 1/4 Mile                               | NA                                                                                                    |               |
| If Yes, Distance to n                                                                                                                                                            | earest                                                                                                                             |                                     |                                                                                                                                                                                                                                                | >1/4 - 1/2 Mile                            | e NA                                                                                                  |               |

| Drinking Well: Have Primary Target Drinking                           |                                | get Drinking                 | /1/4 - 1/ ₹ IAIIIC                                          |                                                    |  |
|-----------------------------------------------------------------------|--------------------------------|------------------------------|-------------------------------------------------------------|----------------------------------------------------|--|
| Feet Water Wells Been Identif                                         |                                |                              | >1/2 - 1 Mile                                               | NA                                                 |  |
| Type of Drinking Water Wells Within 4                                 |                                |                              | / I/2 I IVIIIC                                              |                                                    |  |
| Miles                                                                 |                                |                              | >1 - 2 Mile                                                 | NA                                                 |  |
| (check all that apply):                                               | If Yes, Enter Prin             | nary Target                  | >2 - 3 Mile                                                 | NA                                                 |  |
| ☑ Municipal<br>□ Private                                              | Population:                    | Da a mla 3                   |                                                             |                                                    |  |
| ☐ None                                                                |                                | _People <sup>3</sup>         | >3 - 4 Mile                                                 | NA                                                 |  |
| Depth to Shallowest Aquifer:                                          | Nearest Designate              | ed Wellhead                  | Total Within 4 Miles <sup>4</sup>                           | NA                                                 |  |
| ~ 10 to 50 Feet                                                       | Protection Area <sup>6</sup> : |                              |                                                             |                                                    |  |
| Karst Terrain/Aquifer Present:                                        | Underl                         |                              | *                                                           |                                                    |  |
| ☐ Yes                                                                 | ☐ >0-4 N<br>☑ None V           | Ailes<br>Vithin 4 Miles      | *Use population #s for PA Tal  *Note nearest well for #5 on |                                                    |  |
| ✓ No                                                                  |                                |                              | Note hearest wenter his on                                  |                                                    |  |
|                                                                       |                                | e Water Pathwa               | •                                                           |                                                    |  |
| Type of Surface Water Draining Site and that apply):                  | 15 Miles Downstre              | eam (check all               | Shortest Overland Dista<br>Surface Water:                   | ince From Any Source to                            |  |
| ✓ Stream ☐ River ✓ Por                                                | nd □ Lake                      |                              | _1,300 Fee                                                  | t                                                  |  |
|                                                                       | ner                            |                              | [                                                           | Miles                                              |  |
| Is There a Suspected Release to Surface                               | Water <sup>1</sup> :           |                              | Site is Located in:                                         |                                                    |  |
| is There a suspected Release to Surface                               | vvater .                       |                              | □ Annual - 10 yr Floodplain                                 |                                                    |  |
| ☐ Yes                                                                 |                                |                              | ☐ >10yr - 100yr Floodplain                                  |                                                    |  |
| ₩ NO                                                                  | ☑ No                           |                              |                                                             | ☐ >100yr - 500yr Floodplain<br>☐ >500yr Floodplain |  |
| Drinking Water Intake Located Along the Surface Water Migration Path: |                                |                              | List All Secondary Targe                                    | t Drinking Water Intakes:                          |  |
|                                                                       |                                |                              |                                                             |                                                    |  |
| ☐ Yes<br>☑ No                                                         |                                |                              | Name: Water Body: Flow (cfs): Population Served:            |                                                    |  |
| Have Primary Target Drinking Water Inta                               | akes Been Identifie            | d:                           |                                                             |                                                    |  |
| ☐ Yes If Yes, Distance                                                | ce to Nearest Drink            | ting                         |                                                             |                                                    |  |
|                                                                       | : Miles                        | -                            |                                                             |                                                    |  |
| If Yes, Enter Population Served by Target                             | t Intake:                      |                              |                                                             |                                                    |  |
| NA Boorlo                                                             |                                |                              | Total within 15 Miles <sup>4</sup>                          |                                                    |  |
| NA People <sup>4</sup>                                                |                                |                              |                                                             |                                                    |  |
| Fisheries Located Along the Surface Wat                               | er Migration Path:             |                              | List All Secondary Targe                                    | t Fisheries <sup>10</sup> :                        |  |
|                                                                       | e to Nearest Fisher            | y:                           | Water Body/ Fishery Name                                    |                                                    |  |
|                                                                       | Miles                          | 5                            |                                                             |                                                    |  |
| Have Primary Target Fisheries Been Iden                               | tinea:                         |                              |                                                             |                                                    |  |
| ☐ Yes ☑ No                                                            |                                |                              |                                                             |                                                    |  |
| 8. Surface Water Pathway (continued)                                  |                                |                              |                                                             |                                                    |  |
|                                                                       |                                |                              | nvironments Located Alo                                     | ong the Surface Water                              |  |
| Path:                                                                 | If Voc Distance to             | Nagraat Canaltina            |                                                             |                                                    |  |
| ✓ Yes  □ No                                                           |                                | ☐ Yes<br>☑ No                | If Yes, Distance to<br>Environment:                         | Nearest Sensitive Miles                            |  |
| Have Primary Target Wetlands Been Ide                                 | entified:                      | Have Primary Targ            | et Sensitive Environmen                                     |                                                    |  |
| ☐ Yes                                                                 |                                |                              | Yes                                                         |                                                    |  |
| ☑ No                                                                  |                                |                              | ✓ No                                                        |                                                    |  |
| List All Wetlands:                                                    | List All Sensitive             | Environments <sup>11</sup> : |                                                             |                                                    |  |

| Water Body : Flow (cfs): Frontage miles:           | <u>Water Body</u> :                     | Flow (cfs): Sensitive Environment Type:                            |
|----------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|
|                                                    |                                         |                                                                    |
|                                                    |                                         |                                                                    |
|                                                    |                                         | <del></del>                                                        |
|                                                    | 9. Soil Exposure Pathw                  | ay                                                                 |
| Are People Occupying Residence or                  | Number of Workers Onsite <sup>4</sup> : | Have Terrestrial Sensitive Environments Been                       |
| Attending School or Daycare on or                  |                                         | Identified on or Within 200 Feet of Areas of                       |
| Within 200 Feet of Area of Known or                | ☑ None<br>□ 1 - 100                     | Known or Suspected Contamination:                                  |
| Suspected Contamination:                           | □ 101 - 1,000                           |                                                                    |
|                                                    | □ > 1,000                               | □Yes                                                               |
|                                                    |                                         | ☑ No                                                               |
| ☐ Yes ☑ No                                         |                                         | If Voc List Food Townstrial Consiting                              |
| ₩ NO                                               | Developing Maria a Adila                | If Yes, List Each Terrestrial Sensitive Environment <sup>5</sup> : |
| If Yes, Enter Total Residential                    | Population Within 1 Mile:               | Environment.                                                       |
| Population:                                        |                                         |                                                                    |
|                                                    | People <sup>7</sup>                     |                                                                    |
| People <sup>2</sup>                                |                                         |                                                                    |
|                                                    |                                         | *Refer to PA Table 7 for environment types                         |
|                                                    | 10. Air Pathway                         | •                                                                  |
| Is there a Suspected Release to Air <sup>1</sup> : | Wetlands Locate                         | ed Within 4 Miles of the Site <sup>6</sup> :                       |
| Yes                                                | ✓ Yes                                   |                                                                    |
| ☑ No                                               | □ No                                    | If Yes, How Many Acres: Acres                                      |
| Enter Total Population on or Within:               |                                         |                                                                    |
| Onsite                                             | Other Sensitive                         | Environments Located Within 4 Miles of the Site:                   |
| 0-1/4 Mile                                         |                                         | ☐ Yes<br>☑ No                                                      |
| 0-1/4 lville                                       |                                         |                                                                    |
| >1/4-1/2 Mile                                      | List All Sensitive                      | Environments Within 1/2 Mile of the Site <sup>6</sup> :            |
| >1/2-1 Mile                                        | <u>Distance:</u> <u>Ser</u>             | nsitive Environment Type/Wetlands Area (acres):                    |
| >1-2 Miles                                         | Onsite No                               | one                                                                |
| >2-3 Miles                                         | 0-1/4 MileV                             | Vetlands                                                           |
| >3-4 Miles                                         | >1/4-1/2 Mile _\                        | Wetlands                                                           |
| Total Within 4 Miles <sup>3-5</sup> _7,090_        |                                         |                                                                    |

<sup>1-11</sup> Refers to question number on the PA scoresheet for each particular pathway

|                                   |                             |                           |                                                            |                        | Identificatio                | n                         |  |
|-----------------------------------|-----------------------------|---------------------------|------------------------------------------------------------|------------------------|------------------------------|---------------------------|--|
| Potential                         | Hazardous W                 |                           | Preliminary A                                              | ssessment              | State: SD                    | CERCLIS #:                |  |
| Form                              |                             |                           |                                                            | CERCLIS Disc           | overy Date:                  |                           |  |
|                                   |                             | 1. Ge                     | neral Site Informati                                       | on                     | 1                            |                           |  |
| Name: Ellsworth                   | n AFB                       | Street Address            | s: 1000 N Ellsworth Ro                                     | d                      |                              |                           |  |
| City:                             |                             | State: SD                 | Zip Code:<br>57769                                         | County:<br>Meade       | Co. Code:                    | Cong. Dist:               |  |
| Latitude:<br>44°7' 4.79"          | Longitude:<br>103°4' 45.77" |                           | Area of Site: _Less<br>Acres<br>Square Ft                  |                        | Not Specified  NA (GW plume, | etc.)                     |  |
| Site Name: Mar                    | ten Crash (2003)            |                           |                                                            |                        |                              |                           |  |
| landed in a gras<br>AFFF.         | sy field on Ellsworth Af    | B property. The           | Ellsworth AFB Fire De                                      | epartment respon       | ded to the cra               | ash and applied           |  |
|                                   |                             | 2. Owne                   | er/Operator Informa                                        | ation                  |                              |                           |  |
| Owner: Ellswort                   | th AFB                      |                           | Operator: same a                                           | as owner               |                              |                           |  |
| Street Address:                   | 1000 N Ellsworth Rd         |                           | Street Address:                                            |                        |                              |                           |  |
| City:                             |                             |                           | City:                                                      |                        |                              |                           |  |
| State: SD                         | Zip Code:                   | Telephone:                | State:                                                     | Zip Code:              | Telephone:                   |                           |  |
| Type of Ownership:    Private     |                             |                           | Type of Ownersh  Private Federal Agency Name: State Indian | ☐ County<br>☐ Municipa | ified                        |                           |  |
|                                   |                             | 3. Site                   | Evaluator Informat                                         | ion                    |                              |                           |  |
| Name of Evalua<br>Kelly Teplitsky | tor:                        | Agency/Orgar<br>CH2M HILL | nization:                                                  | ation:                 |                              | Date Prepared: 03/03/2015 |  |
| Street Address:                   | 9191 South Jamaica St       | reet                      | City: Englewood                                            |                        | State: CO                    |                           |  |
| Name of EPA or                    | State Agency Contact:       |                           | Street Address:                                            |                        | l.                           |                           |  |
| City:                             |                             | State:                    | <b>'</b>                                                   | Telephone:             |                              |                           |  |
|                                   |                             | 4. Site Dis               | position <i>(for EPA us</i>                                | e only)                |                              |                           |  |
| Emergency Resp<br>Recommendation  | oonse/Removal Assessr       |                           | CERCLIS Recomm                                             | nendation:             | Signature:                   |                           |  |
|                                   | ☐ Yes                       |                           | ☐ Lower Priority☐ NFRAP                                    |                        | Name (typed                  | 1):                       |  |
|                                   | Date:                       |                           | ☐ RCRA<br>☐ Other:<br>Date:                                |                        | Position:                    |                           |  |
|                                   |                             | 5. Gene                   | eral Site Characteris                                      | stics                  |                              |                           |  |
| Predominant La                    | nd Use Within 1 Mile o      | f Site (check all         | Site Setting:                                              |                        | Years of Ope                 | eration:                  |  |

| that apply):                                                                                                                                             |                                                                                                                   |                                                |                                                                                                                                                                                     |                                                                                                                     |                                                                                                         |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| ☐ Industrial ☐ Commercial ☐ Residential ☐ Forest/Fields                                                                                                  | ☑ DOD ☐ F                                                                                                         | OOI<br>Other Federal<br>Facility:<br>Other     | ☐ Urban<br>☐ Suburi<br>☑ Rural                                                                                                                                                      |                                                                                                                     | Beginning Year NA  Ending Year NA  Unknown                                                              |  |
| Type of Site Operation                                                                                                                                   | ons (check all that a                                                                                             | pply):                                         |                                                                                                                                                                                     |                                                                                                                     | Waste Generated:                                                                                        |  |
|                                                                                                                                                          | d Products cals bber Products c Chemicals nicals emical Products ating, Engraving amping ural Metal Products nent |                                                | Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill DOD DOE DOI Other Federal Facility RCRA Treatment, Stor Large Quantity ( Small Quantity ( Subtitle D Municipal | age, or Disposal<br>Generator                                                                                       | ✓ Onsite                                                                                                |  |
| ☐ Mining ☐ Metals ☐ Coal ☐ Oil and Gas ☐ Non-metallic Min                                                                                                | erals                                                                                                             |                                                | Industrial   "Converter"   "Protective Filer   "Non-or Late File   Note Specified                                                                                                   | "<br>er"                                                                                                            | Distance to Nearest Dwelling, School, or Workplace:  850 Feet                                           |  |
|                                                                                                                                                          | 6. Waste Characteristics Information (Refer to PA Table 1 for WC Score)                                           |                                                |                                                                                                                                                                                     |                                                                                                                     |                                                                                                         |  |
| Source Type:                                                                                                                                             | Source                                                                                                            | Waste Quantity:                                | Tier*:                                                                                                                                                                              | General Type of                                                                                                     | f Waste                                                                                                 |  |
| (check all that apply)                                                                                                                                   |                                                                                                                   | · · · · · · · · · · · · · · · · · · ·          | iiei .                                                                                                                                                                              | (check all that app                                                                                                 |                                                                                                         |  |
| Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment |                                                                                                                   |                                                |                                                                                                                                                                                     | Metals   Organics   Inorganics   Solvents   Paints/Pigments   Laboratory/Hosp   Radioactive Wasi   Construction/Der | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  Explosives  Tother _AFFF_ |  |
| Contaminated GW Plum (unidentified source) Contaminated SW/Sedia (unidentified source) Contaminated Soil Other No Sources                                |                                                                                                                   |                                                |                                                                                                                                                                                     | that apply):                                                                                                        | f Waste as Deposited (check all Solid Sludge Powder Liquid                                              |  |
|                                                                                                                                                          |                                                                                                                   |                                                |                                                                                                                                                                                     | _                                                                                                                   | Gas                                                                                                     |  |
| *C=Constitue                                                                                                                                             | ent, W=Wastestream, V=V                                                                                           | ,                                              | d Matan Datia                                                                                                                                                                       | <u> </u>                                                                                                            |                                                                                                         |  |
| In Constant to the                                                                                                                                       | d for Date I                                                                                                      |                                                | d Water Pathwa                                                                                                                                                                      | i                                                                                                                   | Farrat Danielskin C                                                                                     |  |
| Is Ground Water Use Within 4 Miles:    Yes                                                                                                               | d tor Drinking                                                                                                    | Is There a Suspect Ground Water <sup>1</sup> : | ed Release to                                                                                                                                                                       | -                                                                                                                   | Farget Population Served by<br>Withdrawn From:                                                          |  |
| □ No                                                                                                                                                     |                                                                                                                   | □ No                                           |                                                                                                                                                                                     | 0 - 1/4 Mile                                                                                                        | NA                                                                                                      |  |
| If Yes, Distance to n                                                                                                                                    | earest                                                                                                            |                                                |                                                                                                                                                                                     | >1/4 - 1/2 Mila                                                                                                     | le NA                                                                                                   |  |

| Drinking Well:                                       | Have Primary Tar                                    | get Drinking                         | >1/4-1/2 IVIIIC                               | IVA                                   |  |
|------------------------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------|---------------------------------------|--|
| Feet                                                 | Water Wells Beer                                    | •                                    | >1/2 - 1 Mile                                 | NA                                    |  |
| Type of Drinking Water Wells Within 4                |                                                     |                                      | >1/2 - 1 Wille                                | NA                                    |  |
| Miles                                                | ☐ Yes<br>☑ No                                       |                                      | >1 - 2 Mile                                   | NA                                    |  |
| (check all that apply):                              |                                                     |                                      |                                               |                                       |  |
| ☑ Municipal                                          | If Yes, Enter Prir Population:                      | nary Target                          | >2 - 3 Mile                                   | NA                                    |  |
| ☐ Private ☐ None                                     | •                                                   | People <sup>3</sup>                  | >3 - 4 Mile                                   | NA                                    |  |
|                                                      | Nearest Designat                                    | ad Mallbaad                          | 1                                             |                                       |  |
| Depth to Shallowest Aquifer: ~ 10 to 50 Feet         | Nearest Designate<br>Protection Area <sup>6</sup> : |                                      | Total Within 4 Miles <sup>4</sup>             | _NA                                   |  |
|                                                      |                                                     |                                      |                                               |                                       |  |
| Karst Terrain/Aquifer Present:                       | ☐ Under                                             |                                      | *Use population #s for PA Tal                 | nle 2                                 |  |
| □Yes                                                 | ✓ None Within 4 Miles                               |                                      | *Note nearest well for #5 on                  |                                       |  |
| ✓ No                                                 |                                                     |                                      |                                               |                                       |  |
|                                                      |                                                     | ce Water Pathwa                      |                                               |                                       |  |
| Type of Surface Water Draining Site and that apply): | 15 Miles Downstr                                    | eam (check all                       | Shortest Overland Dista<br>Surface Water:     | nce From Any Source to                |  |
| ✓ Stream                                             | nd 🔲 Lake                                           |                                      | _500 Feet                                     |                                       |  |
| ☐ Bay ☐ Ocean ☐ Otl                                  | her                                                 |                                      |                                               | Miles                                 |  |
| Is There a Suspected Release to Surface              | \Mator <sup>1</sup> :                               |                                      | Site is Located in:                           |                                       |  |
| is There a suspected herease to surface              | water.                                              |                                      | Annual - 10 yr Floodplain                     |                                       |  |
| ✓ Yes                                                |                                                     |                                      | ☐ >10yr - 100yr Floodplain                    |                                       |  |
| □ No                                                 | ☐ >100yr - 500yr Floodplain<br>☐ >500yr Floodplain  |                                      |                                               |                                       |  |
| Drinking Water Intake Located Along the              | List All Secondary Targe                            | t Drinking Water Intakes:            |                                               |                                       |  |
| Yes                                                  |                                                     |                                      |                                               |                                       |  |
| ☑ No                                                 |                                                     |                                      | <u>Name</u> : <u>Water Body</u> : <u>Flov</u> | v (cfs): Population Served:           |  |
| Have Primary Target Drinking Water Into              | akes Been Identifie                                 | ed:                                  |                                               |                                       |  |
| ☐ Yes If Yes, Distance                               | ce to Nearest Drink                                 | king                                 |                                               |                                       |  |
| ☑ No Water Intake                                    | : Mile                                              | s <sup>6</sup>                       |                                               |                                       |  |
| If Yes, Enter Population Served by Targe             | t Intake:                                           |                                      |                                               |                                       |  |
|                                                      |                                                     |                                      | Total within                                  | 15 Miles <sup>4</sup>                 |  |
| NA People <sup>4</sup>                               |                                                     |                                      |                                               |                                       |  |
| Fisheries Located Along the Surface Wat              | er Migration Path                                   | ,                                    | List All Secondary Targe                      | t Eichariac <sup>10</sup> :           |  |
| If Vac Distance                                      | e to Nearest Fisher                                 |                                      | Water Body/ Fishery Name                      |                                       |  |
| ☐ Yes ☑ No II Fes, Distance                          | Mile                                                | •                                    |                                               | · · · · · · · · · · · · · · · · · · · |  |
| Have Primary Target Fisheries Been Iden              | itified:                                            |                                      |                                               |                                       |  |
| ☐ Yes ☑ No                                           |                                                     |                                      |                                               |                                       |  |
|                                                      | ntinued)                                            |                                      |                                               |                                       |  |
| Wetlands Located Along the Surface Wa<br>Path:       | ter Migration                                       | Other Sensitive E<br>Migration Path: | nvironments Located Alo                       | ng the Surface Water                  |  |
| ✓ Yes                                                |                                                     | ☐ Yes<br>☑ No                        | If Yes, Distance to Environment:              | Nearest Sensitive<br>Miles            |  |
| Have Primary Target Wetlands Been Ide                | entified:                                           |                                      | get Sensitive Environmen                      | <del></del>                           |  |
| ☐ Yes                                                |                                                     | , , ,                                | ☐ Yes                                         |                                       |  |
| ☐ Yes<br>☑ No                                        |                                                     |                                      | ☑ No                                          |                                       |  |
| List All Wetlands:                                   |                                                     | List All Sensitive                   | Environments <sup>11</sup> :                  |                                       |  |

| Water Body : Flow (cfs): Frontage miles:                               | Water                      | r Body : Flow (cfs): Sensitive Environment Type:                           |  |  |
|------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------|--|--|
|                                                                        |                            |                                                                            |  |  |
|                                                                        |                            |                                                                            |  |  |
|                                                                        | O Soil Eyposu              | ura Dathuray                                                               |  |  |
| Are Deeple Occupying Pecidence or                                      | 9. Soil Exposu             | •                                                                          |  |  |
| Are People Occupying Residence or<br>Attending School or Daycare on or | Number of Workers Ons      | Identified on or Within 200 Feet of Areas of                               |  |  |
| Within 200 Feet of Area of Known or                                    | ☑ None                     | Known or Suspected Contamination:                                          |  |  |
| Suspected Contamination:                                               | □ 1 - 100                  | Known of Suspected Contamination.                                          |  |  |
|                                                                        | ☐ 101 - 1,000<br>☐ > 1,000 | _                                                                          |  |  |
|                                                                        | L > 1,000                  | ☐ Yes ☑ No                                                                 |  |  |
| ☐ Yes                                                                  |                            | _ `                                                                        |  |  |
| ☑ No                                                                   |                            | If Yes, List Each Terrestrial Sensitive                                    |  |  |
|                                                                        | Population Within 1 Mil    | le: Environment <sup>5</sup> :                                             |  |  |
| If Yes, Enter Total Residential Population:                            |                            |                                                                            |  |  |
| Fopulation.                                                            | People <sup>7</sup>        |                                                                            |  |  |
| People <sup>2</sup>                                                    |                            |                                                                            |  |  |
|                                                                        |                            | *Refer to PA Table 7 for environment types                                 |  |  |
|                                                                        | 10. Air Pa                 | athway                                                                     |  |  |
| Is there a Suspected Release to Air <sup>1</sup> :                     | Wetla                      | ands Located Within 4 Miles of the Site <sup>6</sup> :                     |  |  |
| ☐ Yes ☑ No                                                             | <b>V</b>                   | Yes If You Have Marris Assess                                              |  |  |
|                                                                        |                            | No If Yes, How Many Acres: Acres                                           |  |  |
| Enter Total Population on or Within:                                   | Othor                      | r Sensitive Environments Located Within 4 Miles of the Site:               |  |  |
| Onsite                                                                 | Other                      |                                                                            |  |  |
| 0.4/4.481                                                              |                            | ☐ Yes<br>☑ No                                                              |  |  |
| 0-1/4 Mile                                                             |                            | ₩ NO                                                                       |  |  |
| >1/4-1/2 Mile                                                          | List Al                    | List All Sensitive Environments Within 1/2 Mile of the Site <sup>6</sup> : |  |  |
| >1/2-1 Mile                                                            | <u>Distan</u>              | nce: Sensitive Environment Type/Wetlands Area (acres):                     |  |  |
| >1-2 Miles                                                             | Onsite                     | e None                                                                     |  |  |
| >2-3 Miles                                                             | 0-1/4                      | Mile _Wetlands                                                             |  |  |
| >3-4 Miles                                                             | >1/4-1                     | 1/2 Mile _Wetlands                                                         |  |  |
| Total Within 4 Miles <sup>3-5</sup> _7,250_                            |                            |                                                                            |  |  |

<sup>1-11</sup> Refers to question number on the PA scoresheet for each particular pathway

| _                                                                                              |                             |                                                   |                                           |                           | Identificatio                | n           |
|------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------|-------------------------------------------|---------------------------|------------------------------|-------------|
| Potential                                                                                      | Hazardous W                 |                                                   | Preliminary A                             | ssessment                 | State: SD                    | CERCLIS #:  |
| Form                                                                                           |                             |                                                   | CERCLIS Disc                              | covery Date:              |                              |             |
|                                                                                                |                             | 1. Ger                                            | neral Site Informati                      | on                        |                              |             |
| Name: Ellsworth                                                                                | n AFB                       | Street Address                                    | s: 1000 N Ellsworth Ro                    | d                         |                              |             |
| City:                                                                                          |                             | State: SD                                         | Zip Code:<br>57769                        | County:<br>Meade          | Co. Code:                    | Cong. Dist: |
| Latitude:<br>44°9' 23.90"                                                                      | Longitude:<br>103°6' 33.81" | Approximate A                                     | Area of Site: _Less<br>Acres<br>Square Ft |                           | Not Specified  NA (GW plume, | etc.)       |
| Site Name: Cras                                                                                | h 4 (2001)                  |                                                   |                                           |                           |                              |             |
| 7140.                                                                                          |                             |                                                   |                                           |                           |                              |             |
|                                                                                                |                             | 2. Owne                                           | r/Operator Informa                        |                           |                              |             |
| Owner: Ellswort                                                                                |                             |                                                   | Operator: same a                          | as owner                  |                              |             |
| Street Address:                                                                                | 1000 N Ellsworth Rd         |                                                   | Street Address:                           |                           |                              |             |
| City:                                                                                          |                             |                                                   | City:                                     |                           |                              |             |
| State: SD                                                                                      | Zip Code:                   | Telephone:                                        | State:                                    | Zip Code:                 | Telephone:                   |             |
| Type of Owners                                                                                 | hip:                        |                                                   | Type of Ownersh                           | ip:                       |                              |             |
| ☐ Private ☐ County ☐ Federal Agency ☐ Municipal ☐ Name: _DOD ☐ ☐ Not Specified ☐ State ☐ Other |                             | ☐ Private ☐ Federal Agency Name: ☐ State ☐ Indian | ☐ County ☐ Municipa ☐ Not Spec ☐ Other    | ified                     |                              |             |
|                                                                                                |                             | 3. Site                                           | <b>Evaluator Informat</b>                 | ion                       |                              |             |
| Name of Evalua<br>Kelly Teplitsky                                                              | tor:                        | Agency/Organ<br>CH2M HILL                         | ization:                                  | Date Prepared: 03/03/2015 |                              | ed:         |
| Street Address:                                                                                | 9191 South Jamaica S        | reet                                              | City: Englewood                           |                           | State: CO                    |             |
| Name of EPA or                                                                                 | State Agency Contact        | :                                                 | Street Address:                           |                           | <u> </u>                     |             |
| City:                                                                                          |                             | State:                                            |                                           | Telephone:                |                              |             |
|                                                                                                |                             | 4. Site Disp                                      | oosition <i>(for EPA us</i>               | e only)                   |                              |             |
|                                                                                                | oonse/Removal Assess        | -                                                 | CERCLIS Recomm                            | nendation:                | Signature:                   |             |
| Recommendation                                                                                 | Yes                         |                                                   | ☐ Higher Priority☐ Lower Priority☐ NFRAP  |                           | Name (typed                  | d):         |
|                                                                                                | □ No Date:                  |                                                   | ☐ RCRA ☐ Other:  Date:                    |                           | Position:                    |             |
|                                                                                                |                             | 5. Gene                                           | eral Site Characteris                     |                           | 1                            |             |
| Predominant La                                                                                 | nd Use Within 1 Mile        | of Site (check all                                | Site Setting:                             |                           | Years of Ope                 | eration:    |

| that apply):                                                                                                        |                                                         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------|
| ☐ Industrial ☐ Commercial ☐ Residential ☐ Forest/Fields                                                             | ☑ DOD ☐ F                                               | OOI<br>Other Federal<br>Facility:<br>Other     | ☐ Urban<br>☐ Suburi<br>☑ Rural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Beginning Year NA  Ending Year NA  Unknown                                                                                  |
| Type of Site Operation                                                                                              | ons (check all that a                                   | pply):                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | Waste Generated:                                                                                                            |
| ☐ Manufacturing (must cl ☐ Lumber and Woo ☐ Inorganic Chemid ☐ Plastic and/or Ru ☐ Paints, Varnishes                | d Products<br>cals<br>bber Products                     | ]<br>[<br>]                                    | Retail Recycling Junk/Salvage Yard Municipal Landfill Other Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | ✓ Onsite ☐ Offsite ☐ Onsite and Offsite  Waste Deposition Authorized                                                        |
| ☐ Industrial Organi ☐ Agricultural Cher ☐ Miscellaneous Ch ☐ Primary Metals ☐ Metal Coating, Pl ☐ Metal Forging, Si | nicals<br>emical Products<br>ating, Engraving<br>amping | ]<br>]<br>]                                    | DOD DOE DOI Other Federal Facility RCRA Treatment, Stor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | age, or Disposal    | By: Present Owner     Former Owner     Present & Former Owner     Unauthorized     Unknown  Waste Accessible to the Public: |
| ☐ Fabricated Struct ☐ Electronic Equipr ☐ Other Manufactu ☐ Mining ☐ Metals                                         | nent                                                    |                                                | ☐ Large Quantity (☐ Small Quantity (☐ Subtitle D☐ Municipal☐ Industrial☐ Indu | Generator           | Yes  No                                                                                                                     |
| Coal Oil and Gas Non-metallic Min                                                                                   | erals                                                   |                                                | ☐ "Converter" ☐ "Protective Filer ☐ "Non-or Late File ☐ Note Specified ☐ Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er"                 | Distance to Nearest Dwelling,<br>School, or Workplace:<br>1,210 Feet                                                        |
| 6. Waste Characteristics Information                                                                                |                                                         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                             |
| Carrier True                                                                                                        | Carrea                                                  | · · · · · · · · · · · · · · · · · · ·          | A Table 1 for WC Sco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | Wests                                                                                                                       |
| Source Type:                                                                                                        |                                                         | Waste Quantity:                                | Tier*:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | General Type of     |                                                                                                                             |
| (check all that apply)                                                                                              |                                                         | nit)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (check all that app | Pesticides/Herbicides                                                                                                       |
| ☐ Contaminated GW Plum (unidentified source) ☐ Contaminated SW/Sedii (unidentified source) ☐ Contaminated Soil      |                                                         |                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | that apply):        | f Waste as Deposited (check all Solid Sludge                                                                                |
| ☐ Other<br>☐ No Sources                                                                                             |                                                         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                   | Powder<br>Liquid<br>Gas                                                                                                     |
| *C=Constitue                                                                                                        | ent, W=Wastestream, V=V                                 | ,                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                             |
|                                                                                                                     |                                                         |                                                | d Water Pathwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                   |                                                                                                                             |
| Is Ground Water Use Within 4 Miles:                                                                                 | d for Drinking                                          | Is There a Suspect Ground Water <sup>1</sup> : | ted Release to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                   | arget Population Served by<br>Withdrawn From:                                                                               |
| ☑ Yes<br>□ No                                                                                                       |                                                         | ✓ Yes<br>□ No                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 - 1/4 Mile        | NA                                                                                                                          |
| If Yes, Distance to n                                                                                               | earest                                                  |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >1/4 - 1/2 Mila     | e NA                                                                                                                        |

| Drinking Well:                                       | Have Primary Tar                                    | get Drinking              | /1/4-1/2 IVIIIC                                           |                            |  |
|------------------------------------------------------|-----------------------------------------------------|---------------------------|-----------------------------------------------------------|----------------------------|--|
| Feet                                                 | Water Wells Beer                                    | •                         | >1/2 - 1 Mile                                             | NA                         |  |
| Type of Drinking Water Wells Within 4                |                                                     |                           | >1/2 - 1 Wille                                            | NA                         |  |
| Miles                                                | ☐ Yes<br>☑ No                                       |                           | >1 - 2 Mile                                               | NA                         |  |
| (check all that apply):                              |                                                     |                           |                                                           |                            |  |
| ☑ Municipal                                          | If Yes, Enter Prir Population:                      | nary Target               | >2 - 3 Mile                                               | NA                         |  |
| ☐ Private ☐ None                                     | •                                                   | People <sup>3</sup>       | >3 - 4 Mile                                               | NA                         |  |
|                                                      | Nearest Designat                                    | ad Mallbaad               | 1                                                         |                            |  |
| Depth to Shallowest Aquifer:                         | Nearest Designate<br>Protection Area <sup>6</sup> : |                           | Total Within 4 Miles <sup>4</sup>                         | _NA                        |  |
| ~ 10 to 50 Feet                                      | Protection Area:                                    |                           |                                                           |                            |  |
| Karst Terrain/Aquifer Present:                       | ☐ Under                                             |                           | *Use population #s for PA Tal                             | nle 2                      |  |
| □Yes                                                 | ✓ None Within 4 Miles                               |                           | *Note nearest well for #5 on                              |                            |  |
| ☑ No                                                 |                                                     |                           |                                                           |                            |  |
|                                                      |                                                     | ce Water Pathwa           |                                                           |                            |  |
| Type of Surface Water Draining Site and that apply): | 15 Miles Downstr                                    | eam (check all            | Shortest Overland Dista<br>Surface Water:                 | nce From Any Source to     |  |
| ✓ Stream ☐ River ✓ Pol                               | nd 🔲 Lake                                           |                           | _890 Feet                                                 |                            |  |
|                                                      | her                                                 |                           |                                                           | Miles                      |  |
| In These of Course and Delegate to Courfe and        | \A/-+ <sup>1</sup> .                                |                           | Site is Located in:                                       |                            |  |
| Is There a Suspected Release to Surface              | water :                                             |                           |                                                           |                            |  |
| ☐ Yes                                                |                                                     |                           | ☐ Annual - 10 yr Floodplain<br>☐ >10yr - 100yr Floodplain |                            |  |
| ☑ No                                                 |                                                     |                           | ☐ >100yr - 500yr Floodplain<br>☐ >500yr Floodplain        |                            |  |
| Dialia - Water Intella I annual Alamath              | , ,                                                 |                           |                                                           |                            |  |
| Drinking Water Intake Located Along the              | List All Secondary Targe                            | t Drinking Water Intakes: |                                                           |                            |  |
| ☐ Yes<br>☑ No                                        | Name: Water Body: Flow (cfs): Population Served:    |                           |                                                           |                            |  |
| Have Primary Target Drinking Water Into              | akes Been Identifie                                 | ed:                       |                                                           |                            |  |
| ☐ Yes If Yes, Distance                               | ce to Nearest Drinl                                 | zing                      |                                                           |                            |  |
|                                                      | : Mile                                              |                           |                                                           |                            |  |
| If Yes, Enter Population Served by Targe             |                                                     |                           |                                                           |                            |  |
| li res, Enter i opulation served sy range            | · maner                                             |                           | T. (1) 2011                                               | 45.84%4                    |  |
| NA People <sup>4</sup>                               |                                                     |                           | i otai witnin                                             | 15 Miles <sup>4</sup>      |  |
| Fisherical control Al                                |                                                     |                           |                                                           | 10                         |  |
| Fisheries Located Along the Surface Wat              | er Migration Path:<br>e to Nearest Fishei           |                           | List All Secondary Targe                                  |                            |  |
| Yes No II Yes, Distance                              | e to Nearest Fisher<br>Mile:                        | •                         | Water Body/ Fishery Name                                  | : Flow (cfs):              |  |
| Have Primary Target Fisheries Been Iden              |                                                     |                           | 1                                                         |                            |  |
| ☐ Yes ☑ No                                           |                                                     |                           |                                                           |                            |  |
| 8. Surface Water Pathway (cor                        |                                                     |                           | tinuod)                                                   |                            |  |
| Wetlands Located Along the Surface Wa                |                                                     |                           | nvironments Located Alo                                   | ng the Surface Water       |  |
| Path:                                                | ice migration                                       | Migration Path:           |                                                           |                            |  |
| ☑ Yes<br>□ No                                        |                                                     | ☐ Yes<br>☑ No             | If Yes, Distance to Environment:                          | Nearest Sensitive<br>Miles |  |
| Have Primary Target Wetlands Been Ide                | entified:                                           |                           | get Sensitive Environmen                                  | <del></del>                |  |
| ☐ Yes                                                |                                                     |                           | Yes                                                       |                            |  |
| ✓ No                                                 |                                                     |                           | ☑ No                                                      |                            |  |
| List All Wetlands:                                   |                                                     | List All Sensitive        | Environments <sup>11</sup> :                              |                            |  |

| Water Body: Flow (cfs): Frontage miles:            |                         | <u>Water Body</u> :                                                        |          | Flow (cfs):                       | Sensitive Environment Type:                  |
|----------------------------------------------------|-------------------------|----------------------------------------------------------------------------|----------|-----------------------------------|----------------------------------------------|
|                                                    |                         |                                                                            |          |                                   |                                              |
|                                                    |                         |                                                                            |          |                                   |                                              |
|                                                    | 9. Soil E               | xposure Pat                                                                | hway     | /                                 |                                              |
| Are People Occupying Residence or                  | Number of Worke         | ers Onsite <sup>4</sup> :                                                  |          | Have Terres                       | strial Sensitive Environments Been           |
| Attending School or Daycare on or                  |                         |                                                                            |          | Identified o                      | n or Within 200 Feet of Areas of             |
| Within 200 Feet of Area of Known or                | ☑ None                  |                                                                            |          | Known or Suspected Contamination: |                                              |
| Suspected Contamination:                           | □ 1 - 100<br>□ 101 - 1, | 000                                                                        |          |                                   |                                              |
|                                                    | □ > 1,000               |                                                                            |          |                                   | ☐ Yes                                        |
| _                                                  |                         |                                                                            |          |                                   | ☑ No                                         |
| ☐ Yes<br>☑ No                                      |                         |                                                                            |          | 16 V 1 :-+                        | Fools Towns stated Councities                |
| ₩ NO                                               | Damidatian Mithin       | 1 1 1 1 1 -                                                                |          | Environme                         | Each Terrestrial Sensitive                   |
| If Yes, Enter Total Residential                    | Population Withir       | i i iville:                                                                |          | LIIVII OIIIII                     | cite .                                       |
| Population:                                        |                         | _                                                                          |          |                                   |                                              |
| ·                                                  | People                  | 7                                                                          |          |                                   |                                              |
| People <sup>2</sup>                                |                         |                                                                            |          | at.                               |                                              |
|                                                    |                         |                                                                            |          | *Refer to PA                      | Table 7 for environment types                |
|                                                    | 10.                     | Air Pathway                                                                | /        |                                   |                                              |
| Is there a Suspected Release to Air <sup>1</sup> : |                         | Wetlands Lo                                                                | cated    | Within 4 M                        | iles of the Site <sup>6</sup> :              |
| ☐ Yes                                              |                         | ✓ Yes                                                                      |          |                                   |                                              |
| ✓ No                                               |                         | ☐ No                                                                       |          | If Yes, Hov                       | v Many Acres: Acres                          |
| Enter Total Population on or Within:               |                         | 0.1 6                                                                      |          |                                   | the tracel to a set of the con-              |
| Onsite                                             |                         | Other Sensitive Environments Located Within 4 Miles of the Site:           |          |                                   |                                              |
|                                                    |                         | ☐ Yes                                                                      |          |                                   |                                              |
| 0-1/4 Mile                                         |                         |                                                                            |          | ☑ No                              |                                              |
| >1/4-1/2 Mile                                      |                         | List All Sensitive Environments Within 1/2 Mile of the Site <sup>6</sup> : |          |                                   | s Within 1/2 Mile of the Site <sup>6</sup> : |
| >1/2-1 Mile                                        |                         | <u>Distance:</u> <u>Sensitive Environment Type/Wetlands Area (acres):</u>  |          | nent Type/Wetlands Area (acres):  |                                              |
| >1-2 Miles                                         |                         | Onsite                                                                     | None     | e                                 |                                              |
| >2-3 Miles                                         |                         | 0-1/4 Mile                                                                 | _We      | tlands                            |                                              |
| >3-4 Miles                                         |                         | >1/4-1/2 Mile                                                              | _We      | tlands                            |                                              |
| Total Within 4 Miles <sup>3-5</sup> _5,010_        |                         | *Refer to PA Tab                                                           | le 10 fo | r calculations on                 | air pathway exposures                        |

<sup>1-11</sup> Refers to question number on the PA scoresheet for each particular pathway

| _                                  |                                                    |                                                           |                           |                                       | Identification               | n               |
|------------------------------------|----------------------------------------------------|-----------------------------------------------------------|---------------------------|---------------------------------------|------------------------------|-----------------|
| Potential                          | Hazardous Wa                                       |                                                           | reliminary A              | Assessment                            | State: SD                    | CERCLIS #:      |
| Form                               |                                                    |                                                           | CERCLIS Disco             | overy Date:                           |                              |                 |
|                                    |                                                    | 1. Gene                                                   | eral Site Informat        | tion                                  |                              |                 |
| Name: Ellsworth                    | AFB                                                | Street Address:                                           | 1000 N Ellsworth I        | Rd                                    |                              |                 |
| City:                              |                                                    | State: SD                                                 | Zip Code:<br>57769        | County:<br>Meade                      | Co. Code:                    | Cong. Dist:     |
| Latitude:<br>44°8' 9.52"           | Longitude:<br>103°4' 58.93"                        | Approximate Ar                                            |                           |                                       | Not Specified  NA (GW plume, | etc.)           |
| Site Name: Hazm                    | nart                                               |                                                           |                           |                                       |                              |                 |
|                                    | azmart currently stores<br>ned and on pallets. The | _                                                         |                           | · · · · · · · · · · · · · · · · · · · |                              | Most containers |
|                                    |                                                    | 2. Owner,                                                 | Operator Inforn           | nation                                |                              |                 |
| Owner: Ellsworth                   | h AFB                                              |                                                           | Operator: same            | e as owner                            |                              |                 |
| Street Address: 1                  | L000 N Ellsworth Rd                                |                                                           | Street Address:           |                                       |                              |                 |
| City:                              |                                                    |                                                           | City:                     |                                       |                              |                 |
| State: SD                          | Zip Code:                                          | Telephone:                                                | State:                    | Zip Code:                             | Telephone:                   |                 |
| Type of Ownership:    Private      |                                                    | Type of Owners  Private Federal Agency Name: State Indian | ☐ County☐ Municipal       | ified                                 |                              |                 |
|                                    |                                                    | 3. Site E                                                 | valuator Informa          | ation                                 |                              |                 |
| Name of Evaluat<br>Kelly Teplitsky | or:                                                | Agency/Organiz<br>CH2M HILL                               | ration:                   |                                       | Date Prepare 03/03/2015      | ed:             |
| Street Address: 9                  | 9191 South Jamaica Str                             | eet                                                       | City: Englewood           | b                                     | State: CO                    |                 |
| Name of EPA or :                   | State Agency Contact:                              |                                                           | Street Address:           |                                       |                              |                 |
| City:                              |                                                    | State:                                                    |                           | Telephone:                            |                              |                 |
|                                    |                                                    | 4. Site Dispo                                             | osition <i>(for EPA u</i> | ise only)                             |                              |                 |
| Emergency Resp<br>Recommendatio    | onse/Removal Assessn                               | •                                                         | CERCLIS Recom             | mendation:                            | Signature:                   |                 |
|                                    | ∏ Yes                                              |                                                           | ☐ Lower Priori☐ NFRAP     |                                       | Name (typed                  | ):              |
|                                    | Date:                                              |                                                           | ☐ RCRA ☐ Other:  Date:    |                                       | Position:                    |                 |
|                                    |                                                    | 5. Gener                                                  | al Site Character         | ristics                               | 1                            |                 |
| Predominant Lar                    | nd Use Within 1 Mile of                            | Site (check all                                           | Site Setting:             |                                       | Years of Ope                 | ration:         |

| that apply):                                                                                                                                                                |                                               |                                                          |                                                                                |                     |                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------|
| ☐ Industrial ☐ Commercial ☐ Residential ☐ Forest/Fields                                                                                                                     | ☐ Mining ☐ DOD ☐ ☐ DOE                        | DOI Other Federal Facility: Other                        | ☐ Urban<br>☐ Subur<br>☑ Rural                                                  |                     | Beginning Year ?  Ending Year present                                          |
| Type of Site Operation                                                                                                                                                      | ns (check all tha                             | t apply):                                                |                                                                                |                     | Waste Generated:                                                               |
|                                                                                                                                                                             |                                               |                                                          | _                                                                              |                     | ☑ Onsite                                                                       |
| ☐ Manufacturing (must cl ☐ Lumber and Woo ☐ Inorganic Chemio ☐ Plastic and/or Ru ☐ Paints, Varnishes                                                                        | d Products<br>cals<br>bber Products           | [<br>[<br>[                                              | ☐ Retail ☐ Recycling ☐ Junk/Salvage Yard ☐ Municipal Landfill ☐ Other Landfill |                     | ☐ Offsite ☐ Onsite and Offsite  Waste Deposition Authorized                    |
| ☐ Industrial Organi ☐ Agricultural Chen ☐ Miscellaneous Ch ☐ Primary Metals ☐ Metal Coating, Pl ☐ Metal Forging, Sl                                                         | nicals<br>emical Products<br>ating, Engraving | [<br>[<br>[                                              | ☑ DOD ☐ DOE ☐ DOI ☐ Other Federal Facility ☐ RCRA ☐ Treatment, Stor            |                     | By: Present Owner  Former Owner  Present & Former Owner  Unauthorized  Unknown |
| ☐ Fabricated Struct☐ Electronic Equipr                                                                                                                                      | ural Metal Products<br>nent                   |                                                          | ☐ Large Quantity ☐ Small Quantity ☐ Subtitle D                                 | Generator           | Waste Accessible to the Public:                                                |
| ☐ Other Manufactu☐ Mining☐ Metals                                                                                                                                           | mig                                           |                                                          | ☐ Municipal ☐ Industrial ☐ "Converter"                                         |                     | ☐ Yes<br>☑ No                                                                  |
| ☐ Coal☐ Oil and Gas☐ Non-metallic Min                                                                                                                                       | erals                                         |                                                          | □ "Protective Filer □ "Non-or Late Fil □ Note Specified                        |                     | Distance to Nearest Dwelling,<br>School, or Workplace:                         |
|                                                                                                                                                                             |                                               |                                                          | Other                                                                          |                     | _0 Feet                                                                        |
|                                                                                                                                                                             |                                               |                                                          | racteristics Infor                                                             |                     |                                                                                |
| Source Type:                                                                                                                                                                | Sour                                          | ce Waste Quantity:                                       | Tier*:                                                                         | General Type of     | Waste                                                                          |
| (check all that apply)                                                                                                                                                      | (include                                      | •                                                        |                                                                                | (check all that app |                                                                                |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pile □ Taillings Pile □ Trash Pile (open drum) □ Land Treatment |                                               |                                                          |                                                                                |                     | Pesticides/Herbicides                                                          |
| ☐ Contaminated GW Plum (unidentified source) ☐ Contaminated SW/Sedii                                                                                                        |                                               |                                                          |                                                                                | that apply):        | Waste as Deposited (check all                                                  |
| (unidentified source)  Contaminated Soil  Other  No Sources                                                                                                                 |                                               |                                                          |                                                                                |                     | Solid<br>Sludge                                                                |
| *C=Constitue                                                                                                                                                                | ent W=Wastestream \                           | /=Volume Δ=Δrea                                          |                                                                                |                     | Powder<br>Liquid<br>Gas                                                        |
| *C=Constitue                                                                                                                                                                | ent, W=Wastestream, \                         | ,                                                        | <br><br>nd Water Pathwa                                                        |                     | Powder<br>Liquid                                                               |
|                                                                                                                                                                             | <u>, , , , , , , , , , , , , , , , , , , </u> | 7. Grour                                                 | nd Water Pathwa                                                                | i i                 | Powder<br>Liquid<br>Gas                                                        |
| Is Ground Water Use<br>Within 4 Miles:                                                                                                                                      | <u>, , , , , , , , , , , , , , , , , , , </u> | 7. Ground Is There a Suspect Ground Water <sup>1</sup> : |                                                                                | By List Secondary T | Powder<br>Liquid                                                               |
| Is Ground Water Use                                                                                                                                                         | d for Drinking                                | 7. Grour                                                 |                                                                                | By List Secondary T | Powder Liquid Gas  Target Population Served by                                 |

| Drinking Well:                                 | Have Primary Tar                  | get Drinking                         | \\\ \1 \\ \- \  \  \  \  \  \  \  \  \  \  \  \  \            |                             |  |
|------------------------------------------------|-----------------------------------|--------------------------------------|---------------------------------------------------------------|-----------------------------|--|
| Feet                                           | Water Wells Beer                  | -                                    | >1/2 - 1 Mile                                                 | NA                          |  |
| Type of Drinking Water Wells Within 4          |                                   |                                      | >1/2 - 1 Wille                                                | NA                          |  |
| Miles                                          | ☐ Yes<br>☑ No                     |                                      | >1 - 2 Mile                                                   | NA                          |  |
| (check all that apply):                        |                                   | <b>-</b> .                           |                                                               |                             |  |
| ☑ Municipal                                    | If Yes, Enter Prir<br>Population: | mary Target                          | >2 - 3 Mile                                                   | NA                          |  |
| ☐ Private                                      | •                                 | People <sup>3</sup>                  | >3 - 4 Mile                                                   | NA                          |  |
| □ None                                         |                                   | - ·                                  | >3 - 4 IVIIIC                                                 |                             |  |
| Depth to Shallowest Aquifer:                   | Nearest Designate                 | ed Wellhead                          | Total Within 4 Miles <sup>4</sup>                             | _NA                         |  |
| ~ 10 to 50 Feet                                | Protection Area <sup>6</sup> :    |                                      |                                                               |                             |  |
| Karst Terrain/Aquifer Present:                 | Under                             |                                      | *                                                             |                             |  |
| □Yes                                           | ☐ >0-4 N<br>☑ None V              | wiies<br>Within 4 Miles              | *Use population #s for PA Tab<br>*Note nearest well for #5 on |                             |  |
| ☑ No                                           |                                   |                                      | Note hearest wenter is on                                     | on radinal societies        |  |
|                                                | 8. Surfac                         | e Water Pathwa                       | ıy                                                            |                             |  |
| Type of Surface Water Draining Site and        | 15 Miles Downstr                  | eam (check all                       | Shortest Overland Dista                                       | nce From Any Source to      |  |
| that apply):                                   |                                   |                                      | Surface Water:                                                |                             |  |
|                                                | nd 🔲 Lake                         |                                      | _790_ Feet                                                    |                             |  |
| ☐ Bay ☐ Ocean ☐ Otl                            | ner                               |                                      | N                                                             | Miles                       |  |
| In There a Course stand Delegan to Courfe and  | 14/2+2-1                          |                                      | Site is Located in:                                           |                             |  |
| Is There a Suspected Release to Surface        | Annual - 10 yr Floodplain         |                                      |                                                               |                             |  |
| ☐ Yes                                          |                                   |                                      | □ >10yr - 100yr Floodplain                                    |                             |  |
| ☑ No                                           |                                   |                                      | >100yr - 500yr Flo                                            |                             |  |
|                                                | ☐ >500yr Floodplain               |                                      |                                                               |                             |  |
| Drinking Water Intake Located Along the        | List All Secondary Targe          | t Drinking Water Intakes:            |                                                               |                             |  |
| ☐ Yes                                          |                                   |                                      |                                                               |                             |  |
| ☑ No                                           |                                   |                                      | Name: Water Body: Flow (cfs): Population Served:              |                             |  |
| Have Primary Target Drinking Water Inta        | akes Been Identifie               | ·4·                                  |                                                               |                             |  |
|                                                |                                   |                                      |                                                               |                             |  |
|                                                | ce to Nearest Drink               |                                      |                                                               |                             |  |
| water intake                                   | :Mile                             | S                                    |                                                               |                             |  |
| If Yes, Enter Population Served by Targe       | t Intake:                         |                                      |                                                               |                             |  |
| NA Boorlo                                      |                                   |                                      | Total within 15 Miles <sup>4</sup>                            |                             |  |
| NA People <sup>4</sup>                         |                                   |                                      |                                                               |                             |  |
| Fisheries Located Along the Surface Wat        | er Migration Dath                 |                                      | List All Secondary Targe                                      | t Eichorios <sup>10</sup> : |  |
| If Vac Distance                                | e to Nearest Fisher               |                                      | Water Body/ Fishery Name                                      |                             |  |
| ☐ Yes ☑ No II Yes, Distance                    | Mile                              | •                                    | water body, rishery rame                                      | . <u>110W (cl3)</u> .       |  |
| Have Primary Target Fisheries Been Iden        | tified:                           |                                      |                                                               |                             |  |
| ☐ Yes ☑ No                                     |                                   |                                      |                                                               |                             |  |
|                                                |                                   |                                      |                                                               |                             |  |
|                                                |                                   | ter Pathway (con                     |                                                               |                             |  |
| Wetlands Located Along the Surface Wa<br>Path: | ter Migration                     | Other Sensitive E<br>Migration Path: | nvironments Located Alo                                       | ng the Surface Water        |  |
| ☑ Yes<br>□ No                                  |                                   | ☐ Yes<br>☑ No                        | If Yes, Distance to I<br>Environment:                         | Nearest Sensitive<br>Miles  |  |
| Have Primary Target Wetlands Been Ide          | entified:                         | Have Primary Tars                    | get Sensitive Environmen                                      | ts Been Identified:         |  |
|                                                |                                   |                                      | Yes                                                           |                             |  |
| ☐ Yes<br>☑ No                                  |                                   |                                      | ☑ No                                                          |                             |  |
| List All Wetlands:                             |                                   | List All Sensitive                   | Environments <sup>11</sup> :                                  |                             |  |

| Water Body : Flow (cfs): Frontage miles:           | Water Body :                            | Flow (cfs): Sensitive Environment Type:                                    |  |  |
|----------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------|--|--|
|                                                    |                                         |                                                                            |  |  |
|                                                    |                                         |                                                                            |  |  |
|                                                    |                                         | <del></del>                                                                |  |  |
|                                                    | 9. Soil Exposure Pathw                  | ay                                                                         |  |  |
| Are People Occupying Residence or                  | Number of Workers Onsite <sup>4</sup> : | Have Terrestrial Sensitive Environments Been                               |  |  |
| Attending School or Daycare on or                  |                                         | Identified on or Within 200 Feet of Areas of                               |  |  |
| Within 200 Feet of Area of Known or                | ☐ None ☑ 1 - 100                        | Known or Suspected Contamination:                                          |  |  |
| Suspected Contamination:                           | □ 101 - 1,000                           |                                                                            |  |  |
|                                                    | □ > 1,000                               | □Yes                                                                       |  |  |
| _                                                  |                                         | ☑ No                                                                       |  |  |
| ☐ Yes ☑ No                                         |                                         | If Van Liet Fach Tamastrial Consiting                                      |  |  |
| 1 NO                                               | D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | If Yes, List Each Terrestrial Sensitive Environment <sup>5</sup> :         |  |  |
| If Yes, Enter Total Residential                    | Population Within 1 Mile:               | Livionnent.                                                                |  |  |
| Population:                                        |                                         |                                                                            |  |  |
|                                                    | People <sup>7</sup>                     |                                                                            |  |  |
| People <sup>2</sup>                                |                                         |                                                                            |  |  |
|                                                    |                                         | *Refer to PA Table 7 for environment types                                 |  |  |
|                                                    | 10. Air Pathway                         |                                                                            |  |  |
| Is there a Suspected Release to Air <sup>1</sup> : | Wetlands Locate                         | ed Within 4 Miles of the Site <sup>6</sup> :                               |  |  |
| Yes                                                | ✓ Yes                                   |                                                                            |  |  |
| ☑ No                                               | □ No                                    | If Yes, How Many Acres: Acres                                              |  |  |
| Enter Total Population on or Within:               |                                         |                                                                            |  |  |
| Onsite                                             | Other Sensitive                         | Environments Located Within 4 Miles of the Site:                           |  |  |
| 0.4/4.84:1-                                        |                                         | ☐ Yes<br>☑ No                                                              |  |  |
| 0-1/4 Mile                                         |                                         |                                                                            |  |  |
| >1/4-1/2 Mile                                      | List All Sensitive                      | List All Sensitive Environments Within 1/2 Mile of the Site <sup>6</sup> : |  |  |
| >1/2-1 Mile                                        | <u>Distance:</u> <u>Ser</u>             | nsitive Environment Type/Wetlands Area (acres):                            |  |  |
| >1-2 Miles                                         | Onsite No                               | one                                                                        |  |  |
| >2-3 Miles                                         | 0-1/4 MileV                             | Vetlands                                                                   |  |  |
| >3-4 Miles                                         | >1/4-1/2 Mile _V                        | Vetlands                                                                   |  |  |
| Total Within 4 Miles <sup>3-5</sup>                |                                         |                                                                            |  |  |

<sup>1-11</sup> Refers to question number on the PA scoresheet for each particular pathway

|                                                                                                    | _                                                                                                    |                                                  | _                           |                        | Identificatio               | n                 |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------|------------------------|-----------------------------|-------------------|
| Potential                                                                                          | Hazardous W                                                                                          |                                                  | Preliminary                 | Assessment             | State: SD                   | CERCLIS #:        |
|                                                                                                    |                                                                                                      | Form                                             |                             |                        | CERCLIS Disc                | overy Date:       |
|                                                                                                    |                                                                                                      | 1. Ge                                            | neral Site Informa          | ation                  | I                           |                   |
| Name: Ellsworth                                                                                    | AFB                                                                                                  | Street Address                                   | s: 1000 N Ellsworth         | n Rd                   |                             |                   |
| City:                                                                                              |                                                                                                      | State: SD                                        | Zip Code:<br>57769          | County:<br>Meade       | Co. Code:                   | Cong. Dist:       |
| Latitude:<br>44°7' 54.49"                                                                          | Longitude:<br>103°4' 41.05"                                                                          | Approximate A                                    |                             |                        | Not Specified NA (GW plume, | etc.)             |
| Site Name: Wast                                                                                    | te Water Treatment Pl                                                                                | ant                                              |                             |                        |                             |                   |
| 2014. During ope<br>was discharged t                                                               | The base WWTP is loo<br>erations, all waste wit<br>to outfall 5, which flow<br>harged to Boxelder Cr | hin the sanitary s<br>ved to unnamed             | sewer and the indu          | istrial sewer lines we | nt to the WW                | TP. Treated water |
|                                                                                                    |                                                                                                      | 2. Owne                                          | er/Operator Infor           | mation                 |                             |                   |
| Owner: Ellswort                                                                                    | h AFB                                                                                                |                                                  | Operator: sam               | ne as owner            |                             |                   |
| Street Address: 1                                                                                  | 1000 N Ellsworth Rd                                                                                  |                                                  | Street Address              | 5:                     |                             |                   |
| City:                                                                                              |                                                                                                      |                                                  | City:                       |                        |                             |                   |
| State: SD                                                                                          | Zip Code:                                                                                            | Telephone:                                       | State:                      | Zip Code:              | Telephone:                  |                   |
| Type of Ownersh                                                                                    | I<br>nip:                                                                                            |                                                  | Type of Owne                | rship:                 | l                           |                   |
| Private □ County □ Federal Agency □ Municipal Name: _DOD □ Not Specified □ State □ Other □ Other □ |                                                                                                      | ☐ Private ☐ Federal Agenc Name: ☐ State ☐ Indian | _                           | ified                  |                             |                   |
|                                                                                                    |                                                                                                      | 3. Site                                          | <b>Evaluator Inform</b>     | nation                 |                             |                   |
| Name of Evaluat<br>Kelly Teplitsky                                                                 | or:                                                                                                  | Agency/Orgar<br>CH2M HILL                        | nization:                   |                        | Date Prepare 03/03/2015     | ed:               |
| Street Address: 9                                                                                  | 9191 South Jamaica St                                                                                | reet                                             | City: Englewoo              | od                     | State: CO                   |                   |
| Name of EPA or                                                                                     | State Agency Contact:                                                                                |                                                  | Street Address              | 5:                     | I                           |                   |
| City:                                                                                              |                                                                                                      | State:                                           |                             | Telephone:             |                             |                   |
|                                                                                                    |                                                                                                      | 4. Site Dis                                      | position (for EPA           | use only)              |                             |                   |
| Emergency Resp<br>Recommendation                                                                   | onse/Removal Assess                                                                                  | ment                                             | CERCLIS Recor               |                        | Signature:                  |                   |
| necommendatio                                                                                      | Yes                                                                                                  |                                                  | Lower Pric                  |                        | Name (typed                 | l):               |
|                                                                                                    | □ No<br>Date:                                                                                        |                                                  | ☐ RCRA<br>☐ Other:<br>Date: |                        | Position:                   |                   |
|                                                                                                    |                                                                                                      | 5. Gen                                           | eral Site Characte          |                        |                             |                   |
| Predominant Lai                                                                                    | nd Use Within 1 Mile                                                                                 | of Site (check all                               | Site Setting:               |                        | Years of Ope                | ration:           |

| that apply):                                                                                                                                                                                                                                                                                               |                                             |                                 |                                                           |                                                                                                                                                                             |                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| ☐ Industrial                                                                                                                                                                                                                                                                                               | ☐ Agriculture ☐                             | 001                             | ☐ Urban                                                   | ı                                                                                                                                                                           | Beginning Year ?                                                                                                                |
| Commercial                                                                                                                                                                                                                                                                                                 | _                                           | Other Federal                   | ☐ Subur                                                   | ban                                                                                                                                                                         | Ending Year 2014                                                                                                                |
| <ul><li>☐ Residential</li><li>☐ Forest/Fields</li></ul>                                                                                                                                                                                                                                                    | ☑ DOD ☐ DOE                                 | acility:                        |                                                           | Lituing real 2014                                                                                                                                                           |                                                                                                                                 |
| Torestrietus                                                                                                                                                                                                                                                                                               |                                             | Other                           |                                                           |                                                                                                                                                                             | Unknown                                                                                                                         |
| Type of Site Operation                                                                                                                                                                                                                                                                                     | ons (check all that a                       | apply):                         |                                                           |                                                                                                                                                                             | Waste Generated:                                                                                                                |
| ☐ Manufacturing (must ch                                                                                                                                                                                                                                                                                   | heck subcategory)                           | [                               | Retail                                                    |                                                                                                                                                                             | Onsite                                                                                                                          |
| ☐ Lumber and Woo                                                                                                                                                                                                                                                                                           |                                             |                                 | Recycling                                                 |                                                                                                                                                                             | Offsite                                                                                                                         |
| ☐ Inorganic Chemic                                                                                                                                                                                                                                                                                         |                                             |                                 | ☐ Junk/Salvage Yard<br>☐ Municipal Landfill               |                                                                                                                                                                             | ☐ Onsite and Offsite                                                                                                            |
| ☐ Plastic and/or Ru☐ Paints, Varnishes                                                                                                                                                                                                                                                                     |                                             |                                 | Other Landfill                                            |                                                                                                                                                                             | Waste Deposition Authorized                                                                                                     |
| ☐ Industrial Organi                                                                                                                                                                                                                                                                                        |                                             |                                 | ☑ DOD                                                     |                                                                                                                                                                             | By: Present Owner                                                                                                               |
| ☐ Agricultural Chen                                                                                                                                                                                                                                                                                        |                                             | _                               | DOE                                                       |                                                                                                                                                                             | Former Owner                                                                                                                    |
| ☐ Miscellaneous Ch                                                                                                                                                                                                                                                                                         | nemical Products                            | _                               | <ul><li>□ DOI</li><li>□ Other Federal Facility</li></ul>  | J.                                                                                                                                                                          | ☐ Present & Former Owner                                                                                                        |
| ☐ Primary Metals☐ Metal Coating, Pl                                                                                                                                                                                                                                                                        | ating Engraving                             |                                 | □ RCRA                                                    | <i></i>                                                                                                                                                                     | ☐ Unauthorized☐ Unknown                                                                                                         |
| ☐ Metal Forging, St                                                                                                                                                                                                                                                                                        |                                             |                                 | □ Treatment, Stor                                         |                                                                                                                                                                             | Waste Accessible to the Public:                                                                                                 |
| ☐ Fabricated Struct                                                                                                                                                                                                                                                                                        | tural Metal Products                        |                                 | ☐ Large Quantity                                          |                                                                                                                                                                             | Waste Accessible to the Fublic.                                                                                                 |
| ☐ Electronic Equipn☐ Other Manufactu                                                                                                                                                                                                                                                                       |                                             |                                 | <ul><li>☐ Small Quantity (</li><li>☐ Subtitle D</li></ul> | Generator<br>Generator                                                                                                                                                      |                                                                                                                                 |
| _                                                                                                                                                                                                                                                                                                          | ring                                        |                                 | ☐ Municipal                                               |                                                                                                                                                                             | ☐ Yes<br>☑ No                                                                                                                   |
| Mining                                                                                                                                                                                                                                                                                                     |                                             |                                 | ☐ Industrial                                              |                                                                                                                                                                             | <b>▼ 140</b>                                                                                                                    |
| ☐ Metals ☐ Coal                                                                                                                                                                                                                                                                                            |                                             |                                 | Converter "                                               |                                                                                                                                                                             | Distance to Nearest Dwelling,                                                                                                   |
| ☐ Oil and Gas                                                                                                                                                                                                                                                                                              |                                             |                                 | ☐ "Protective Filer ☐ "Non-or Late Fil                    |                                                                                                                                                                             | School, or Workplace:                                                                                                           |
| ☐ Non-metallic Min                                                                                                                                                                                                                                                                                         | erals                                       |                                 | ☐ Note Specified                                          | е                                                                                                                                                                           | School, of Workplace.                                                                                                           |
|                                                                                                                                                                                                                                                                                                            |                                             |                                 | Other                                                     |                                                                                                                                                                             | _1,500 Feet                                                                                                                     |
|                                                                                                                                                                                                                                                                                                            |                                             |                                 |                                                           |                                                                                                                                                                             | _1,5001 eet                                                                                                                     |
|                                                                                                                                                                                                                                                                                                            |                                             | 6. Waste Char                   | acteristics Infor                                         | mation                                                                                                                                                                      |                                                                                                                                 |
| (Refer to PA Table 1 for WC Score)                                                                                                                                                                                                                                                                         |                                             |                                 |                                                           |                                                                                                                                                                             |                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                            |                                             | •                               | A Table 1 for WC Sco                                      |                                                                                                                                                                             |                                                                                                                                 |
| Source Type:                                                                                                                                                                                                                                                                                               | Source                                      | (Refer to PA<br>Waste Quantity: | Table 1 for WC Sco<br>Tier*:                              | re)<br>General Type of                                                                                                                                                      | Waste                                                                                                                           |
| Source Type:<br>(check all that apply)                                                                                                                                                                                                                                                                     | Source                                      | Waste Quantity:                 |                                                           |                                                                                                                                                                             |                                                                                                                                 |
| (check all that apply)                                                                                                                                                                                                                                                                                     |                                             | Waste Quantity:                 |                                                           | General Type of (check all that app                                                                                                                                         | oly):                                                                                                                           |
| (check all that apply)                                                                                                                                                                                                                                                                                     |                                             | Waste Quantity:                 |                                                           | General Type of (check all that app                                                                                                                                         | Dly):  ☐ Pesticides/Herbicides ☐ Acids/Bases                                                                                    |
| (check all that apply)  Landfill Surface Impoundment Drums                                                                                                                                                                                                                                                 | (include u                                  | Waste Quantity:                 |                                                           | General Type of (check all that app   Metals   Organics   Inorganics                                                                                                        | Pesticides/Herbicides Acids/Bases Oily Waste                                                                                    |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co                                                                                                                                                                                                                            | (include u                                  | Waste Quantity:                 |                                                           | General Type of (check all that app                                                                                                                                         | Dly):  ☐ Pesticides/Herbicides ☐ Acids/Bases                                                                                    |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co                                                                                                                                                                                                                            | (include u                                  | Waste Quantity:                 |                                                           | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi                                            | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives                                |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile                                                                                                                                                                               | (include u                                  | Waste Quantity:                 |                                                           | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast                       | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  te  Other _AFFF_          |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum)                                                                                                                                          | (include u                                  | Waste Quantity:                 |                                                           | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi                                            | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  te  Other _AFFF_          |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment                                                                                                                           | ontainers                                   | Waste Quantity:                 |                                                           | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der  | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  te Other_AFFF_ molition Waste |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum                                                                                                      | ontainers                                   | Waste Quantity:                 |                                                           | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der  | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  te  Other _AFFF_          |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment                                                                                                                           | ontainers                                   | Waste Quantity:                 |                                                           | General Type of (check all that app  Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der  Physical State of that apply): | Pesticides/Herbicides                                                                                                           |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source)                                    | ontainers                                   | Waste Quantity:                 |                                                           | General Type of (check all that app  Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der  Physical State of that apply): | Pesticides/Herbicides                                                                                                           |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source) Contaminated Soil                  | ontainers                                   | Waste Quantity:                 |                                                           | General Type of (check all that app  Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der  Physical State of that apply): | Pesticides/Herbicides                                                                                                           |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source)                                    | ontainers                                   | Waste Quantity:                 |                                                           | General Type of (check all that app  Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der  Physical State of that apply): | Pesticides/Herbicides                                                                                                           |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified Source) Contaminated Soil Other No Sources | ontainers                                   | Waste Quantity:                 |                                                           | General Type of (check all that app  Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der  Physical State of that apply): | Pesticides/Herbicides                                                                                                           |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified Source) Contaminated Soil Other No Sources | ontainers                                   | Waste Quantity:  nit)           |                                                           | General Type of (check all that app  Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der  Physical State of that apply): | Pesticides/Herbicides                                                                                                           |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified Source) Contaminated Soil Other No Sources | ontainers  me  ment ent, W=Wastestream, V=V | Waste Quantity:  nit)           | Tier*:                                                    | General Type of (check all that app     Metals     Organics     Inorganics     Paints/Pigments     Laboratory/Hosp     Radioactive Wast     Construction/Der                | Pesticides/Herbicides                                                                                                           |
| Check all that apply                                                                                                                                                                                                                                                                                       | ontainers  me  ment ent, W=Wastestream, V=V | Waste Quantity:  nit)           | Tier*:                                                    | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der  | Pesticides/Herbicides                                                                                                           |
| Check all that apply                                                                                                                                                                                                                                                                                       | ontainers  me  ment ent, W=Wastestream, V=V | Waste Quantity:  nit)           | Tier*:                                                    | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der  | Pesticides/Herbicides                                                                                                           |
| Check all that apply                                                                                                                                                                                                                                                                                       | ontainers  me  ment ent, W=Wastestream, V=V | Waste Quantity:  nit)           | Tier*:                                                    | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der  | Pesticides/Herbicides                                                                                                           |
| Check all that apply                                                                                                                                                                                                                                                                                       | ontainers  me  ment ent, W=Wastestream, V=V | Waste Quantity:  nit)           | Tier*:                                                    | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der  | Pesticides/Herbicides                                                                                                           |

| Drinking Well:                                       | Have Primary Tar                                    | get Drinking                         | >1/4-1/2 IVIIIC                                 |                             |  |
|------------------------------------------------------|-----------------------------------------------------|--------------------------------------|-------------------------------------------------|-----------------------------|--|
| Feet                                                 | Water Wells Beer                                    |                                      | >1/2 - 1 Mile                                   | NA                          |  |
| Type of Drinking Water Wells Within 4                |                                                     |                                      | >1/2 - 1 Wille                                  | NA                          |  |
| Miles                                                | ☐ Yes<br>☑ No                                       |                                      | >1 - 2 Mile                                     | NA                          |  |
| (check all that apply):                              |                                                     |                                      |                                                 |                             |  |
| ☑ Municipal                                          | If Yes, Enter Prir Population:                      | nary Target                          | >2 - 3 Mile                                     | NA                          |  |
| ☐ Private ☐ None                                     | •                                                   | People <sup>3</sup>                  | >3 - 4 Mile                                     | NA                          |  |
|                                                      | Nearest Designat                                    | ad Mallbaad                          | 1                                               |                             |  |
| Depth to Shallowest Aquifer:                         | Nearest Designate<br>Protection Area <sup>6</sup> : |                                      | Total Within 4 Miles <sup>4</sup>               | _NA                         |  |
| ~ 10 to 50 Feet                                      | Protection Area:                                    |                                      |                                                 |                             |  |
| Karst Terrain/Aquifer Present:                       | ☐ Under<br>☐ >0-4 f                                 |                                      | *Use population #s for PA Tal                   | nle 2                       |  |
| □Yes                                                 |                                                     | Within 4 Miles                       | *Note nearest well for #5 on                    |                             |  |
| ☑ No                                                 |                                                     |                                      |                                                 |                             |  |
|                                                      |                                                     | ce Water Pathwa                      |                                                 |                             |  |
| Type of Surface Water Draining Site and that apply): | 15 Miles Downstr                                    | eam (check all                       | Shortest Overland Dista<br>Surface Water:       | nce From Any Source to      |  |
| ✓ Stream ☐ River ✓ Pol                               | nd 🗆 Lake                                           |                                      | _120_ Feet                                      |                             |  |
|                                                      | her                                                 |                                      |                                                 | Miles                       |  |
| Is There a Cuspected Polesco to Curfoco              | \\/\atar <sup>1</sup> .                             |                                      | Site is Located in:                             |                             |  |
| Is There a Suspected Release to Surface              | water:                                              |                                      | ☐ Annual - 10 yr Floo                           | odnlain                     |  |
| ☑ Yes                                                |                                                     |                                      | □ >10yr - 100yr Floo                            |                             |  |
| □ No                                                 |                                                     |                                      | ☐ >100yr - 500yr Floodplain ☐ >500yr Floodplain |                             |  |
|                                                      | 6 6 14/ 1 14                                        | 5                                    | , ,                                             |                             |  |
| Drinking Water Intake Located Along the              | e Surface Water M                                   | igration Path:                       | List All Secondary Targe                        | t Drinking Water Intakes:   |  |
| ☐ Yes<br>☑ No                                        |                                                     |                                      | Name: Water Body: Flov                          | v (cfs): Population Served: |  |
| Have Primary Target Drinking Water Into              | akes Been Identifie                                 | ed:                                  |                                                 |                             |  |
| ☐ Yes If Yes. Distance                               | ce to Nearest Drinl                                 | zing                                 |                                                 |                             |  |
|                                                      | : Mile                                              |                                      |                                                 |                             |  |
| If Yes, Enter Population Served by Targe             |                                                     |                                      |                                                 |                             |  |
| in res, Enter ropulation served by range             | t iiitake.                                          |                                      |                                                 |                             |  |
| NA People <sup>4</sup>                               |                                                     |                                      | Total within                                    | 15 Miles <sup>4</sup>       |  |
|                                                      |                                                     |                                      |                                                 |                             |  |
| Fisheries Located Along the Surface Wat              | =                                                   |                                      | List All Secondary Targe                        | t Fisheries <sup>10</sup> : |  |
| ☐ Yes ☑ No If Yes, Distance                          | e to Nearest Fisher<br>Mile                         | •                                    | Water Body/ Fishery Name                        | : Flow (cfs):               |  |
| Have Primary Target Fisheries Been Iden              |                                                     | <u> </u>                             |                                                 |                             |  |
| ☐ Yes ☑ No                                           |                                                     |                                      |                                                 |                             |  |
| ENO                                                  |                                                     |                                      |                                                 |                             |  |
| 8. Surface Water Pathway (continued)                 |                                                     |                                      |                                                 |                             |  |
| Wetlands Located Along the Surface Wa<br>Path:       | ter Migration                                       | Other Sensitive E<br>Migration Path: | nvironments Located Alo                         | ng the Surface Water        |  |
| ✓ Yes<br>□ No                                        |                                                     | ☐ Yes<br>☑ No                        | If Yes, Distance to Environment:                | Nearest Sensitive Miles     |  |
| Have Primary Target Wetlands Been Ide                | entified:                                           | Have Primary Tar                     | get Sensitive Environmen                        | ts Been Identified:         |  |
| ☐ Yes                                                |                                                     |                                      | Yes                                             |                             |  |
| ✓ No                                                 |                                                     |                                      | ☑ No                                            |                             |  |
| List All Wetlands:                                   |                                                     | List All Sensitive                   | Environments <sup>11</sup> :                    |                             |  |

| Water Body : Flow (cfs): Frontage miles:           | <u>Water Body</u> :                     | Flow (cfs): Sensitive Environment Type:                            |  |  |
|----------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|--|--|
|                                                    |                                         |                                                                    |  |  |
|                                                    |                                         |                                                                    |  |  |
|                                                    |                                         |                                                                    |  |  |
|                                                    | 9. Soil Exposure Pathw                  | ay                                                                 |  |  |
| Are People Occupying Residence or                  | Number of Workers Onsite <sup>4</sup> : | Have Terrestrial Sensitive Environments Been                       |  |  |
| Attending School or Daycare on or                  |                                         | Identified on or Within 200 Feet of Areas of                       |  |  |
| Within 200 Feet of Area of Known or                | ☑ None<br>□ 1 - 100                     | Known or Suspected Contamination:                                  |  |  |
| Suspected Contamination:                           | 101 - 1,000                             |                                                                    |  |  |
|                                                    | □ > 1,000                               | □ Yes                                                              |  |  |
| _                                                  |                                         | ☑ No                                                               |  |  |
| ☐ Yes ☑ No                                         |                                         | If you list Fook Townstaid Consiting                               |  |  |
| ₩ NO                                               | D. L. M. M. A. A. M. I.                 | If Yes, List Each Terrestrial Sensitive Environment <sup>5</sup> : |  |  |
| If Yes, Enter Total Residential                    | Population Within 1 Mile:               | LIMIOIIIIEIL .                                                     |  |  |
| Population:                                        |                                         |                                                                    |  |  |
| - opaidiem                                         | People <sup>7</sup>                     |                                                                    |  |  |
| People <sup>2</sup>                                |                                         |                                                                    |  |  |
|                                                    |                                         | *Refer to PA Table 7 for environment types                         |  |  |
|                                                    | 10. Air Pathway                         |                                                                    |  |  |
| Is there a Suspected Release to Air <sup>1</sup> : | Wetlands Locate                         | ed Within 4 Miles of the Site <sup>6</sup> :                       |  |  |
| Yes                                                | ✓ Yes                                   |                                                                    |  |  |
| ☑ No                                               | □ No                                    | If Yes, How Many Acres: Acres                                      |  |  |
| Enter Total Population on or Within:               | 211 2 111                               |                                                                    |  |  |
| Onsite                                             | Other Sensitive                         | Environments Located Within 4 Miles of the Site:                   |  |  |
| 0.1/4.84:10                                        |                                         | ☐ Yes<br>☑ No                                                      |  |  |
| 0-1/4 Mile                                         |                                         |                                                                    |  |  |
| >1/4-1/2 Mile                                      | List All Sensitive                      | Environments Within 1/2 Mile of the Site <sup>6</sup> :            |  |  |
| >1/2-1 Mile                                        | <u>Distance:</u> <u>Ser</u>             | nsitive Environment Type/Wetlands Area (acres):                    |  |  |
| >1-2 Miles                                         | Onsite No                               | one                                                                |  |  |
| >2-3 Miles                                         | 0-1/4 MileV                             | Vetlands                                                           |  |  |
| >3-4 Miles                                         | >1/4-1/2 Mile _V                        | Vetlands                                                           |  |  |
| Total Within 4 Miles <sup>3-5</sup> _7,530_        |                                         |                                                                    |  |  |

<sup>1-11</sup> Refers to question number on the PA scoresheet for each particular pathway

|                                                                                              |                                                 |                                                        |                             |                  | Identificatio                | n                  |
|----------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|-----------------------------|------------------|------------------------------|--------------------|
| Potential                                                                                    | Hazardous W                                     |                                                        | Preliminary                 | Assessment       | State: SD                    | CERCLIS #:         |
|                                                                                              |                                                 | Form                                                   |                             |                  | CERCLIS Disc                 | covery Date:       |
|                                                                                              |                                                 | 1. Ge                                                  | neral Site Inform           | ation            |                              |                    |
| Name: Ellsworth                                                                              | n AFB                                           | Street Address                                         | s: 1000 N Ellsworth         | n Rd             |                              |                    |
| City:                                                                                        |                                                 | State: SD                                              | Zip Code:<br>57769          | County:<br>Meade | Co. Code:                    | Cong. Dist:        |
| Latitude:<br>44°8' 25.23"                                                                    | Longitude:<br>103°5′ 35.30″                     | Approximate a                                          |                             |                  | Not Specified  NA (GW plume, | etc.)              |
|                                                                                              | y Nozzle Test Area<br>: In the 1970s and 198    |                                                        |                             |                  |                              |                    |
| _                                                                                            | This routine equipmen<br>ge of the ramp and the | -                                                      |                             |                  | thecked out. T               | The truck would be |
|                                                                                              |                                                 | 2. Owne                                                | er/Operator Info            | rmation          |                              |                    |
| Owner: Ellswort                                                                              | h AFB                                           |                                                        | Operator: sam               | ne as owner      |                              |                    |
| Street Address:                                                                              | 1000 N Ellsworth Rd                             |                                                        | Street Address              | s:               |                              |                    |
| City:                                                                                        |                                                 |                                                        | City:                       |                  |                              |                    |
| State: SD                                                                                    | Zip Code:                                       | Telephone:                                             | State:                      | Zip Code:        | Telephone:                   |                    |
| Type of Ownersl                                                                              | hip:                                            |                                                        | Type of Owne                | rship:           | 1                            |                    |
| ☐ Private ☐ County ☐ Federal Agency ☐ Municipal ☐ Name: _DOD ☐ Not Specified ☐ State ☐ Other |                                                 | ☐ Private ☐ Federal Agenc     Name: _ ☐ State ☐ Indian | _                           | ified            |                              |                    |
|                                                                                              |                                                 | 3. Site                                                | <b>Evaluator Inforn</b>     | nation           |                              |                    |
| Name of Evaluat<br>Kelly Teplitsky                                                           | tor:                                            | Agency/Orgar<br>CH2M HILL                              | nization:                   |                  | Date Prepare 03/03/2015      | ed:                |
| Street Address:                                                                              | 9191 South Jamaica St                           | reet                                                   | City: Englewoo              | od               | State: CO                    |                    |
| Name of EPA or                                                                               | State Agency Contact:                           |                                                        | Street Address              | s:               | l                            |                    |
| City:                                                                                        |                                                 | State:                                                 | <b>-</b>                    | Telephone:       |                              |                    |
|                                                                                              |                                                 | 4. Site Dis                                            | position <i>(for EPA</i>    | use only)        |                              |                    |
| Emergency Resp<br>Recommendation                                                             | oonse/Removal Assess                            | ment                                                   | CERCLIS Recor               |                  | Signature:                   |                    |
| necommendatio                                                                                | Yes                                             |                                                        | ☐ Lower Prid                |                  | Name (typed                  | d):                |
|                                                                                              | □ No  Date:                                     |                                                        | ☐ RCRA<br>☐ Other:<br>Date: |                  | Position:                    |                    |
|                                                                                              |                                                 | 5. Gene                                                | eral Site Characte          |                  | 1                            |                    |
| Predominant La                                                                               | nd Use Within 1 Mile                            |                                                        | Site Setting:               |                  | Years of Ope                 | eration:           |

| that apply):                                                                                                                                                                                                                                                                                               |                                              |                                 |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ☐ Industrial                                                                                                                                                                                                                                                                                               | ☐ Agriculture ☐                              | 001                             | ☐ Urban                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Beginning Year 1970s                                                                                                            |  |  |  |  |
| Commercial                                                                                                                                                                                                                                                                                                 | _                                            | Other Federal                   | ☐ Subur                                                  | ban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ending Year 1980s                                                                                                               |  |  |  |  |
| <ul><li>☐ Residential</li><li>☐ Forest/Fields</li></ul>                                                                                                                                                                                                                                                    | ☑ DOD ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐    | acility:                        |                                                          | Litating Tear 19803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                 |  |  |  |  |
| - Torest/Tields                                                                                                                                                                                                                                                                                            |                                              | Other                           |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Unknown                                                                                                                       |  |  |  |  |
| Type of Site Operation                                                                                                                                                                                                                                                                                     | ons (check all that a                        | ipply):                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waste Generated:                                                                                                                |  |  |  |  |
| ☐ Manufacturing (must ch                                                                                                                                                                                                                                                                                   | heck subcategory)                            | [                               | ☐ Retail                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Onsite                                                                                                                          |  |  |  |  |
| ☐ Lumber and Woo                                                                                                                                                                                                                                                                                           | od Products                                  |                                 | Recycling                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Offsite                                                                                                                         |  |  |  |  |
| ☐ Inorganic Chemic                                                                                                                                                                                                                                                                                         |                                              |                                 | Junk/Salvage Yard                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Onsite and Offsite                                                                                                            |  |  |  |  |
| ☐ Plastic and/or Ru☐ Paints, Varnishes                                                                                                                                                                                                                                                                     |                                              |                                 | ☐ Municipal Landfill<br>☐ Other Landfill                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waste Deposition Authorized                                                                                                     |  |  |  |  |
| ☐ Industrial Organi                                                                                                                                                                                                                                                                                        |                                              |                                 | ☑ DOD                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | By: Present Owner                                                                                                               |  |  |  |  |
| ☐ Agricultural Chen                                                                                                                                                                                                                                                                                        |                                              | _                               | DOE                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Former Owner                                                                                                                    |  |  |  |  |
| ☐ Miscellaneous Ch                                                                                                                                                                                                                                                                                         | nemical Products                             | _                               | <ul><li>□ DOI</li><li>□ Other Federal Facility</li></ul> | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ☐ Present & Former Owner                                                                                                        |  |  |  |  |
| ☐ Primary Metals ☐ Metal Coating, Plants                                                                                                                                                                                                                                                                   | ating Engraving                              |                                 | RCRA                                                     | <i>y</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ☐ Unauthorized☐ Unknown                                                                                                         |  |  |  |  |
| ☐ Metal Forging, St                                                                                                                                                                                                                                                                                        |                                              |                                 | ☐ Treatment, Stor                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waste Accessible to the Public:                                                                                                 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            | ural Metal Products                          |                                 | ☐ Large Quantity                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | waste Accessible to the Fublic.                                                                                                 |  |  |  |  |
| ☐ Electronic Equipn ☐ Other Manufactu                                                                                                                                                                                                                                                                      |                                              |                                 | <ul><li>☐ Small Quantity</li><li>☐ Subtitle D</li></ul>  | Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                 |  |  |  |  |
| l _                                                                                                                                                                                                                                                                                                        | ring                                         |                                 | ☐ Municipal                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Yes<br>☑ No                                                                                                                   |  |  |  |  |
| Mining                                                                                                                                                                                                                                                                                                     |                                              |                                 | ☐ Industrial                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V NO                                                                                                                            |  |  |  |  |
| ☐ Metals ☐ Coal                                                                                                                                                                                                                                                                                            |                                              |                                 | Converter"                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Distance to Nearest Dwelling,                                                                                                   |  |  |  |  |
| ☐ Oil and Gas                                                                                                                                                                                                                                                                                              |                                              |                                 | ☐ "Protective Filer ☐ "Non-or Late File                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | School, or Workplace:                                                                                                           |  |  |  |  |
| ☐ Non-metallic Mine                                                                                                                                                                                                                                                                                        | erals                                        |                                 | □ Note Specified                                         | iei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Seriooi, or Workpiace.                                                                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                              |                                 | Other                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _1,050 Feet                                                                                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                              |                                 |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _1,0301666                                                                                                                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                              | 6. Waste Char                   | racteristics Infor                                       | 6. Waste Characteristics Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 |  |  |  |  |
| (Refer to PA Table 1 for WC Score)                                                                                                                                                                                                                                                                         |                                              |                                 |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                              | •                               | A Table 1 for WC Sco                                     | ore)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 |  |  |  |  |
| Source Type:                                                                                                                                                                                                                                                                                               | Source                                       | (Refer to PA<br>Waste Quantity: | A Table 1 for WC Sco<br>Tier*:                           | General Type of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Waste                                                                                                                           |  |  |  |  |
| Source Type:<br>(check all that apply)                                                                                                                                                                                                                                                                     | Source<br>(include u                         | Waste Quantity:                 |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |  |  |  |  |
| (check all that apply)                                                                                                                                                                                                                                                                                     |                                              | Waste Quantity:                 |                                                          | General Type of (check all that app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oly):                                                                                                                           |  |  |  |  |
| (check all that apply)                                                                                                                                                                                                                                                                                     |                                              | Waste Quantity:                 |                                                          | General Type of (check all that app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dly):  ☐ Pesticides/Herbicides ☐ Acids/Bases                                                                                    |  |  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums                                                                                                                                                                                                                                                 | (include u                                   | Waste Quantity:                 |                                                          | General Type of (check all that app   Metals   Organics   Inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pesticides/Herbicides Acids/Bases Oily Waste                                                                                    |  |  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co                                                                                                                                                                                                                            | (include u                                   | Waste Quantity:                 |                                                          | General Type of (check all that app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dly):  ☐ Pesticides/Herbicides ☐ Acids/Bases                                                                                    |  |  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co                                                                                                                                                                                                                            | (include u                                   | Waste Quantity:                 |                                                          | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives                                |  |  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co                                                                                                                                                                                                                            | (include u                                   | Waste Quantity:                 |                                                          | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  te  Other _AFFF_          |  |  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum)                                                                                                                                          | (include u                                   | Waste Quantity:                 |                                                          | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  te  Other _AFFF_          |  |  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment                                                                                                                           | ontainers                                    | Waste Quantity:                 |                                                          | General Type of (check all that app  Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hospi Radioactive Wast Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pesticides/Herbicides  Acids/Bases Oily Waste Municipal Waste Mining Waste ital Waste Explosives  te Other_AFFF_ molition Waste |  |  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum                                                                                                      | ontainers                                    | Waste Quantity:                 |                                                          | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pesticides/Herbicides  Acids/Bases Oily Waste  Municipal Waste  Mining Waste  ital Waste  Explosives  te  Other _AFFF_          |  |  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment                                                                                                                           | ontainers                                    | Waste Quantity:                 |                                                          | General Type of (check all that app (check all | Pesticides/Herbicides                                                                                                           |  |  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source)                                    | ontainers                                    | Waste Quantity:                 |                                                          | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pesticides/Herbicides                                                                                                           |  |  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source) Contaminated Soil                  | ontainers                                    | Waste Quantity:                 |                                                          | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pesticides/Herbicides                                                                                                           |  |  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source)                                    | ontainers                                    | Waste Quantity:                 |                                                          | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pesticides/Herbicides                                                                                                           |  |  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source) Contaminated Soil Other No Sources | ontainers                                    | Waste Quantity:                 |                                                          | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pesticides/Herbicides                                                                                                           |  |  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source) Contaminated Soil Other No Sources | ontainers                                    | Waste Quantity: nit)            |                                                          | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pesticides/Herbicides                                                                                                           |  |  |  |  |
| (check all that apply)  Landfill Surface Impoundment Drums Tanks and Non-Dum Co Chemical Waste Pile Scrap Metal or Junk Pile Tailings Pile Trash Pile (open drum) Land Treatment Contaminated GW Plum (unidentified source) Contaminated SW/Sedir (unidentified source) Contaminated Soil Other No Sources | ontainers  me  ment  ent, W=Wastestream, V=V | Waste Quantity: nit)            | Tier*:                                                   | General Type of (check all that app  Metals Organics Inorganics Paints/Pigments Laboratory/HospiRadioactive Wast Construction/Der  Physical State of that apply):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pesticides/Herbicides                                                                                                           |  |  |  |  |
| Check all that apply                                                                                                                                                                                                                                                                                       | ontainers  me  ment  ent, W=Wastestream, V=V | Waste Quantity:  nit)           | Tier*:                                                   | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pesticides/Herbicides                                                                                                           |  |  |  |  |
| Check all that apply                                                                                                                                                                                                                                                                                       | ontainers  me  ment  ent, W=Wastestream, V=V | Waste Quantity:  nit)           | Tier*:                                                   | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pesticides/Herbicides                                                                                                           |  |  |  |  |
| Check all that apply                                                                                                                                                                                                                                                                                       | ontainers  me  ment  ent, W=Wastestream, V=V | Waste Quantity:  nit)           | Tier*:                                                   | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pesticides/Herbicides                                                                                                           |  |  |  |  |
| Check all that apply                                                                                                                                                                                                                                                                                       | ontainers  me  ment  ent, W=Wastestream, V=V | Waste Quantity:  nit)           | Tier*:                                                   | General Type of (check all that app     Metals     Organics     Inorganics     Solvents     Paints/Pigments     Laboratory/Hospi     Radioactive Wast     Construction/Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pesticides/Herbicides                                                                                                           |  |  |  |  |

| Drinking Well: Have Primary Target Drinking          |                                                                 | /1/4-1/2 IVIIICIVM                                                                    |  |  |
|------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| Feet                                                 | Water Wells Been Identified:                                    |                                                                                       |  |  |
| Type of Drinking Water Wells Within 4                | ☐ Yes                                                           | >1/2 - 1 IVIIIC                                                                       |  |  |
| Miles                                                | Λiles ☑ No                                                      |                                                                                       |  |  |
| (check all that apply):                              | If Yes, Enter Primary Target                                    | >2 - 3 Mile NA                                                                        |  |  |
| ☑ Municipal<br>□ Private                             | Population:                                                     |                                                                                       |  |  |
| □ None                                               | People <sup>3</sup>                                             | >3 - 4 MileNA                                                                         |  |  |
| Depth to Shallowest Aquifer:                         | Nearest Designated Wellhead                                     | d Total Within 4 Miles <sup>4</sup> NA                                                |  |  |
| ~ 10 to 50 Feet                                      | Protection Area <sup>6</sup> :                                  | Total Within 4 Miles _NA                                                              |  |  |
| Karst Terrain/Aquifer Present:                       | Underlies Site                                                  |                                                                                       |  |  |
| ☐ Yes                                                | <ul><li>□ &gt;0-4 Miles</li><li>☑ None Within 4 Miles</li></ul> | *Use population #s for PA Table 2  *Note nearest well for #5 on GW Pathway Scoresheet |  |  |
| ☑ No                                                 | 1                                                               | Note hearest well for #5 on GW Facility Scoresheet                                    |  |  |
|                                                      | 8. Surface Water P                                              | athway                                                                                |  |  |
| Type of Surface Water Draining Site and that apply): | 15 Miles Downstream (check                                      | all Shortest Overland Distance From Any Source to Surface Water:                      |  |  |
| ☑ Stream ☐ River ☑ Por                               | nd 🔲 Lake                                                       | _1,400_ Feet                                                                          |  |  |
| ☐ Bay ☐ Ocean ☐ Oth                                  | ner                                                             | Miles                                                                                 |  |  |
| Is There a Suspected Release to Surface              |                                                                 | Site is Located in:                                                                   |  |  |
|                                                      |                                                                 | ☐ Annual - 10 yr Floodplain                                                           |  |  |
| ✓ Yes □ No                                           |                                                                 | ☐ >10yr - 100yr Floodplain<br>☐ >100yr - 500yr Floodplain                             |  |  |
|                                                      |                                                                 | □ >500yr Floodplain                                                                   |  |  |
| Drinking Water Intake Located Along the              | h: List All Secondary Target Drinking Water Intakes:            |                                                                                       |  |  |
| ☐ Yes<br>☑ No                                        | Name: Water Body: Flow (cfs): Population Served:                |                                                                                       |  |  |
| Have Primary Target Drinking Water Inta              | kes Been Identified:                                            |                                                                                       |  |  |
|                                                      | e to Nearest Drinking                                           |                                                                                       |  |  |
|                                                      | : Miles <sup>6</sup>                                            |                                                                                       |  |  |
| If Yes, Enter Population Served by Target            | : Intake:                                                       |                                                                                       |  |  |
|                                                      |                                                                 | Total within 15 Miles <sup>4</sup>                                                    |  |  |
| NA People <sup>4</sup>                               |                                                                 |                                                                                       |  |  |
| Fisheries Located Along the Surface Wat              | er Migration Path:                                              | List All Secondary Target Fisheries <sup>10</sup> :                                   |  |  |
|                                                      | e to Nearest Fishery:                                           | Water Body/ Fishery Name : Flow (cfs):                                                |  |  |
|                                                      | Miles                                                           |                                                                                       |  |  |
| Have Primary Target Fisheries Been Iden              | tified:                                                         |                                                                                       |  |  |
| ☐ Yes ☑ No                                           |                                                                 |                                                                                       |  |  |
|                                                      | 8. Surface Water Pathwa                                         | y (continued)                                                                         |  |  |
| Wetlands Located Along the Surface Wa                | =                                                               | sitive Environments Located Along the Surface Water                                   |  |  |
| Path:                                                | Migration                                                       |                                                                                       |  |  |
| ✓ Yes  □ No                                          | ☐ Yes<br>☑ No                                                   | If Yes, Distance to Nearest Sensitive Environment: Miles                              |  |  |
| Have Primary Target Wetlands Been Ide                |                                                                 | ary Target Sensitive Environments Been Identified:                                    |  |  |
| ☐ Yes                                                |                                                                 | Yes                                                                                   |  |  |
| ☐ Yes ☑ No                                           |                                                                 | ☑ No                                                                                  |  |  |
| List All Wetlands:                                   | List All Se                                                     | ve Environments <sup>11</sup> :                                                       |  |  |

| Water Body: Flow (cfs): Frontage miles:            | <u>w</u>                   | /ater Body :    |              | Flow (cfs):                                | Sensitive Environment Type:                  |  |
|----------------------------------------------------|----------------------------|-----------------|--------------|--------------------------------------------|----------------------------------------------|--|
|                                                    | -                          |                 |              |                                            |                                              |  |
|                                                    | -                          |                 |              |                                            |                                              |  |
|                                                    | O Soil Eyes                | Saura Dati      | ha.          |                                            | ·                                            |  |
| Are People Occupying Residence or                  | 9. Soil Expo               |                 | iiway        |                                            | strial Sensitive Environments Been           |  |
| Attending School or Daycare on or                  | Number of Workers (        | Onsite :        |              |                                            | on or Within 200 Feet of Areas of            |  |
| Within 200 Feet of Area of Known or                | ✓ None                     |                 |              |                                            | suspected Contamination:                     |  |
| Suspected Contamination:                           | <u> </u>                   |                 |              |                                            |                                              |  |
|                                                    | □ 101 - 1,000<br>□ > 1,000 |                 |              |                                            |                                              |  |
|                                                    | 1,000                      |                 |              |                                            | ☐ Yes ☑ No                                   |  |
| ☐Yes                                               |                            |                 |              |                                            | ₩ NO                                         |  |
| ☑ No                                               |                            |                 |              |                                            | Each Terrestrial Sensitive                   |  |
|                                                    | Population Within 1 I      | Mile:           |              | Environm                                   | ent⁵:                                        |  |
| If Yes, Enter Total Residential                    |                            |                 |              |                                            |                                              |  |
| Population:                                        | People <sup>7</sup>        |                 |              |                                            |                                              |  |
| People <sup>2</sup>                                |                            |                 |              |                                            |                                              |  |
|                                                    |                            |                 |              | *Refer to PA Table 7 for environment types |                                              |  |
|                                                    | 10. Air                    | Pathway         | ,            |                                            |                                              |  |
| Is there a Suspected Release to Air <sup>1</sup> : | We                         | etlands Lo      | cated        | Within 4 M                                 | iles of the Site <sup>6</sup> :              |  |
| ☐ Yes                                              |                            | ✓ Yes           |              | .6.4                                       |                                              |  |
| ✓ No                                               |                            | ☐ No            |              | If Yes, How Many Acres: Acres              |                                              |  |
| Enter Total Population on or Within:               | 2.1                        |                 |              |                                            |                                              |  |
| Onsite                                             | Oti                        | her Sensiti     | ive En       | ivironments                                | Located Within 4 Miles of the Site:          |  |
| 0.4/2.20                                           |                            |                 |              | ☐ Yes<br>☑ No                              |                                              |  |
| 0-1/4 Mile                                         |                            |                 |              | ₩ NO                                       |                                              |  |
| >1/4-1/2 Mile                                      | Lis                        | t All Sensit    | tive E       | nvironment                                 | s Within 1/2 Mile of the Site <sup>6</sup> : |  |
| >1/2-1 Mile                                        | Dis                        | stance:         | <u>Sensi</u> | tive Environn                              | nent Type/Wetlands Area (acres):             |  |
| >1-2 Miles                                         | On                         | site            | None         | e                                          | <del></del>                                  |  |
| >2-3 Miles                                         | 0-1                        | L/4 Mile        | _We          | tlands                                     |                                              |  |
| >3-4 Miles                                         | >1,                        | /4-1/2 Mile     | _We          | tlands                                     |                                              |  |
| Total Within 4 Miles <sup>3-5</sup> _7,090_        | *R6                        | efer to PA Tabl | le 10 fo     | r calculations on                          | a air pathway exposures                      |  |

<sup>1-11</sup> Refers to question number on the PA scoresheet for each particular pathway

|                   |                                   |                    |                          |                       | Identificatio  | n                  |
|-------------------|-----------------------------------|--------------------|--------------------------|-----------------------|----------------|--------------------|
| Potential         | Hazardous W                       |                    | Preliminary              | Assessment            | State: SD      | CERCLIS #:         |
|                   |                                   | Form               |                          |                       | CERCLIS Disc   | covery Date:       |
|                   |                                   | 1. Ger             | neral Site Inform        | ation                 | I              |                    |
| Name: Ellsworth   | n AFB                             | Street Address     | s: 1000 N Ellswort       | h Rd                  |                |                    |
| City:             |                                   | State: SD          | Zip Code:<br>57769       | County:<br>Meade      | Co. Code:      | Cong. Dist:        |
| Latitude:         | Longitude:                        | Approximate A      | Area of Site:            | Status of Site:       | <u> </u>       |                    |
| 44°7' 46.17"      | 103°5' 37.53"                     | _43 Acr            | res                      | ☐ Active ☐            | Not Specified  |                    |
|                   |                                   |                    | Square Ft                |                       | NA (GW plume,  | etc.)              |
| Site Name: Alert  | t Apron                           |                    |                          |                       |                |                    |
| Site Description: | : The alert apron is loc          | ated in the south  | ern portion of the       | base just west of the | southern er    | d of the runway.   |
| event of an eme   | war, B-52s were parke<br>ergency. | a aown nere on s   | stand-by for quick       | take oπ. Crash truck  | s were also io | ocated here in the |
|                   |                                   | 2. Owne            | r/Operator Info          | rmation               |                |                    |
| Owner: Ellswort   | h AFB                             |                    | Operator: san            | ne as owner           |                |                    |
| Street Address:   | 1000 N Ellsworth Rd               |                    | Street Addres            | s:                    |                |                    |
| City:             |                                   |                    | City:                    |                       |                |                    |
| State: SD         | Zip Code:                         | Telephone:         | State:                   | Zip Code:             | Telephone:     |                    |
| Type of Owners    | hip:                              |                    | Type of Owne             | ership:               |                |                    |
| ☐ Private         | ☐ County                          |                    | ☐ Private                | ☐ County              |                |                    |
| ☑ Federal Agency  | ☐ Municipa                        | al                 | ☐ Federal Agend          |                       |                |                    |
| Name: _DO         |                                   |                    | Name: _                  |                       |                |                    |
| ☐ Indian          | ☐ Other                           |                    | ☐ Indian                 | Other                 | <del></del>    |                    |
|                   |                                   | 3. Site            | Evaluator Inforn         | nation                |                |                    |
| Name of Evaluat   | tor:                              | Agency/Organ       | ization:                 |                       | Date Prepar    | ed:                |
| Kelly Teplitsky   |                                   | CH2M HILL          |                          |                       | 03/03/2015     |                    |
| Street Address:   | 9191 South Jamaica St             | reet               | City: Englewo            | od                    | State: CO      |                    |
| Name of EPA or    | State Agency Contact:             |                    | Street Addres            | s:                    |                |                    |
| City:             |                                   | State:             |                          | Telephone:            |                |                    |
|                   |                                   | 4. Site Disp       | oosition <i>(for EPA</i> | use only)             |                |                    |
| Emergency Resp    | oonse/Removal Assess              |                    | CERCLIS Reco             | • •                   | Signature:     |                    |
| Recommendation    | on:                               |                    | ☐ Higher Pr              |                       |                |                    |
|                   | ☐ Yes                             |                    | ☐ Lower Pri<br>☐ NFRAP   | ority SI              | Name (type     | d):                |
|                   | □No                               |                    | □ RCRA                   |                       | Position:      |                    |
|                   | Date:                             |                    | ☐ Other:<br>Date:        |                       | . 0510011.     |                    |
|                   |                                   | 5. Gene            | eral Site Charact        | eristics              |                |                    |
| Predominant La    | nd Use Within 1 Mile              | of Site (check all | Site Setting:            |                       | Years of Ope   | eration:           |

| that apply):                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                               |                                  |                                                                                     |                                                  |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------|---|
| ☐ Industrial ☐ Commercial ☐ Residential ☐ Forest/Fields                                                                                                                    | ☐ Mining ☑ DOD ☐ ☐ DOE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOI Other Federal Facility: Other                                                                                                                                                                                                                                                                                                                                             | □ Urban<br>□ Suburban<br>☑ Rural |                                                                                     | Beginning Year 1947  Ending Year 1991  □ Unknown |   |
| Type of Site Operation                                                                                                                                                     | ons (check all that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | annly):                                                                                                                                                                                                                                                                                                                                                                       |                                  |                                                                                     | Waste Generated:                                 |   |
| Type of Site Operation                                                                                                                                                     | ons (check all that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | арріу).                                                                                                                                                                                                                                                                                                                                                                       |                                  |                                                                                     | _                                                |   |
| Manufacturing (must c                                                                                                                                                      | od Products cals ubber Products s ic Chemicals nicals nemical Products lating, Engraving tamping tural Metal Products ment iring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pply):    Retail   Recycling   Junk/Salvage Yard   Municipal Landfill   Other Landfill   DOD   DOE   DOI   Other Federal Facility   RCRA   Treatment, Storage, or D   Large Quantity Generator   Small Quantity Generator   Small Quantity Generator   Subtitle D   Municipal   Industrial   "Converter"   "Protective Filer"   "Non-or Late Filer"   Note Specified   Other_ |                                  | rage, or Disposal<br>Generator<br>Generator<br>                                     | ✓ Onsite                                         |   |
|                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                               | Uther                            | <del></del>                                                                         | _2,075 Feet                                      |   |
|                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. Waste Char                                                                                                                                                                                                                                                                                                                                                                 | racteristics Inform              | mation                                                                              |                                                  |   |
|                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                               | A Table 1 for WC Sco             |                                                                                     |                                                  |   |
| Source Type:                                                                                                                                                               | Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Waste Quantity:                                                                                                                                                                                                                                                                                                                                                               | Tier*:                           | General Type of                                                                     | Waste                                            |   |
| (check all that apply)                                                                                                                                                     | (include ເ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ınit)                                                                                                                                                                                                                                                                                                                                                                         |                                  | (check all that app                                                                 | oly):                                            |   |
| □ Landfill □ Surface Impoundment □ Drums □ Tanks and Non-Dum Co □ Chemical Waste Pile □ Scrap Metal or Junk Pilo □ Tailings Pile □ Trash Pile (open drum) □ Land Treatment | e<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                  | Metals Organics Inorganics Solvents Paints/Pigments Laboratory/Hosp Radioactive Was | ital Waste Explosives te Other _AFFF_            | S |
| ☐ Contaminated GW Plum                                                                                                                                                     | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ······                                                                                                                                                                                                                                                                                                                                                                        |                                  | Physical State of                                                                   | f Waste as Deposited (check all                  |   |
| (unidentified source)  Contaminated SW/Sedi                                                                                                                                | ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                               |                                  | that apply):                                                                        | Solid                                            |   |
| Contaminated Soil Other No Sources                                                                                                                                         | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                               | Sludge Powder Liquid             |                                                                                     | Powder                                           |   |
|                                                                                                                                                                            | ent, W=Wastestream, V=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /olume, A=Area                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                     | Gas                                              |   |
|                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                                                                                                                                                                                                                                                                                                                                                             | nd Water Pathwa                  | ıy                                                                                  |                                                  |   |
| Is Ground Water Use                                                                                                                                                        | d for Drinking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Is There a Suspect                                                                                                                                                                                                                                                                                                                                                            |                                  |                                                                                     | arget Population Served by                       |   |
| Within 4 Miles:                                                                                                                                                            | , and the second | Ground Water <sup>1</sup> :                                                                                                                                                                                                                                                                                                                                                   |                                  | •                                                                                   | Withdrawn From:                                  |   |
| ☑ Yes<br>☐ No                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Yes<br>☑ No                                                                                                                                                                                                                                                                                                                                                                 |                                  | 0 - 1/4 Mile                                                                        | NA                                               |   |
| If Yes, Distance to n                                                                                                                                                      | earest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                               |                                  | >1/4 - 1/2 Mil                                                                      | e NA                                             |   |

| Drinking Well:                                                        | Have Primary Tar                                    | get Drinking                         | >1/4-1/2 IVIIIC                                    |                             |  |
|-----------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|----------------------------------------------------|-----------------------------|--|
| Feet                                                                  | Water Wells Beer                                    | •                                    | >1/2 - 1 Mile                                      | NA                          |  |
| Type of Drinking Water Wells Within 4                                 |                                                     |                                      | >1/2 - 1 Wille                                     | NA                          |  |
| Miles                                                                 | ☐ Yes<br>☑ No                                       |                                      | >1 - 2 Mile                                        | NA                          |  |
| (check all that apply):                                               |                                                     |                                      |                                                    |                             |  |
| ☑ Municipal                                                           | If Yes, Enter Prir Population:                      | nary Target                          | >2 - 3 Mile                                        | NA                          |  |
| ☐ Private ☐ None                                                      | •                                                   | People <sup>3</sup>                  | >3 - 4 Mile                                        | NA                          |  |
|                                                                       | Nearest Designat                                    | ad Mallbaad                          | -                                                  |                             |  |
| Depth to Shallowest Aquifer: ~ 10 to 50 Feet                          | Nearest Designate<br>Protection Area <sup>6</sup> : |                                      | Total Within 4 Miles <sup>4</sup>                  | _NA                         |  |
|                                                                       |                                                     |                                      |                                                    |                             |  |
| Karst Terrain/Aquifer Present:                                        | ☐ Under                                             |                                      | *Use population #s for PA Tab                      | nle 2                       |  |
| □Yes                                                                  |                                                     | Within 4 Miles                       | *Note nearest well for #5 on                       |                             |  |
| ☑ No                                                                  |                                                     |                                      |                                                    |                             |  |
|                                                                       |                                                     | ce Water Pathwa                      |                                                    |                             |  |
| Type of Surface Water Draining Site and that apply):                  | 15 Miles Downstr                                    | eam (check all                       | Shortest Overland Dista<br>Surface Water:          | nce From Any Source to      |  |
| ✓ Stream                                                              | nd 🔲 Lake                                           |                                      | _1,250_ Fe                                         | et                          |  |
| ☐ Bay ☐ Ocean ☐ Otl                                                   | her                                                 |                                      | N                                                  | Miles                       |  |
| Is There a Suspected Release to Surface                               | \Mator <sup>1</sup> :                               |                                      | Site is Located in:                                |                             |  |
| is There a suspected Release to Surface                               | water.                                              |                                      | ☐ Annual - 10 yr Flod                              | odolain                     |  |
| ☐ Yes                                                                 |                                                     |                                      | >10yr - 100yr Floodplain                           |                             |  |
| ☑ No                                                                  |                                                     |                                      | ☐ >100yr - 500yr Floodplain<br>☐ >500yr Floodplain |                             |  |
| Drinking Water Intake Located Along the Surface Water Migration Path: |                                                     |                                      | List All Secondary Targe                           | t Drinking Water Intakes:   |  |
| □ Yes                                                                 |                                                     |                                      |                                                    |                             |  |
| ✓ No                                                                  |                                                     |                                      | <u>Name</u> : <u>Water Body</u> : <u>Flow</u>      | v (cfs): Population Served: |  |
| Have Primary Target Drinking Water Into                               | akes Been Identifie                                 | ed:                                  |                                                    |                             |  |
| ☐ Yes If Yes, Distance                                                | ce to Nearest Drinl                                 | king                                 |                                                    |                             |  |
| ☑ No Water Intake                                                     | :Mile                                               | s <sup>6</sup>                       |                                                    |                             |  |
| If Yes, Enter Population Served by Targe                              | t Intake:                                           |                                      |                                                    |                             |  |
| , , ,                                                                 |                                                     |                                      | Total within                                       | 15 Miles <sup>4</sup>       |  |
| NA People <sup>4</sup>                                                |                                                     |                                      | Total Within                                       |                             |  |
| Fisheries Located Along the Surface Wat                               | er Migration Dath                                   |                                      | List All Secondary Targe                           | t Ficharias <sup>10</sup> : |  |
| If Vac Distance                                                       | e to Nearest Fisher                                 |                                      | Water Body/ Fishery Name                           |                             |  |
| ☐ Yes ☑ No II Yes, Distance                                           | Mile                                                | •                                    |                                                    |                             |  |
| Have Primary Target Fisheries Been Iden                               | tified:                                             |                                      |                                                    |                             |  |
| ☐ Yes ☑ No                                                            |                                                     |                                      |                                                    |                             |  |
| 8. Surface Water Pathway (continued)                                  |                                                     |                                      |                                                    |                             |  |
| Wetlands Located Along the Surface Wa<br>Path:                        | ter Migration                                       | Other Sensitive E<br>Migration Path: | nvironments Located Alo                            | ng the Surface Water        |  |
| ☑ Yes<br>□ No                                                         |                                                     | ☐ Yes<br>☑ No                        | If Yes, Distance to Environment:                   | Nearest Sensitive<br>Miles  |  |
| Have Primary Target Wetlands Been Ide                                 | entified:                                           |                                      | —<br>get Sensitive Environmen                      | ts Been Identified:         |  |
| yes □ Yes                                                             |                                                     | , ,                                  | ☐ Yes                                              |                             |  |
| ☐ Yes<br>☑ No                                                         |                                                     |                                      | ☑ No                                               |                             |  |
| List All Wetlands:                                                    | Environments <sup>11</sup> :                        |                                      |                                                    |                             |  |

| Water Body : Flow (cfs): Frontage miles:           | <u>Water Body</u> :                     | Flow (cfs): Sensitive Environment Type:                            |
|----------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|
|                                                    |                                         |                                                                    |
|                                                    |                                         |                                                                    |
|                                                    |                                         | <del></del>                                                        |
|                                                    | 9. Soil Exposure Pathw                  | <i>r</i> ay                                                        |
| Are People Occupying Residence or                  | Number of Workers Onsite <sup>4</sup> : | Have Terrestrial Sensitive Environments Been                       |
| Attending School or Daycare on or                  |                                         | Identified on or Within 200 Feet of Areas of                       |
| Within 200 Feet of Area of Known or                | ☑ None<br>□ 1 - 100                     | Known or Suspected Contamination:                                  |
| Suspected Contamination:                           | □ 101 - 1,000                           |                                                                    |
|                                                    | □ > 1,000                               | □Yes                                                               |
|                                                    |                                         | ☑ No                                                               |
| ☐ Yes ☑ No                                         |                                         | If Vac List Fach Townstrial Consisting                             |
| NO NO                                              | Developing Militia d Adila              | If Yes, List Each Terrestrial Sensitive Environment <sup>5</sup> : |
| If Yes, Enter Total Residential                    | Population Within 1 Mile:               | Environment .                                                      |
| Population:                                        |                                         |                                                                    |
|                                                    | People <sup>7</sup>                     |                                                                    |
| People <sup>2</sup>                                |                                         |                                                                    |
|                                                    |                                         | *Refer to PA Table 7 for environment types                         |
|                                                    | 10. Air Pathway                         | •                                                                  |
| Is there a Suspected Release to Air <sup>1</sup> : | Wetlands Locat                          | ed Within 4 Miles of the Site <sup>6</sup> :                       |
| Yes                                                | ✓ Yes                                   |                                                                    |
| ☑ No                                               | □ No                                    | If Yes, How Many Acres: Acres                                      |
| Enter Total Population on or Within:               |                                         |                                                                    |
| Onsite                                             | Other Sensitive                         | Environments Located Within 4 Miles of the Site:                   |
| 0-1/4 Mile                                         |                                         | ☐ Yes<br>☑ No                                                      |
| 0-1/4 lville                                       |                                         | 2                                                                  |
| >1/4-1/2 Mile                                      | List All Sensitive                      | e Environments Within 1/2 Mile of the Site <sup>6</sup> :          |
| >1/2-1 Mile                                        | <u>Distance:</u> <u>Se</u>              | nsitive Environment Type/Wetlands Area (acres):                    |
| >1-2 Miles                                         | Onsite No                               | one                                                                |
| >2-3 Miles                                         | 0-1/4 Mile _\                           | Wetlands                                                           |
| >3-4 Miles                                         | >1/4-1/2 Mile _\                        | Wetlands                                                           |
| Total Within 4 Miles <sup>3-5</sup>                |                                         |                                                                    |

<sup>1-11</sup> Refers to question number on the PA scoresheet for each particular pathway



# APPENDIX C RECORDS OF COMMUNICATION



#### Ellsworth AFB AFFF Preliminary Assessment Meeting Feburary 23, 2015 10am-noon Sign In Sheet

|                                     | 1                                 | Sign in Sheet                  |                               | -                                                              |                                                                                       |                    |
|-------------------------------------|-----------------------------------|--------------------------------|-------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------|
| Meeting Attendee Name DAnie ElleSon | Organization 28 CES               | Job Title<br>Fire System       | How Long in Current Position? | How Long at this<br>Base in Current and<br>Previous Positions? | Have you held similar positions at other bases? Which Bases?  Yes Malmston            | How Long?          |
| Phone                               | utilities<br>Shop                 | specialist                     |                               |                                                                | AFB.                                                                                  |                    |
| NameDATO Merril ( Phone Emai        | 28 A<br>WFSM<br>Shop              | NCOIC,<br>WFSM<br>Shop         | 1.5<br>years                  | 21 yrs.                                                        | Yes, Ellsworth<br>AFB, Ramstein AB,<br>Candron AFB, Elmen<br>AFB, & Spangdalhem<br>AB | 17 yrs<br>forf Sys |
| Name (FECCIS WALTERS Phone Ema      | AFCEC/CZO<br>WRISHT-PATTATS<br>OH | RESTORATION<br>BRANCH<br>Chief | 2                             | 0                                                              | Air Force Plant 3, 4,59,                                                              | 2051.              |
| Name_Bill_Beck Phone Email          | DECES/CEF<br>Fire Dept            | Fire Inspector                 | Hyrs                          | 20 405                                                         | Vandanberg<br>AFB<br>Mcclellan AFB                                                    | 7 45<br>2 45.      |
| Phone Email                         | 28 CES<br>WFSM                    | Assit. NCOIC<br>WFSM           | 2/2415                        | 184rs                                                          | Eielson AFB,AK                                                                        | 6415               |
| Name Kella Goye Phone_ Email_       | 28 CES/<br>CETEC<br>mil           | Water Qual<br>PM               | Syr                           | 109                                                            | No                                                                                    | N/1A               |
| Name Melody Jensen Phone Emai       | ATCEC/CEO                         | Ellsworth<br>RPM               | 3412                          | Murs                                                           | No                                                                                    | NA                 |

# Ellsworth AFB AFFF Preliminary Assessment Meeting Feburary 23, 2015 10am-noon

| Meeting Attendee | Organization | Job Title | How Long in<br>Current Position? | How Long at this<br>Base in Current and<br>Previous Positions? | Have you held similar<br>positions at other bases?<br>Which Bases? | How Long? |
|------------------|--------------|-----------|----------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|-----------|
| NamePhone        | APLEZ/CZOM   | RPM       | 10-15-105                        | 3045                                                           | No                                                                 | U/A       |
| Name             |              |           |                                  |                                                                |                                                                    |           |
| Phone            |              |           |                                  |                                                                |                                                                    |           |
| Email            |              |           |                                  |                                                                |                                                                    |           |
| Name             |              |           |                                  |                                                                |                                                                    |           |
| Phone            |              |           |                                  |                                                                |                                                                    |           |
| mail             |              |           |                                  |                                                                |                                                                    |           |
| Name             |              |           |                                  |                                                                |                                                                    |           |
| Phone            |              |           |                                  |                                                                |                                                                    |           |
| mail             |              |           |                                  |                                                                |                                                                    |           |
| lame             |              |           |                                  |                                                                |                                                                    |           |
| hone             |              |           |                                  |                                                                |                                                                    |           |
| mail             |              |           |                                  |                                                                |                                                                    |           |

Subject: Meeting Minutes for Preliminary Assessment Kickoff Meeting at

**Ellsworth Air Force Base** 

Date: February 24, 2015

Time: 10:00 a.m. to 12:00 p.m.

Attendees: See attached sign in sheet

FT001 – Former Fire Training Area (OU 1)

Operated from 1942 to 1990.

Surface runoff discharges to Pond 1, which discharges offbase at outfall 001 (a regulated outfall) and goes off base. Enters into a private landowner's waterbody. (Mr. Goyer) Sampling was conducted at OU 1 during Broad Agency Announcement at the boundary and results exceeded EPA PAL (Ms. Jensen).

Outfall 001 also drains 60 and 70 row hangars (70 row contained AFFF systems) and south operational apron and center section of runway (Mr. Goyer).

RI being conducted at FT001. (Ms. Jensen).

Depth to groundwater is roughly 15 feet bgs. Possible groundwater contact because the groundwater daylights just south of FT001 into a drainage north of Pond 1. (Mr. Pavik and Ms. Jensen).

# Outfall 003 -

Drains the north portion of the runway, taxiway, and hangars 80, 90, and 100 row and live ordnance loading area (Mr. Goyer). Surface water at pond 3 has AFFF in it based on recent sampling. This pond was lined sometime between 1997 and 2001 (Ms. Jensen).

#### Outfall 002 -

Stormwater discharge point serves south flightline. Potential for discharges to storm drain (Mr. Goyer).

#### Current FTA (6909) -

Fire training activities occur w/in a lined pit. Edge of the pad beyond pit has likely been impacted by surface water runoff (Mr. Beck).

Foam testing occurs here and a lot of AFFF runs off edge of pad (Mr. Beck).

Water from the FTA is piped via underground piping to a lined retention pond. The retention pond is emptied by utilities using 9,500-gallon tanker and transfer pump when full and disposed of at the 70 row diversion tank which eventually discharges to the WWTP (Mr. Ellefson). As of

July 2014, the diversion tank now discharges to the state-owned POTW. POTW also discharges to Box Elder Creek.

Three spills reported to SDDENR based on spills database per limited PA.

Still using 3% AFFF at FTA. 5-gallon buckets currently stored at conex at FTA (Mr. Beck).

Estimate that 2641 gallons in trucks and trailers. Use it most frequently on foam testing of equipment. May use 5-10 gallons per test. May use another 10-15 gallons for training. Less than a few hundred gallons a year (Mr. Beck).

Fire training is typically conducted monthly using only water. AFFF is used maybe a few times a year (Mr. Beck).

#### WWTP-

Shutdown in July 2014. Formerly discharged to outfall 005 to unnamed drainage to golf course lake to outfall 006 and goes off base. Year-round discharge from golf course lake to off base (300,000 to 500,000 gallons per day). Sludge from the WWTP was disposed of at landfill in accordance with permit. When WWTP was recently decommissioned, the biosolids were not land applied as suggested in the Limited PA. Dewatering water would go back through the clarifier. All biosolids will be disposed of at landfill (Mr. Goyer).

One time, the solids from WWTP were land applied on nearby private property (Ms. Jensen, Mr. Goyer).

Sampled from WWTP to tributary and at lake and found in surface water at both sampling points (Ms. Jensen).

New AFI says that Ellsworth will not discharge any PFCs. Will need to discuss future releases with the state. Will need to get approval from receiving POTW (Mr. Goyer).

## Spray Nozzle Testing -

Yearly spray nozzle testing conducted to ensure correct % . Testing was typically conducted at the FTAs and runoff likely went into the nearby grass because they have to do spray pattern testing (Mr. Beck).

Mr. Beck indicated that equipment testing was conducted near pumphouses 1-3 at the end of the runway in 1980s using 6% AFFF. Routine equipment testing (refractometer test) when they would check out crash trucks. Drive to edge of ramp, shoot foam out. Across from Fire Station. This occurred using 6% AFFF and occurred in 1970s and 1980s.

#### Fire Truck Maintenance -

Conducted at fire stations in bays (Mr. Beck). Bays drain to OWS. OWS' go to sanitary sewer (Mr. Goyer). No pre-treatment beyond OWS. Eventually combines with effluent from industrial waste water line (Mr. Goyer).

#### Spill Logs -

Access database contains records of spills reported to SDDENR. Goyer to provide on CD.

Mr. Beck is not aware of any AFFF usage logs or emergency response logs that document AFFF usage.

#### 618 Waste Diversion Tank -

Logistics Readiness Squadron and refueling maintenance. Outside 50,000 gallon underground tank. Tank cleaned by contractor. Dewatered sludge shoveled out and disposed of at landfill (Mr. Goyer).

Building 618 formerly had an AFFF system (Mr. Goyer, Mr. Beck).

Sampled and PFCs in groundwater (Ms. Jensen).

## Building 88240 -

AFFF system. Now only water fire suppression system.

Drainage in building to trench drains which go via sanitary sewer and discharges to surface impoundment. There is a valve which can route drainage into the OWS. Under normal operations flow goes into OWS to sanitary sewer. PFCs detected in sediments of surface impoundment (Mr. Goyer).

MSA pumphouse (88490) used to contain 500 gallon AFFF tank in 1980s. Now supports water pressure/hydrants. Used to contain AFFF tank. Removed in early 1990s.

#### Hangars -

70 row diversion tank is 150,000 gallon. Limited PA indicated that entire tank released into the storm drain in 1993. Violation issues.

All AFFF systems were converted to HEF systems. Started in 2005 and completed in 2012. AFFF piping is still in place but capped at the floor. Could still be sitting inside old piping coming from pumphouses to docks (Mr. Ellefson).

Because old design in 80s did not have appropriate check valves so it got pushed back through systems and back to the storage tanks. Groundwater storage tanks for firefighting capabilities may be contaminated (Mr. Ellefson).

Pumphouse 7246 had 1,000 gallon AFFF tank and fed hangars 70, 80, and 90. In 2000, systems were upgraded and each dock had own 500 gallon AFFF tank installed.

Assume all soil around hangars has potential to be contaminated. Mr. Beck indicated he saw discharges coming out of hangars.

#### Old Fire Station (Bldg. 7506)-

Vehicles stored here, maintenance etc. Old fire station tore down. Currently Building 7501 Base Ops is present (Mr. Beck).

Fire trucks with AFFF were stored in Dock 51 when old fire house was in operation due to space limitations. No other action done with AFFF here. Trench drains in Dock 51 drain to 20 Row diversion tank (20,000 gallon tank) which drains to industrial wastewater line (Mr. Beck).

The old fire station (where bldg. 7501 now sits) had two overhead storage tanks with a piping system we could use to gravity fill into the tops of the crash trucks. I think one was 500 gallons and a second 300 gal. Never had any significant spills that we're aware of (Mr. Beck).

Pre-2000 it wasn't uncommon to see foam solution on the fire station driveways after foam ops (Mr. Beck).

#### Current Fire Station (Bldg. 7502)-

2,641 gallons in vehicles. 5 gallon bucket storage (Mr. Beck).

#### Station 2 -

Very old fire station. Was under air mobility command in 1952. Was transferred to Ellsworth in 1962 (Mr. Pavik). Mr. Beck noted that it may have had a structural engine that may have held 50 gallons of AFFF here in early 1990s. Unsure if this had a crash truck. Fire truck was there for housing in late 80s but all gone by early 90s. Foam rarely would have been used on structure fires (Mr. Beck).

#### Fire Storage Area -

Storage facility with no fire trucks but historically was an old fire station. May have had AFFF (Mr. Beck).

#### Alert Aprons -

Crash trucks would stand by when B-52s were sitting here on alert. No known spills but possible (Mr. Beck).

#### Hazmart -

Building 1911. Stores 5-gallon buckets of foam. Beck provided an inventory of AFFF on base – Hazmart contained 3,965 gallons as of Feb 2015 (Mr. Beck).

#### Facility Number 12835 -

Fire protection water mns. Noted as having AFFF. Ask Patience to look at history.

# Building 6908 Groundwater Treatment System -

Injections trenches released contaminated groundwater via daylighting to unnamed ephemeral drainage which flows to Pond 1 (Ms. Jensen and Mr. Pavik).

#### Crash Sites -

Delta Taxiway West – foam trailer rear ended and released 100 gallons as noted in limited PA. 1970 B-52 Crash – Limited PA had year wrong. Crash occurred in 1970, not 1972. 1988 B-1 Crash – south of runway.

2002 Learjet crash – crashed after taking off from runway 31. OU 4. No AFFF used as only a small grass fire that was put out with water.

2003 Semitrailer crash – Truck went off overpass on north side. Referred to as Marten Crash Site. Used AFFF. Goyer provided photos.

AFFF -

6% until mid-90s and then converted to 3% (Mr. Beck).

2005 HEF Test Spill -

Included in Limited PA but was high expansion foam, not AFFF.

Systems were very sensitive when set up to UVIR detectors sometimes reflections would set them off. Should be captured in spills database. All drainage to same trench drains, diversion tanks etc. (Mr. Ellefson).

No chrome plating shops on base. Rivet mile did some chromium plating done by the missile sites. There was a corrosion control shop for missiles. But likely down out at missile sites. Sodium chromate solution that was part of the guidance control set. Had hex chrom but not associated with plate. Operated in mid-80s (Mr. Pavik).

Water supply is from Rapid City. No water supply wells on base currently. Any former water supply wells were decommissioned. All drinking water was from deep water wells (confined aquifers). Stopped using them when? Check admin record, original RI (Mr. Pavik).

Private wells located 250 feet south of base. In shallow aquifer. Used to water cattle. They may connect him now to base waterline anyway. Almost all of surface water and groundwater is available for use for stock watering (Mr. Goyer), all along the tributaries and Box Elder Creek.

Historically Sanders had private well, was connected to base supply in late 90s (Mr. Pavik).

RI being conducted at FT001 will include inventory of private wells and will require sampling of the wells (Ms. Jensen).

CDC located on base. No schools (Ms. Jensen).

Other tenants: 432<sup>nd</sup> Squadron. National Guard Civil Support (Bldg. 1012). Federal Credit Union, Air Force Financial Services Center (Bldg. 2010 and 4040). Pre-1960 – bombing was host wing. 1960 to 1990, missile wing was host wing. After 1990, bombing was host wing again.





# **March 2019**

#### **Submitted to:**

Air Force Civil Engineer Center 3515 General McMullen Suite 155 San Antonio, Texas 78226-2018

# Submitted by:

U.S. Army Corps of Engineers Omaha District 1616 Capitol Avenue Omaha, Nebraska 68102-4901

# Prepared by:

Aerostar SES LLC 1006 Floyd Culler Court Oak Ridge, Tennessee 37830-8022 under Contract No. W9128F-15-D-0051 Delivery Order No. 0003



# Final Site Inspection Report of Aqueous Film Forming Foam Areas at Ellsworth Air Force Base Meade and Pennington Counties, South Dakota

# March 2019

Submitted to: Air Force Civil Engineer Center 3515 General McMullen Suite 155 San Antonio, Texas 78226-2018

Submitted by: U.S. Army Corps of Engineers Omaha District 1616 Capital Avenue Omaha, Nebraska 68102-4901

Prepared by:
Aerostar SES LLC
1006 Floyd Culler Court
Oak Ridge, Tennessee 37830-8022
under
Contract No. W9128F-15-D-0051
Delivery Order No. 0003

# **Table of Contents**

| Acronyms | s and Abbreviations                                    | Page<br>vi |
|----------|--------------------------------------------------------|------------|
| •        |                                                        |            |
|          | RODUCTION                                              |            |
|          | A DESCRIPTIONS                                         |            |
|          | ELLSWORTH AIR FORCE BASE                               |            |
|          | Current Fire Training Area (FTA) – AFFF Area 1         |            |
|          | 70, 80, 90 Rows and Outfall #3 – AFFF Area 2           |            |
|          | BUILDING 618 – AFFF AREA 3                             |            |
|          | FORMER FIRE STATION (BUILDING 7506) – AFFF AREA 4      |            |
|          | 3-52 Crash (1972) – AFFF Area 5                        |            |
|          | 3-1 CRASH (1988) – AFFF AREA 6                         |            |
|          | DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7          |            |
|          | MARTEN CRASH (2006) – AFFF AREA 8                      |            |
| 2.10     | CRASH 4 (2001) – AFFF AREA 9                           | 11         |
|          | WASTEWATER TREATMENT PLANT – AFFF AREA 10              |            |
|          | SPRAY NOZZLE TEST AREA – AFFF AREA 11                  |            |
| 2.13 I   | BUILDING 88240 – AFFF AREA 12                          | 12         |
| 3.0 FIEL | D ACTIVITIES AND FINDINGS                              | 14         |
| 3.1 I    | FIELD ACTIVITIES AND SAMPLING PROCEDURES               | 14         |
| 3.1.1    | Sampling Methodology                                   | 14         |
| 3.1.2    | Soil Borings and Monitoring Well Installation          |            |
| 3.1.3    |                                                        |            |
| 3.1.4    |                                                        |            |
| 3.2 I    | PFAS CROSS-CONTAMINATION AVOIDANCE PROCEDURES          | 16         |
| 3.2.1    | Field Equipment                                        | 16         |
| 3.2.2    | Field Clothing and Personal Protective Equipment (PPE) | 16         |
| 3.2.3    | $\mathbf{I}$                                           |            |
| 3.2.4    |                                                        |            |
| 3.2.5    | 1 1                                                    |            |
| 3.2.6    | 70                                                     |            |
| 3.2.7    |                                                        |            |
| 3.2.8    |                                                        |            |
| 3.3      | CURRENT FIRE TRAINING AREA (FTA) – AFFF AREA 1         |            |
| 3.3.1    | 1                                                      |            |
|          | Soil Descriptions                                      |            |
| 3.3.3    |                                                        |            |
| 3.3.4    | •                                                      |            |
| 3.3.5    |                                                        |            |
|          | 70, 80, 90 Rows and Outfall #3 – AFFF Area 2           |            |
| 3.4.1    | 1                                                      |            |
| 3.4.2    | 1                                                      |            |
| 3.4.3    |                                                        |            |
| 3.4.4    | •                                                      |            |
| 3.4.5    |                                                        |            |
|          | BUILDING 618 – AFFF AREA 3                             |            |
| 3.5.1    | $\mathbf{I}$                                           |            |
| 3.5.2    | 1                                                      |            |
| 3.5.3    | Groundwater Flow                                       |            |

| 3.5.5 Conclusions 3.6 FORMER FIRE STATION (BUILDING 7506) — AFFF AREA 4. 3.6.1 Sample Locations 3.6.2 Soil Descriptions 3.6.3 Groundwater Flow 3.6.4 Analytical Results 3.6.5 Conclusions 3.7 B-52 CRASH (1972) — AFFF AREA 5 3.7.1 Sample Locations 3.7.2 Soil Descriptions 3.7.3 Groundwater Flow 3.7.4 Analytical Results 3.7.5 Conclusions 3.8 B-1 CRASH (1988) — AFFF AREA 6 3.8.1 Sample Locations 3.8.2 Soil Descriptions 3.8.3 Groundwater Flow 3.8.4 Analytical Results 3.8.5 Conclusions 3.8.4 Analytical Results 3.8.5 Conclusions 3.9 DELTA TAXIWAY WEST CRASH (2000) — AFFF AREA 7 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.4 Analytical Results | 31<br>31<br>31 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 3.6.1 Sample Locations 3.6.2 Soil Descriptions 3.6.3 Groundwater Flow 3.6.4 Analytical Results 3.6.5 Conclusions 3.7 B-52 CRASH (1972) – AFFF AREA 5 3.7.1 Sample Locations 3.7.2 Soil Descriptions 3.7.3 Groundwater Flow 3.7.4 Analytical Results 3.7.5 Conclusions 3.8 B-1 CRASH (1988) – AFFF AREA 6 3.8.1 Sample Locations 3.8.2 Soil Descriptions 3.8.3 Groundwater Flow 3.8.4 Analytical Results 3.8.5 Conclusions 3.8.4 Analytical Results 3.8.5 Conclusions 3.9 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.3 Groundwater Flow 3.9.4 Analytical Results 3.9.3 Groundwater Flow 3.9.4 Analytical Results   | 31<br>31       |
| 3.6.2 Soil Descriptions 3.6.3 Groundwater Flow 3.6.4 Analytical Results 3.6.5 Conclusions 3.7 B-52 CRASH (1972) – AFFF AREA 5 3.7.1 Sample Locations 3.7.2 Soil Descriptions 3.7.3 Groundwater Flow 3.7.4 Analytical Results 3.7.5 Conclusions 3.8 B-1 CRASH (1988) – AFFF AREA 6 3.8.1 Sample Locations 3.8.2 Soil Descriptions 3.8.3 Groundwater Flow 3.8.4 Analytical Results 3.8.5 Conclusions 3.8.6 Conclusions 3.8.7 Sample Locations 3.8.8 Analytical Results 3.8.9 Delta Taxiway West Crash (2000) – AFFF Area 7 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.4 Analytical Results                                                                        | 31             |
| 3.6.3 Groundwater Flow 3.6.4 Analytical Results 3.6.5 Conclusions 3.7 B-52 CRASH (1972) – AFFF AREA 5 3.7.1 Sample Locations 3.7.2 Soil Descriptions 3.7.3 Groundwater Flow 3.7.4 Analytical Results 3.7.5 Conclusions 3.8 B-1 CRASH (1988) – AFFF AREA 6 3.8.1 Sample Locations 3.8.2 Soil Descriptions 3.8.3 Groundwater Flow 3.8.4 Analytical Results 3.8.5 Conclusions 3.9 Delta Taxiway West Crash (2000) – AFFF Area 7 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.4 Analytical Results                                                                                                                                                                    |                |
| 3.6.4 Analytical Results 3.6.5 Conclusions 3.7 B-52 CRASH (1972) – AFFF AREA 5 3.7.1 Sample Locations 3.7.2 Soil Descriptions 3.7.3 Groundwater Flow 3.7.4 Analytical Results 3.7.5 Conclusions 3.8 B-1 CRASH (1988) – AFFF AREA 6 3.8.1 Sample Locations 3.8.2 Soil Descriptions 3.8.3 Groundwater Flow 3.8.4 Analytical Results 3.8.5 Conclusions 3.8.7 Conclusions 3.8.8 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.4 Analytical Results                                                                                                                                                                       |                |
| 3.6.5 Conclusions 3.7 B-52 CRASH (1972) – AFFF AREA 5 3.7.1 Sample Locations 3.7.2 Soil Descriptions 3.7.3 Groundwater Flow 3.7.4 Analytical Results 3.7.5 Conclusions 3.8 B-1 CRASH (1988) – AFFF AREA 6 3.8.1 Sample Locations 3.8.2 Soil Descriptions 3.8.3 Groundwater Flow 3.8.4 Analytical Results 3.8.5 Conclusions 3.9 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.4 Analytical Results 3.9.3 Groundwater Flow 3.9.4 Analytical Results                                                                                                                                                                    | 32             |
| 3.7 B-52 CRASH (1972) – AFFF AREA 5 3.7.1 Sample Locations 3.7.2 Soil Descriptions 3.7.3 Groundwater Flow 3.7.4 Analytical Results 3.7.5 Conclusions 3.8 B-1 CRASH (1988) – AFFF AREA 6 3.8.1 Sample Locations 3.8.2 Soil Descriptions 3.8.3 Groundwater Flow 3.8.4 Analytical Results 3.8.5 Conclusions 3.9 Delta Taxiway West Crash (2000) – AFFF Area 7 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.4 Analytical Results                                                                                                                                                                                                                                      | 32             |
| 3.7.1 Sample Locations 3.7.2 Soil Descriptions 3.7.3 Groundwater Flow 3.7.4 Analytical Results 3.7.5 Conclusions 3.8 B-1 Crash (1988) – Afff Area 6 3.8.1 Sample Locations 3.8.2 Soil Descriptions 3.8.3 Groundwater Flow 3.8.4 Analytical Results 3.8.5 Conclusions 3.9 Delta Taxiway West Crash (2000) – Afff Area 7 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.4 Analytical Results                                                                                                                                                                                                                                                                          |                |
| 3.7.2 Soil Descriptions 3.7.3 Groundwater Flow 3.7.4 Analytical Results 3.7.5 Conclusions 3.8 B-1 Crash (1988) – Afff Area 6 3.8.1 Sample Locations 3.8.2 Soil Descriptions 3.8.3 Groundwater Flow 3.8.4 Analytical Results 3.8.5 Conclusions 3.9 Delta Taxiway West Crash (2000) – Afff Area 7 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.4 Analytical Results                                                                                                                                                                                                                                                                                                 | 34             |
| 3.7.3 Groundwater Flow 3.7.4 Analytical Results 3.7.5 Conclusions 3.8 B-1 CRASH (1988) – AFFF AREA 6 3.8.1 Sample Locations 3.8.2 Soil Descriptions 3.8.3 Groundwater Flow 3.8.4 Analytical Results 3.8.5 Conclusions 3.9 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.4 Analytical Results                                                                                                                                                                                                                                                                                                                         | 34             |
| 3.7.4 Analytical Results 3.7.5 Conclusions 3.8 B-1 CRASH (1988) – AFFF AREA 6 3.8.1 Sample Locations 3.8.2 Soil Descriptions 3.8.3 Groundwater Flow 3.8.4 Analytical Results 3.8.5 Conclusions 3.9 Delta Taxiway West Crash (2000) – AFFF Area 7 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.4 Analytical Results                                                                                                                                                                                                                                                                                                                                                | 35             |
| 3.7.5 Conclusions 3.8 B-1 CRASH (1988) – AFFF AREA 6 3.8.1 Sample Locations 3.8.2 Soil Descriptions 3.8.3 Groundwater Flow 3.8.4 Analytical Results 3.8.5 Conclusions 3.9 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.4 Analytical Results                                                                                                                                                                                                                                                                                                                                                                         | 35             |
| 3.8 B-1 CRASH (1988) – AFFF AREA 6  3.8.1 Sample Locations  3.8.2 Soil Descriptions  3.8.3 Groundwater Flow  3.8.4 Analytical Results  3.8.5 Conclusions  3.9 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7  3.9.1 Sample Locations  3.9.2 Soil Descriptions  3.9.3 Groundwater Flow  3.9.4 Analytical Results                                                                                                                                                                                                                                                                                                                                                                                 | 35             |
| 3.8.1 Sample Locations 3.8.2 Soil Descriptions 3.8.3 Groundwater Flow 3.8.4 Analytical Results 3.8.5 Conclusions 3.9 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.4 Analytical Results                                                                                                                                                                                                                                                                                                                                                                                                                              | 37             |
| 3.8.2 Soil Descriptions 3.8.3 Groundwater Flow 3.8.4 Analytical Results 3.8.5 Conclusions 3.9 Delta Taxiway West Crash (2000) – Afff Area 7 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.4 Analytical Results                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37             |
| 3.8.3 Groundwater Flow 3.8.4 Analytical Results 3.8.5 Conclusions 3.9 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7. 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.4 Analytical Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37             |
| 3.8.4 Analytical Results 3.8.5 Conclusions 3.9 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7 3.9.1 Sample Locations 3.9.2 Soil Descriptions 3.9.3 Groundwater Flow 3.9.4 Analytical Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37             |
| 3.8.5 Conclusions 3.9 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38             |
| 3.9 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38             |
| <ul> <li>3.9.1 Sample Locations</li> <li>3.9.2 Soil Descriptions</li> <li>3.9.3 Groundwater Flow</li> <li>3.9.4 Analytical Results</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41             |
| 3.9.2 Soil Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41             |
| 3.9.2 Soil Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41             |
| 3.9.3 Groundwater Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| 3.9.4 Analytical Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 3.9.5 Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 3.10 MARTEN CRASH (2006) – AFFF AREA 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| 3.10.1 Sample Locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 3.10.2 Soil Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 3.10.3 Groundwater Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 3.10.4 Analytical Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 3.10.5 Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 3.11 CRASH 4 (2001) – AFFF AREA 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 3.11.1 Sample Locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 3.11.2 Soil Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 3.11.3 Groundwater Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 3.11.4 Analytical Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 3.11.5 Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 3.12 WASTEWATER TREATMENT PLANT – AFFF AREA 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| 3.12.1 Sample Locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 3.12.2 Soil Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 3.12.3 Groundwater Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 3.12.4 Analytical Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 3.12.5 Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 3.13 Spray Nozzle Test Area – AFFF Area 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 3.13.1 Sample Locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 3.13.2 Soil Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 3.13.3 Groundwater Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 3.13.4 Analytical Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 3.13.5 Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 3.14 BUILDING 88240 – AFFF AREA 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00             |

| 3.1          | 14.1 Sample Locations                                                  | 60     |
|--------------|------------------------------------------------------------------------|--------|
| 3.1          | 14.2 Soil Descriptions                                                 | 60     |
| 3.1          | 14.3 Groundwater Flow                                                  | 60     |
| 3.1          | 14.4 Analytical Results                                                | 60     |
|              | 14.5 Conclusions                                                       |        |
| 3.15         | INVESTIGATION-DERIVED WASTE                                            | 64     |
| 4.0 GF       | ROUNDWATER PATHWAY                                                     | 65     |
| 4.1          | Hydrogeology                                                           |        |
| 4.2          | CURRENT FIRE TRAINING AREA – AFFF AREA 1                               | 67     |
| 4.3          | 70, 80, 90 ROWS AND OUTFALL #3 – AFFF AREA 2                           | 67     |
| 4.4          | BUILDING 618 – AFFF AREA 3                                             |        |
| 4.5          | FORMER FIRE STATION (BUILDING 7506) – AFFF AREA 4                      | 68     |
| 4.6          | B-52 Crash (1972) – AFFF Area 5                                        | 68     |
| 4.7          | B-1 Crash (1988) – AFFF Area 6                                         |        |
| 4.8          | DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7                          | 68     |
| 4.9          | MARTEN CRASH (2006) – AFFF AREA 8                                      |        |
| 4.10         | Crash 4 (2001) – AFFF Area 9                                           |        |
| 4.11         | WASTEWATER TREATMENT PLANT – AFFF AREA 10                              |        |
| 4.12         | SPRAY NOZZLE TEST AREA – AFFF AREA 11                                  |        |
| 4.13         | BUILDING 88240 – AFFF AREA 12                                          | 69     |
| 5.0 SU       | RFACE WATER PATHWAY                                                    | 70     |
| 5.1          | BASE HYDROLOGIC SETTING                                                | 70     |
| 5.2          | CURRENT FIRE TRAINING AREA – AFFF AREA 1                               |        |
| 5.3          | 70, 80, 90 Rows and Outfall #3 – AFFF Area 2                           |        |
| 5.4          | BUILDING 618 – AFFF AREA 3                                             |        |
| 5.5          | FORMER FIRE STATION (BUILDING 7506) – AFFF AREA 4                      | 71     |
| 5.6          | B-52 CRASH (1972) – AFFF AREA 5                                        |        |
| 5.7          | B-1 CRASH (1988) – AFFF AREA 6                                         |        |
| 5.8          | DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7                          |        |
| 5.9          | MARTEN CRASH (2006) – AFFF AREA 8                                      |        |
| 5.10         | CRASH 4 (2001) – AFFF AREA 9                                           |        |
| 5.11         | WASTEWATER TREATMENT PLANT – AFFF AREA 10                              |        |
| 5.12         | SPRAY NOZZLE TEST AREA – AFFF AREA 11                                  |        |
| 5.13         | BUILDING 88240 – AFFF AREA 12                                          |        |
| 6.0 SO       | OIL AND SEDIMENT EXPOSURE AND AIR PATHWAYS                             | 73     |
| 6.1          | CURRENT FIRE TRAINING AREA – AFFF AREA 1                               |        |
| 6.2          | 70, 80, 90 Rows and Outfall #3 – AFFF Area 2                           |        |
| 6.3          | BUILDING 618 – AFFF AREA 3                                             |        |
| 6.4          | FORMER FIRE STATION (BUILDING 7506) – AFFF AREA 4                      |        |
| 6.5          | B-52 CRASH (1972) – AFFF AREA 5                                        |        |
| 6.6          | B-1 CRASH (1988) – AFFF AREA 6                                         |        |
| 6.7          | DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7                          |        |
| 6.8          | MARTEN CRASH (2006) – AFFF AREA 8                                      | 74<br> |
| 6.9          | CRASH 4 (2001) – AFFF AREA 9                                           |        |
| 6.10         | WASTEWATER TREATMENT PLANT – AFFF AREA 10                              |        |
| 6.11<br>6.12 | SPRAY NOZZLE TEST AREA – AFFF AREA 11<br>BUILDING 88240 – AFFF AREA 12 |        |
| -            |                                                                        |        |
|              | PDATES TO CONCEPTUAL SITE MODELS                                       |        |
| 7.1          | CURRENT FIRE TRAINING AREA – AFFF AREA 1                               | 76     |

| 7.2           | 70, 80, 90 Rows and Outfall #3 – AFFF Area 2                                           |          |
|---------------|----------------------------------------------------------------------------------------|----------|
| 7.3           | BUILDING 618 – AFFF AREA 3                                                             |          |
| 7.4           | FORMER FIRE STATION (BUILDING 7506) – AFFF AREA 4                                      |          |
| 7.5           | B-52 CRASH (1972) – AFFF AREA 5                                                        |          |
| 7.6           | B-1 CRASH (1988) – AFFF AREA 6                                                         |          |
| 7.7           | DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7                                          |          |
| 7.8           | MARTEN CRASH (2006) – AFFF AREA 8                                                      |          |
| 7.9           | CRASH 4 (2001) – AFFF AREA 9                                                           |          |
| 7.10          | WASTEWATER TREATMENT PLANT (WWTP) – AFFF AREA 10                                       |          |
| 7.11<br>7.12  | SPRAY NOZZLE TEST AREA – AFFF AREA 11                                                  |          |
|               |                                                                                        |          |
| 8.0 CO<br>8.1 | NCLUSIONS AND RECOMMENDATIONSCURRENT FIRE TRAINING AREA – AFFF AREA 1                  |          |
| 8.2           | 70, 80, 90 Rows and Outfall #3 – AFFF Area 2                                           |          |
| 8.3           | BUILDING 618 – AFFF AREA 3                                                             |          |
| 8.4           | FORMER FIRE STATION (BUILDING 7506) – AFFF AREA 4                                      |          |
| 8.5           | B-52 CRASH (1972) – AFFF AREA 5                                                        |          |
| 8.6           | B-1 Crash (1988) – AFFF Area 6                                                         |          |
| 8.7           | DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7                                          |          |
| 8.8           | MARTEN CRASH (2006) – AFFF AREA 8                                                      |          |
| 8.9           | CRASH 4 (2001) – AFFF AREA 9                                                           |          |
| 8.10          | WASTEWATER TREATMENT PLANT – AFFF AREA 10                                              |          |
| 8.11          | SPRAY NOZZLE TEST AREA – AFFF AREA 11                                                  | 83       |
| 8.12          | BUILDING 88240 – AFFF AREA 12                                                          | 83       |
| 9.0 RE        | FERENCES                                                                               | 93       |
|               |                                                                                        |          |
| List of       | <u>l'ables</u>                                                                         |          |
| Table 1       | Regulatory Screening Values                                                            | 2        |
|               | AFFF Areas and Selection Rationale for Site Inspections at Ellsworth Air Force Base    |          |
|               | Current Fire Training Area (AFFF Area 1) Surface Soil Analytical Results               |          |
|               | Current Fire Training Area (AFFF Area 1) Subsurface Soil Analytical Results            |          |
| Table 5       | Current Fire Training Area (AFFF Area 1) Groundwater Analytical Results                | 20<br>22 |
| Table 6       | 70, 80, 90 Rows (AFFF Area 2) Surface Soil Analytical Results                          | 24       |
|               | 70, 80, 90 Rows and Outfall #3 (AFFF Area 2) Subsurface Soil Analytical Results        |          |
|               | 70, 80, 90 Rows and Outfall #3 (AFFF Area 2) Groundwater Analytical Results            |          |
|               | Outfall #3 (AFFF Area 2) Sediment Analytical Results                                   |          |
|               | 0 Outfall #3 (AFFF Area 2) Surface Water Analytical Results                            |          |
|               | 1 Building 618 (AFFF Area 3) Subsurface Soil Analytical Results                        |          |
| Table 12      | 2 Building 618 (AFFF Area 3) Groundwater Analytical Results                            | 31       |
| Table 1       | 3 Former Fire Station (Building 7506) (AFFF Area 4) Surface Soil Analytical Results    | 32       |
|               | 4 Former Fire Station (Building 7506) (AFFF Area 4) Subsurface Soil Analytical Results |          |
|               | 5 Former Fire Station (Building 7506) (AFFF Area 4) Groundwater Analytical Results     |          |
|               | 6 B-52 Crash (AFFF Area 5) Surface Soil Analytical Results                             |          |
|               | 7 B-52 Crash (AFFF Area 5) Subsurface Soil Analytical Results                          |          |
|               | 8 B-52 Crash (AFFF Area 5) Groundwater Analytical Results                              |          |
|               | 9 B-1 Crash (AFFF Area 6) Surface Soil Analytical Results                              |          |
| Table 2       | U. H. I. Creat I. A. H.H. Area 6.) Subaurtaga Soil Analytical Degulta                  | 30       |
| T-1.1 0       | 0 B-1 Crash (AFFF Area 6) Subsurface Soil Analytical Results                           |          |

3/5/19

| Table 22 Delta Taxiway West Crash (AFFF Area 7) Surface Soil Analytical Results                                                       | 42                                             |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Table 23 Delta Taxiway West Crash (AFFF Area 7) Subsurface Soil Analytical Results                                                    | 43                                             |
| Table 24 Delta Taxiway West Crash (AFFF Area 7) Groundwater Analytical Results                                                        | 44                                             |
| Table 25 Marten Crash (2006) (AFFF Area 8) Surface Soil Analytical Results                                                            | 45                                             |
| Table 26 Marten Crash (2006) (AFFF Area 8) Subsurface Soil Analytical Results                                                         | 46                                             |
| Table 27 Marten Crash (2006) (AFFF Area 8) Groundwater Analytical Results                                                             | 47                                             |
| Table 28 Crash 4 (AFFF Area 9) Surface Soil Analytical Results                                                                        | 48                                             |
| Table 29 Crash 4 (AFFF Area 9) Subsurface Soil Analytical Results                                                                     | 49                                             |
| Table 30 Crash 4 (AFFF Area 9) Groundwater Analytical Results                                                                         | 50                                             |
| Table 31 Wastewater Treatment Plant (AFFF Area 10) Surface Soil Analytical Results                                                    | 51                                             |
| Table 32 Wastewater Treatment Plant (AFFF Area 10) Subsurface Soil Analytical Results                                                 |                                                |
| Table 33 Wastewater Treatment Plant (AFFF Area 10) Groundwater Analytical Results                                                     |                                                |
| Table 34 Wastewater Treatment Plant (AFFF Area 10) Sediment Analytical Results                                                        |                                                |
| Table 35 Wastewater Treatment Plant (AFFF Area 10) Surface Water Analytical Results                                                   |                                                |
| Table 36 Spray Nozzle Test Area (AFFF Area 11) Surface Soil Analytical Results                                                        |                                                |
| Table 37 Spray Nozzle Test Area (AFFF Area 11) Subsurface Soil Analytical Results                                                     |                                                |
| Table 38 Spray Nozzle Test Area (AFFF Area 11) Groundwater Analytical Results                                                         |                                                |
| Table 39 Spray Nozzle Test Area (AFFF Area 11) Sediment Analytical Results                                                            |                                                |
| Table 40 Spray Nozzle Test Area (AFFF Area 11) Surface Water Analytical Results                                                       |                                                |
| Table 41 Building 88240 (AFFF Area 12) Surface Soil Analytical Results                                                                |                                                |
| Table 42 Building 88240 (AFFF Area 12) Subsurface Soil Analytical Results                                                             |                                                |
| Table 43 Building 88240 (AFFF Area 12) Groundwater Analytical Results                                                                 |                                                |
| Table 44 Building 88240 (AFFF Area 12) Sediment Analytical Results                                                                    |                                                |
| Table 45 Building 88240 (AFFF Area 12) Surface Water Analytical Results                                                               |                                                |
| <u>List of Figures</u> Figure 1 Location Map of Ellsworth Air Force Base - Meade and Pennington Counties, South Dak                   |                                                |
|                                                                                                                                       |                                                |
| Figure 2 AFFF Area Locations                                                                                                          |                                                |
| Figure 3 Generalized Stratigraphic Column of the Central Black Hills, South Dakota                                                    |                                                |
| Figure 4 Geologic Map of Ellsworth Air Force Base                                                                                     |                                                |
| Figure 5 Current Fire Training Area (AFFF Area 1) Sample Locations and Potentiometric Contour                                         | ·s A-5                                         |
|                                                                                                                                       |                                                |
| Figure 6a 70, 80, 90 Rows (AFFF Area 2) Sample Locations and Potentiometric Contours                                                  | A-6                                            |
| Figure 6b Outfall #3 (AFFF Area 2) Sample Locations and Potentiometric Contours                                                       | A-6<br>A-7                                     |
| Figure 6b Outfall #3 (AFFF Area 2) Sample Locations and Potentiometric Contours                                                       | A-6<br>A-7<br>A-8                              |
| Figure 6b Outfall #3 (AFFF Area 2) Sample Locations and Potentiometric Contours                                                       | A-6<br>A-7<br>A-8<br>c                         |
| Figure 6b Outfall #3 (AFFF Area 2) Sample Locations and Potentiometric Contours                                                       | A-6<br>A-7<br>A-8<br>c<br>A-9                  |
| Figure 6b Outfall #3 (AFFF Area 2) Sample Locations and Potentiometric Contours                                                       | A-6<br>A-7<br>A-8<br>c<br>A-9<br>A-10          |
| Figure 6b Outfall #3 (AFFF Area 2) Sample Locations and Potentiometric Contours                                                       | A-6A-7A-8 cA-9A-10A-11                         |
| Figure 6b Outfall #3 (AFFF Area 2) Sample Locations and Potentiometric Contours  Figure 7 Building 618 (AFFF Area 3) Sample Locations | A-6A-7A-8 cA-9A-10A-11                         |
| Figure 6b Outfall #3 (AFFF Area 2) Sample Locations and Potentiometric Contours  Figure 7 Building 618 (AFFF Area 3) Sample Locations | A-6A-7A-8 cA-9A-10A-11A-11                     |
| Figure 6b Outfall #3 (AFFF Area 2) Sample Locations and Potentiometric Contours  Figure 7 Building 618 (AFFF Area 3) Sample Locations | A-6A-7A-8 cA-9A-10A-11A-11A-12A-13             |
| Figure 6b Outfall #3 (AFFF Area 2) Sample Locations and Potentiometric Contours                                                       | A-6A-7A-8 cA-9A-10A-11A-11A-12A-13A-14         |
| Figure 6b Outfall #3 (AFFF Area 2) Sample Locations and Potentiometric Contours  Figure 7 Building 618 (AFFF Area 3) Sample Locations | A-6A-7A-8 cA-9A-10A-11A-11A-12A-13A-14 atours  |
| Figure 6b Outfall #3 (AFFF Area 2) Sample Locations and Potentiometric Contours  Figure 7 Building 618 (AFFF Area 3) Sample Locations | A-6A-7A-8 cA-10A-11A-11A-12A-13A-14 .toursA-15 |
| Figure 6b Outfall #3 (AFFF Area 2) Sample Locations and Potentiometric Contours  Figure 7 Building 618 (AFFF Area 3) Sample Locations | A-6A-7A-8 cA-10A-11A-12A-13A-14A-15A-16        |
| Figure 6b Outfall #3 (AFFF Area 2) Sample Locations and Potentiometric Contours  Figure 7 Building 618 (AFFF Area 3) Sample Locations | A-6A-7A-8 cA-9A-10A-11A-12A-13A-14A-15A-16A-17 |

| Figure 19a Ro     | ws 70, 80, 90 (AFFF Area 2) PFBS, PFOA, and PFOS in Soil                    | A-20        |
|-------------------|-----------------------------------------------------------------------------|-------------|
| _                 | tfall #3 (AFFF Area 2) PFBS, PFOA, and PFOS in Soil and Sediment            |             |
|                   | FFF Area 2) Rows 70, 80, 90 (AFFF Area 2) PFBS, PFOA, and PFOS in Groun     |             |
|                   |                                                                             | A-22        |
| Figure 20b (A     | FFF Area 2) Outfall #3 (AFFF Area 2) PFBS, PFOA, and PFOS in Groundwate     | er and      |
|                   |                                                                             |             |
|                   | ding 618 (AFFF Area 3) PFBS, PFOA, and PFOS in Soil                         |             |
|                   | ding 618 (AFFF Area 3) PFBS, PFOA, and PFOS in Groundwater                  |             |
|                   | mer Fire Station (Building 7506) (AFFF Area 4) PFBS, PFOA, and PFOS in So   |             |
| Figure 24 For     | mer Fire Station (Building 7506) (AFFF Area 4) PFBS, PFOA, and PFOS in Gr   |             |
|                   |                                                                             |             |
| _                 | 2 Crash (AFFF Area 5) PFBS, PFOA, and PFOS in Soil                          |             |
|                   | 2 Crash (AFFF Area 5) PFBS, PFOA, and PFOS in Groundwater                   |             |
| _                 | Crash (AFFF Area 6) PFBS, PFOA, and PFOS in Soil                            |             |
|                   | Crash (AFFF Area 6) PFBS, PFOA, and PFOS in Groundwater                     |             |
|                   | a Taxiway West Crash (AFFF Area 7) PFBS, PFOA, and PFOS in Soil             |             |
| _                 | a Taxiway West Crash (AFFF Area 7) PFBS, PFOA, and PFOS in Groundwate       |             |
| _                 | ten Crash (2006) (AFFF Area 8) PFBS, PFOA, and PFOS in Soil                 |             |
|                   | ten Crash (2006) (AFFF Area 8) PFBS, PFOA, and PFOS in Groundwater          |             |
| •                 | sh 4 (2001) (AFFF Area 9) PFBS, PFOA, and PFOS in Soil                      |             |
| _                 | sh 4 (2001) (AFFF Area 9) PFBS, PFOA, and PFOS in Groundwater               |             |
| Figure 33 was     | stewater Treatment Plant (AFFF Area 10) PFBS, PFOA, and PFOS in Soil and    |             |
| Eiguro 26 Was     | stewater Treatment Plant (AFFF Area 10) PFBS, PFOA, and PFOS in Groundw     |             |
| ~                 | stewater Treatment Flant (AFFF Area 10) FFB3, FFOA, and FFO3 in Groundw     |             |
|                   | ay Nozzle Test Area (AFFF Area 11) PFBS, PFOA, and PFOS in Soil and Sedin   |             |
|                   | ny Nozzle Test Area (AFFF Area 11) PFBS, PFOA, and PFOS in Groundwater      |             |
| •                 |                                                                             |             |
|                   | ding 88240 (AFFF Area 12) PFBS, PFOA, and PFOS in Soil and Sediment         |             |
| _                 | ding 88240 (AFFF Area 12) PFBS, PFOA, and PFOS in Groundwater and Surf      |             |
| 1 1801 0 10 2 011 |                                                                             |             |
| Figure 41 Wat     | er Wells Within Four Miles of Ellsworth AFB                                 |             |
|                   | l Designation Key                                                           |             |
| C                 |                                                                             |             |
| List of Appen     | dices                                                                       |             |
| Appendix A        | Figures                                                                     |             |
| Appendix B        | Regional Screening Level Calculations                                       |             |
| Appendix C        | Readiness Reviews, Field Forms, and Boring Logs                             |             |
| Appendix D        | Laboratory Case Narratives, Data Validation Report, and Analytical Data Sho | eets        |
| Appendix E        | Soil Physiochemical Analytical Results                                      | <del></del> |
| Appendix F        | Groundwater Level Measurements and Elevations                               |             |
| Appendix G        | IDW Analytical Data and Waste Manifests                                     |             |
| Appendix H        | Complete Groundwater PFAS Analytical Results                                |             |
| Appendix I        | Regulator Comments and Responses                                            |             |

## **Acronyms and Abbreviations**

 $\begin{array}{ll} \mu g/L & \text{micrograms per liter} \\ \mu g/kg & \text{microgram per kilogram} \end{array}$ 

AFB Air Force Base

AFFF aqueous film forming foam

AOC area of concern

ARSD Administrative Rules of South Dakota

ASL Aerostar SES LLC bgs below ground surface btoc below top of casing

CAS Chemical Abstracts Service CSM conceptual site model

dup duplicate

EA Engineering, Science, and Technology, Inc.

EPA Environmental Protection Agency

ERPIMS Environmental Restoration Program Information Management System

EZ exclusion zone

ft foot/feet

FTA fire training area
HA health advisory
HQ hazard quotient
ID identification

IDW investigation-derived waste IRP Installation Restoration Program

LDPE low-density polyethylene

N/A not applicable

NAD83 North American Datum 1983

NAVD 88 North American Vertical Datum 1988 NFRAP no further response action planned

ND not detected NL not listed OU-1 Operable Unit-1

PA preliminary assessment

PFAS per- and polyfluoroalkyl substances

PFBS perfluorobutane sulfonate
PFC perfluorinated compound
PFOA perfluorooctanoic acid
PFOS perfluorooctane sulfonate
pH potential of hydrogen
PID photoionization detector
PPE personal protective equipment

PVC polyvinyl chloride

QAPP quality assurance project plan RSL regional screening level RI remedial investigation

SCF SES Construction and Fuel Services LLC

SD DENR South Dakota Department of Environment and Natural Resources

SI site inspection

TCLP Toxicity Characteristic Leaching Procedure

TOC total organic carbon

U.S. Army Corps of Engineers United States Air Force USACE

USAF

Unified Soil Classification System USCS

UST underground storage tank WWTP wastewater treatment plant

#### 1.0 INTRODUCTION

Aerostar SES LLC (ASL) under contract to the U.S. Army Corps of Engineers (USACE) Omaha District (Contract No. W9128F-15-D-0051, Delivery Order No. 0003) conducted screening-level site inspections (SIs) at 12 known or suspected aqueous film forming foam (AFFF) release areas at Ellsworth Air Force Base (AFB) (Figure 1 in Appendix A). The purpose of the inspections was to determine the presence or absence of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorobutane sulfonate (PFBS) in the environment at these areas. PFOA, PFOS, and PFBS are included in a class of synthetic fluorinated chemicals used in industrial and consumer products, including defense-related applications. This class of compounds is also referred to as per- and polyfluoroalkyl substances (PFAS).

In 1970, the United States Air Force (USAF) began using AFFF, firefighting agents containing PFOS and PFOA, to extinguish petroleum fires. Releases of AFFF to the environment routinely occur during fire training, equipment maintenance, storage, and use. Although manufacturers have reformulated AFFF to eliminate PFOS, the USAF maintains a significant inventory of PFOS-based AFFF. As of this report, the USAF is actively removing PFOS-based AFFF from its inventory and replacing it with formulations based on shorter carbon chains, which may be less persistent and bioaccumulative in the environment. This was accomplished at Ellsworth AFB on November 23, 2016.

SIs were conducted at Ellsworth AFB from April 19 to July 31, 2018, in accordance with contract requirements (USACE, July 2015), a quality assurance project plan (QAPP) (ASL, March 2016), and a site-specific addendum to the QAPP (ASL, November 2017). The QAPP and QAPP addendum were prepared in accordance with Environmental Protection Agency (EPA) guidance (EPA, March 2012) and Air Force Civil Engineer Center requirements.

The objectives of the SIs are to

- determine if a confirmed release of PFAS has occurred at sites selected for SI;
- determine if PFAS are present in soil, groundwater, surface water, or sediment at the site in concentrations exceeding the EPA lifetime HAs or tap water RSLs, residential soil screening levels, or a state standard;
- identify potential receptor pathways with immediate impacts to human health; and
- provide recommendations for follow-on investigations if detected concentrations of PFAS equal or exceed project action levels (PALs).

This report identifies any releases of AFFF that resulted in PFOS, PFOA, or PFBS contamination in the environment above the project screening levels and any possible human exposure to drinking water above the HA levels. This report does not include assessment of ecological exposure pathways, receptors, or risk from PFAS impacts to the environment. Confirmed releases may require further investigation to fully delineate the extent of contamination and perform a complete risk assessment that includes ecological receptors.

The screening level for PFOS and PFOA in soil and sediment was calculated using EPA's RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search) based on a hazard quotient (HQ) of 0.1 (Appendix B). The toxicity value input for the calculator was the Tier 3 value reference dose of 0.00002 milligrams per kilogram per day derived by the EPA in its drinking water HAs for PFOS (EPA, May 2016a) and PFOA (EPA, May 2016b). Screening levels for PFOS and PFOA in groundwater and surface water are based on EPA lifetime drinking water HAs for PFOS (EPA, May 2016a) and PFOA (EPA, May 2016b). A PFAS release was considered confirmed when exceedances of the following concentrations were identified.

#### **PFOS:**

0.07 micrograms per liter ( $\mu$ g/L) in groundwater or surface water (combined with PFOA value). 126 micrograms per kilogram ( $\mu$ g/kg) in soil or sediment.

#### PFOA:

 $0.07 \mu g/L$  in groundwater or surface water (combined with PFOS value).  $126 \mu g/kg$  in soil or sediment.

Although PFOS and PFOA are the focus of the HA and provide specific targets for the USAF to address in this SI, the EPA has also derived RSLs for PFBS, for which there is a Tier 2 toxicity value (Provisional Peer Reviewed Toxicity Value). The USAF also considered a release to be confirmed if exceedances of the RSL concentrations (HQ=0.1) were identified.

#### **PFBS**:

40 μg/L in groundwater or surface water.

130,000 μg/kg in soil or sediment (residential soil RSL).

A summary of all PFAS compounds detected in groundwater at all AFFF Areas is also included in Appendix H as additional information.

Published generic regional and calculated screening levels presented in the QAPP and QAPP addendum were based on an HQ of 1.0. The screening levels have subsequently been revised to reflect an HQ of 0.1. This change affects PFBS screening levels for all media and calculated PFOS and PFOA screening levels for soil and sediment. Screening levels for PFOA and PFOS in groundwater and surface water remain at 0.07  $\mu$ g/L and are based on the EPA lifetime HA for drinking water. Table 1 presents the screening values for comparing the analytical results for each of the PFAS compounds.

**Table 1 Regulatory Screening Values** 

|                                  |               | EPA Regional Screening Level Table (November 2018) <sup>a</sup> |                                              |                        |                                                                                   | EPA Health<br>Advisory for                                                    |
|----------------------------------|---------------|-----------------------------------------------------------------|----------------------------------------------|------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Parameter                        | CAS<br>Number | Residential<br>Soil<br>(μg/kg)                                  | Protection<br>of Ground-<br>water<br>(μg/kg) | Tap<br>Water<br>(µg/L) | Calculated<br>Screening<br>Level for Soil<br>and Sediment <sup>b</sup><br>(µg/kg) | Drinking Water<br>(Surface Water<br>or<br>Groundwater) <sup>c</sup><br>(μg/L) |
| Perfluorobutane sulfonate (PFBS) | 29420-43-3    | 130,000                                                         | 13                                           | 40                     | N/A                                                                               | NL                                                                            |
| Perfluorooctanoic acid (PFOA)    | 335-67-1      | NL                                                              | NL                                           | NL                     | 126                                                                               | $0.07^{ m d}$                                                                 |
| Perfluorooctane sulfonate (PFOS) | 1763-23-1     | NL                                                              | NL                                           | NL                     | 126                                                                               | 0.0/-                                                                         |

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Levels (November 2018)

 $\mu g/kg = micrograms \ per \ kilogram$ 

EPA = Environmental Protection Agency

J

 $\mu$ g/L = micrograms per liter

CAS = Chemical Abstracts Service

N/A = not applicable

NL = not listed

RSL = regional screening level

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> Residential screening levels calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).

<sup>&</sup>lt;sup>c</sup> EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

 $<sup>^</sup>d$  The EPA health advisory value for drinking water of 0.07  $\mu$ g/L applies to the combined detected concentrations of PFOS and PFOA.

# Previous and On-Going PFAS-Related Activities at Ellsworth AFB

In 2012, Ellsworth AFB conducted a limited preliminary assessment (PA) summarizing AFFF use, releases, and disposal at the Base. This assessment documented AFFF releases at several areas including the former fire training area (FTA) designated as Operable Unit-1 (OU-1). Sampling conducted during a limited investigation at OU-1 indicated PFOS and PFOA in groundwater and soil were above screening levels (Ellsworth AFB, November 2012).

A screening-level site investigation was conducted at Ellsworth AFB in June 2014 (SES Construction and Fuel Services LLC [SCF], January 2015) to determine the presence or absence of PFAS in soil, groundwater, surface water, and sediment at four areas (identified in the 2012 limited PA) where PFAS releases were known or suspected to have occurred. Areas investigated in 2014 included Docks 73 and 93, Underground Storage Tank (UST) 7246 and Outfall #3, UST 88240 Retention Lagoon, and UST 618 and the Base wastewater treatment plant (WWTP). Analytical results for samples collected during this effort indicated the presence of PFAS above screening levels and are discussed further in Section 2.

A second PA conducted in February 2015 (CH2M Hill, May 2015) recommended SIs for 12 areas at Ellsworth AFB (in addition to the former FTA) because of known or suspected releases of AFFF. These 12 areas (now identified as AFFF Areas 1 through 12) are listed in Table 2 and shown on Figure 2 in Appendix A.

A remedial investigation (RI) of the former FTA and three additional potential source areas (shown on Figure 2 in Appendix A) is currently being conducted by others. These four potential source areas and the area south of the Ellsworth AFB boundary are designated Area of Concern (AOC) PFC-1 (Ayuda Partners Joint Venture, December 2015). In March 2016, a residential well survey was conducted by others as part of the delineation of PFAS at AOC PFC-1 (Ayuda Partners Joint Venture, June 2017). This survey identified three private wells to be sampled for PFAS. Owners of these three wells were identified as Newman, Sanders, and Farrar (note the Farrar well is currently owned by Thunderbird Properties, LLC).

Sampling and analysis of the Newman and Sanders wells indicated the wells to be impacted by PFAS; however, pre-existing water use restrictions precluded their use and no response action was needed. Sampling and analysis of the Thunderbird Realty, LLC, well also indicated PFAS impacts. This well (south of AOC PFC-1) was also used by the adjacent Walter property. In January 2017, an alternate source of potable water was provided to both the Thunderbird Realty and Walter properties and the private well was decommissioned (CB&I, August 2017). Note that the pump was removed but the well is still present.

Stage 1 RI sampling conducted in March 2016 at AOC PFC-1 indicated concentrations of PFOS and PFOA in soil, groundwater, and surface water above current screening levels; PFOS in sediment above the screening level, and PFBS in groundwater above the current screening level (Ayuda Partners Joint Venture, November 2017). Stage 2 RI sampling was conducted in 2017–2018. The lateral extent of PFOS and PFOA in groundwater was not determined and a Stage 3 field effort is currently in the planning stages. A door-to-door well survey effort to locate and sample possible off-Base drinking water wells has been completed by others subsequent to field activities conducted for this ESI. Preliminary results from this effort indicate the presence of previously unknown drinking water wells, some of which have been impacted by PFAS.

Between May and September 2017, field sampling was conducted on the Thunderbird Realty, LLC, and Walter properties to determine if PFAS have migrated from the Base. Surface soil, groundwater, sediment, and surface water were sampled. PFOS was detected in surface soil and sediment above the current screening level and PFOS and PFOA were detected in groundwater and surface water above the

screening level (Aptim Federal Services, LLC, July 2018). It should be noted that the field sampling conducted by Aptim was not conducted under a regulator-approved QAPP, so the results should be treated as "screening level" data.

Table 2 AFFF Areas and Selection Rationale for Site Inspections at Ellsworth Air Force Base

| AFFF<br>Area | Location                                  | Associated<br>Existing<br>IRP ID | Rationale                                                                                                                                                                                                                                                                                                     | Media of<br>Concern                                             |
|--------------|-------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 1            | Current FTA                               | Not an existing site             | <ul> <li>In operation since 1993.</li> <li>All nozzle spray testing and flushing occurred at the FTA.</li> <li>Most AFFF was contained within the retention pond, but some AFFF may have been released to adjacent soils.</li> </ul>                                                                          | Surface soil<br>Subsurface soil<br>Groundwater                  |
| 2            | 70, 80, 90 Rows<br>and<br>Outfall #3      | Not an existing site             | <ul> <li>Known AFFF releases in eight of 10 hangars.</li> <li>2014 SI indicated the presence of PFOS and PFOA above current screening levels in shallow groundwater at Dock 73 (on 70 Row), the 70 Row diversion tank (UST 7246), Dock 93 (on 90 Row), and Outfall #3/Pond #3 (SCF, January 2015).</li> </ul> | Surface soil Subsurface soil Groundwater Sediment Surface Water |
| 3            | Building 618                              | Not an existing site             | <ul> <li>2014 SI indicated the presence of PFOS and PFOA above current screening levels in shallow groundwater at Building 618 (SCF, January 2015).</li> <li>AFFF spills noted in the Ellsworth spills database (Ellsworth AFB, February 2015).</li> </ul>                                                    | Subsurface soil<br>Groundwater                                  |
| 4            | Former Fire<br>Station<br>(Building 7506) | Not an existing site             | <ul> <li>Overhead AFFF tanks.</li> <li>Known AFFF spill (five gallons).</li> <li>Several engines/trailer contained AFFF.</li> <li>AFFF has been observed on fire station driveways in the past.</li> </ul>                                                                                                    | Surface soil<br>Subsurface soil<br>Groundwater                  |
| 5            | B-52 Crash<br>(1972)                      | Not an existing site             | AFFF use is unknown, but possible.                                                                                                                                                                                                                                                                            | Surface soil<br>Subsurface soil<br>Groundwater                  |
| 6            | B-1 Crash<br>(1988)                       | Not an existing site             | Unknown amount of AFFF used during emergency response.                                                                                                                                                                                                                                                        | Surface soil Subsurface soil Groundwater                        |
| 7            | Delta Taxiway<br>West Crash<br>(2000)     | Not an existing site             | • 100 gallons of AFFF spilled; likely migrated to adjacent soils.                                                                                                                                                                                                                                             | Surface soil Subsurface soil Groundwater                        |
| 8            | Marten Crash<br>(2006)                    | Not an existing site             | Based on crash photos, AFFF was applied at the crash location.                                                                                                                                                                                                                                                | Surface soil Subsurface soil Groundwater                        |
| 9            | Crash 4<br>(2001)                         | Not an existing site             | • 10 gallons of AFFF released from fire truck.                                                                                                                                                                                                                                                                | Surface soil Subsurface soil Groundwater                        |

| AFFF<br>Area | Location                      | Associated<br>Existing<br>IRP ID                                                                                           | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Media of<br>Concern                                                         |
|--------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 10           | Wastewater<br>Treatment Plant | Not an<br>existing<br>site                                                                                                 | <ul> <li>WWTP received discharge from several locations which had AFFF releases such as the diversion tank at 70 row, Building 618, and fire station floor drains.</li> <li>During operation, the WWTP discharged approximately 300,000 to 500,000 gallons of treated water per day off-Base and to Golf Course Lake. The WWTP ceased operations in 2014.</li> <li>AFFF was likely released as result of treated water discharge and sludge management.</li> <li>Water from Golf Course Lake was sometimes used for irrigation of the golf course.</li> <li>2014 SI indicated the presence of PFOS and PFOA above current screening levels in sediment and surface water downstream from the WWTP (SCF, January 2015).</li> </ul> | Surface soil<br>Subsurface soil<br>Groundwater<br>Sediment<br>Surface Water |
| 11           | Spray Nozzle Test<br>Area     | Not an existing site  Ouring nozzle testing, AFFF was sprayed on a grassed area for up to 20 years in the 1970s and 1980s. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Surface soil Subsurface soil Groundwater Sediment Surface Water             |
| 12           | Building 88240                | Not an existing site                                                                                                       | Formerly contained an AFFF fire suppression system.     2014 SI indicated the presence of PFBS, PFOS, and PFOA above current screening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |

Modified from Table 4.1 Preliminary Assessment Report Summary and Findings Ellsworth Air Force Base (CH2M Hill, May 2015)

ID = identification AFB = Air Force BaseAFFF = aqueous film forming foam bgs = below ground surface

FTA = fire training area IRP = Installation Restoration Program PFOA = perfluorooctanoic acid PFOS = perfluorooctane sulfonate

SCF = SES Construction and Fuel Services LLC UST = underground storage tank WWTP = wastewater treatment plant SI = site inspection

#### 2.0 AREA DESCRIPTIONS

#### 2.1 **ELLSWORTH AIR FORCE BASE**

Ellsworth AFB is approximately 10 miles northeast of Rapid City, South Dakota, and adjacent to the City of Box Elder (Figure 1, Appendix A). The Base covers approximately 4,858 acres within Meade and Pennington counties and includes runways, airfield operations, industrial areas, housing, and recreational facilities. Ranches lie to the north and west of Ellsworth AFB and residences, ranches, and commercial areas lie to the east and south.

# *Topography*

The Base lies within the Missouri Plateau subdivision of the Great Plains Physiographic Province. The topography in this region is typified by nearly level upland plateaus interspersed among rolling hills. Erosional dissection of the landscape is often pronounced, especially along upland margins and adjacent to stream valleys. The Base is situated on a gently sloping north-south upland plateau between Elk Creek to the north and Box Elder Creek to the south. Mean elevation is 3,250 feet above mean sea level, and relief across the Base ranges from 40 to 210 feet (EA Engineering, Science, and Technology, Inc. [EA], May 1994).

# Surface Water Hydrology

Surface drainage at the Base follows topography primarily flowing south-southeast via retention ponds, ditches, storm sewers, and ephemeral streams with eventual discharge into Box Elder Creek one mile to the south. Box Elder Creek is considered an ephemeral stream containing water only when sufficient runoff is available to support flow, typically during or immediately following precipitation events. Floodplains occur along the main Base drainage, as well as along several of the creek drainages on the northern and southern portion of the Base. The northern limit of the Box Elder Creek floodplain is approximately 50 feet south of the southern Base boundary.

Ellsworth AFB lies on the extreme eastern flank of the Black Hills uplift, a north-south trending, elliptically shaped dome that resulted from tectonic movement during the Laramide Orogeny. During this event, basement crystalline rocks west of the Base were uplifted and exposed while overlying Mesozoic and Paleozoic strata were uplifted, eroded, and deformed. These strata now crop out as the hogbacks flanking the Black Hills uplift. Beneath the Base, the strata dip moderately to the east-northeast. Figure 3 (Appendix A) presents a generalized stratigraphic column of the strata beneath Ellsworth AFB. A geologic map of the area is included as Figure 4 (Appendix A).

The oldest and deepest rocks beneath the Base are Precambrian-age crystalline basement rocks. The basement rocks are overlain by Cambrian through Lower Cretaceous deposits of limestone, sandstone, and dolomite. Several sedimentary deposits are known aquifers in the region. Overlying the Jurassic deposits is a sequence of Upper Cretaceous age marine shales with intermittent sandstone and limestone beds. This Upper Cretaceous sequence of fine-grained marine deposits extends to the surface and is greater than 1,000 feet thick below the Base. The uppermost of these Cretaceous-age deposits is the Pierre Shale, which forms the bedrock surface at the Base.

The Pierre Shale is a dark gray to light gray, organic-rich, noncalcareous, blocky, fragmented marine shale. Bentonite beds and ironstone concretion layers greater than 1 foot thick are common, as are ironstone nodules and selenite crystals on weathered faces. Bentonite beds are typically yellow and are the result of volcanism that occurred during the Laramide Orogeny. The Pierre Shale may be considerably altered by weathering and typically weathers into an orange to brown clay material overlying fractured and iron-stained shale.

Previous investigations indicate that the depth to the Pierre Shale is variable, ranging from surface outcrops to depths of approximately 40 feet. Weathering and permeability within the shale generally decrease with depth.

Overburden at the Base typically consists of unconsolidated Tertiary through Quaternary-age strata overlying the Pierre Shale. These unconsolidated materials can be divided into three basic categories based upon depositional history:

- Colluvial deposits loose, heterogeneous sediment and/or rock fragments deposited on slopes
  and the toe of slopes primarily by gravity rainwash, sheetwash, or slow, continuous downslope
  creep, typified by juxtaposition of sedimentary components not normally associated with one
  another (gravelly clay).
- Alluvial deposits clay, silt, sand, gravel, or similar unconsolidated, detrital material deposited during comparatively recent geologic time by running water as sorted or semi-sorted deposit.
   These deposits are generally associated with the past or current drainage system of Box Elder Creek.
- Residuum –unconsolidated soils that developed in-place through the weathering of underlying consolidated rock. These soils may show relic textures associated with the parent rock (also known as saprolite or saprolitic soil). The boundaries between residual soils, weathered shale, and competent bedrock are often gradual and not well-defined.

Overburden thicknesses vary widely across the Base, but in general, range from 10 feet to 40 feet. Toward the northern end of Ellsworth AFB, the Pierre Shale is predominately covered by a thin veneer of alluvial or colluvial soil but is exposed along deeper channels and some steeper side slopes. Toward the southern end of Ellsworth AFB, older, relatively thicker, coarser alluvial deposits associated with Box Elder Creek fill the gentler, wider erosional channels, and exposures of Pierre Shale are less common (EA, May 1995).

#### Climate

The climate at Ellsworth AFB is characterized as semi-arid continental with the Black Hills to the west affecting the climate in this area. The average summer temperature is 68 degrees Fahrenheit, and the daily high average is 81 degrees Fahrenheit. Winters are relatively mild due to protection from the Black Hills and the frequent occurrence of Chinook winds. The average winter temperature is 26 degrees Fahrenheit, with an average daily minimum of 14.9 degrees Fahrenheit. Average annual precipitation is 16.3 inches with most precipitation falling during the spring and early summer months. Prevailing winds are from the north and northwest (EA, May 1995).

# 2.2 CURRENT FIRE TRAINING AREA (FTA) – AFFF AREA 1

The current FTA occupies approximately seven acres in the southwestern portion of Ellsworth AFB as shown on Figures 2 and 5 in Appendix A. The FTA has been in use since 1993 and is still used for fire training activities. All current nozzle spray testing and flushing performed by the Ellsworth AFB Fire Department occurs at the FTA. Although most AFFF was contained by the lined fire training pit and adjacent retention pond, some AFFF may have been released to surrounding grassed areas.

Media potentially impacted by PFAS at the current FTA include surface soil, subsurface soil, and groundwater. Surface water and sediment were not identified as media of concern because there are no surface water bodies near the current FTA.

# 2.3 70, 80, 90 ROWS AND OUTFALL #3 – AFFF AREA 2

The 70, 80, and 90 Rows of aircraft hangars (also known as docks) are on the northeast side of the Ellsworth AFB runway and encompass approximately 83 acres as shown on Figures 2 and 6a in Appendix A. Of the 13 docks on these three rows, ten docks (Docks 70, 71, 72, 73, 74, 81, 90, 91, 92, and 93) previously contained AFFF fire suppression systems and AFFF releases have been documented for at least eight of the docks. Releases have not been confirmed at Docks 72 and 73.

Pumphouse 7263, at the northeast end of 90 Row, contained a 1,000-gallon AFFF tank that fed the hangars on 70, 80, and 90 Rows via underground piping. According to the Ellsworth spills database, 310 gallons of AFFF were released at the pumphouse in September 1994 and the material went through cracks in the floor and into the soil under the building. In 2000, the AFFF systems were upgraded and each dock had its own 500-gallon AFFF tank installed inside. AFFF underground piping from the pumphouse to the hangars is still in place but capped at the floor (CH2M Hill, May 2015).

Trench drains inside each dock discharge to a 150,000-gallon diversion tank (underground storage tank [UST] 7246) at the southwest end of 70 Row. The contents of the diversion tank were typically released to the WWTP but could have also been released to Outfall #3 on the southwest side of the runway through storm drains (CH2M Hill, May 2015).

SCF investigated possible PFAS impacts at Docks 73 and 93, UST 7246, and Outfall #3 in 2014 (SCF, January 2015). Groundwater, surface soil, and subsurface soil were sampled at Docks 73 and 93. Groundwater and subsurface soil were sampled at UST 7246. Subsurface soil, groundwater, sediment, and surface water were sampled at Outfall #3 (and adjacent Pond #3). Both individual and combined PFOS and PFOA concentrations exceeded the current screening level in groundwater at each of these areas and in surface water at Pond #3 and Outfall #3. PFOS was also detected in the sediment sample from Pond #3 above the current screening level. PFOS and PFOA concentrations were below screening levels in all surface and subsurface soil samples. PFBS was not detected above screening levels in any of the media sampled. PFBS, PFOS, and PFOA analytical results from the 2014 investigation (at Outfall #3) are shown on Figure 6b.

Media known to be, or are potentially, impacted by PFAS include surface soil, subsurface soil, and groundwater at 70, 80, and 90 Rows, and subsurface soil, groundwater, sediment, and surface water at Outfall #3. Surface soil was not identified as media of concern at Outfall #3. Because AFFF impacts were assumed to be from surface water discharge to the outfall, the presence of PFAS impacts would be most likely identified in sediment rather than surface soil.

# 2.4 BUILDING 618 – AFFF AREA 3

Building 618, 28<sup>th</sup> Logistics Readiness Squadron and refueling maintenance, is near the southeast end of the runway as shown on Figures 2 and 7. Building 618 formerly had an AFFF fire suppression system; discharge from the system was captured in floor drains and discharged to a 50,000-gallon diversion recovery tank (UST 618) via underground pipelines. The Ellsworth spills database documented the inadvertent release of 50 gallons of AFFF inside Building 618 when electricians accidentally pressurized the system in November 2001 (CH2M Hill, May 2015).

Although no AFFF releases to the environment were reported prior to this investigation, a limited SI was conducted in 2014. To confirm the presence or absence of PFAS at Building 618, subsurface soil and groundwater samples were collected near UST 618. Both individual and combined PFOS and PFOA concentrations exceeded the current screening level in groundwater. PFOS and PFOA concentrations were below the screening level in subsurface soil. PFBS was not detected above screening levels in either groundwater or subsurface soil (SCF, January 2015).

Media known to be, or are potentially, impacted by PFAS at Building 618 include subsurface soil and groundwater. Surface soil was not identified as media of concern because potential releases were assumed to be from the UST (i.e., below ground and not on the ground surface). Surface water and sediment were not identified as media of concern because there are no surface water bodies near Building 618.

# 2.5 FORMER FIRE STATION (BUILDING 7506) – AFFF AREA 4

The site of the former Fire Station (Building 7506) is near the center of the Base as shown on Figures 2 and 8. The station was constructed in 1952, remained in operation until 2000, and was subsequently demolished in 2007. The building had a trench drain system that contained any spills inside the building; although, discharges of AFFF were often observed outside the building. Trench drains discharged to the sanitary sewer system and ultimately to the WWTP. AFFF was stored in two overhead storage tanks with a piping system that was used to gravity fill into the tops of the crash trucks. The Ellsworth spills database documented a 5-gallon spill (contained on concrete) when a line broke in November 1994. During interviews for the 2015 PA, Base personnel indicated it was not uncommon to see foam solution on the fire station driveways after foam operations indicating AFFF releases outside of the building footprint (CH2M Hill, May 2015).

Media potentially impacted by PFAS at Building 7506 include surface soil, subsurface soil, and groundwater. Surface water and sediment were not identified as media of concern because there are no surface water bodies near the former fire station.

# 2.6 B-52 CRASH (1972) – AFFF AREA 5

The 2015 PA indicated a B-52 caught fire and crashed during landing, skidding into Pumphouse 7 on the north side of the runway and west of 70 Row as shown on Figures 2 and 9. It should be noted that Figure 3.1 in the 2015 PA incorrectly shows the location of the crash to be further northwest, but available documentation indicates the crash occurred at Pumphouse 7. The Ellsworth AFB Fire Department responded to the crash and extinguished the fire with an unknown quantity of foam (CH2M Hill, May 2015). The 2015 PA also indicated the crash occurred in 1970; however, additional review of the Air Force Administrative Record found an Installation Restoration Program (IRP) records search (Engineering-Science, September 1985) that indicated the crash occurred in 1972 and also confirmed the crash occurred at Pumphouse 7. Although the 2015 PA could not verify that the type of foam used, based on the revised date of the crash (1972), use of AFFF is likely since the Air Force began using AFFF in 1970.

Media potentially impacted by PFAS at the B-52 crash site include surface soil, subsurface soil, and groundwater. Surface water and sediment were not identified as media of concern because there are no surface water bodies near the B-52 crash site

# 2.7 B-1 CRASH (1988) – AFFF AREA 6

The B-1 crash occurred in 1988 on the southeastern end of the runway as shown on Figures 2 and 10. During the emergency response, an unknown amount of AFFF was used at the crash site (CH2M Hill, May 2015).

Media potentially impacted by PFAS at the B-1 crash site include surface soil, subsurface soil, and groundwater. Surface water and sediment were not identified as media of concern because there are no surface water bodies near the B-1 crash site.

# 2.8 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7

A vehicle crash in 2000 involving a fire truck and an AFFF trailer occurred on Taxiway West as shown on Figures 2 and 11. The crash resulted in the release of 1000 gallons of AFFF. According to South Dakota Department of Environment and Natural Resources (SD DENR) spill records, approximately 900 gallons were recovered and 100 gallons infiltrated soil in adjacent grassed areas. The spill report indicates the contaminated soil was excavated and disposed of at the Rapid City Landfill (SD DENR, 2000).

Media potentially impacted by PFAS at the Delta Taxiway West crash site include surface soil, subsurface soil, and groundwater. Surface water and sediment were not identified as media of concern because there are no surface water bodies near the crash site.

# 2.9 MARTEN CRASH (2006) – AFFF AREA 8

In 2006, a tractor trailer owned by Marten Transport Ltd crashed off of the Interstate 90 overpass onto Ellsworth AFB property below as shown on Figures 2 and 12 (SD DENR, 2006). Photographs of the crash scene show that AFFF was applied to the wreckage and collected in low-lying areas on either side of the abandoned railroad tracks in the area. Note that the 2015 PA incorrectly indicated the crash occurred in 2003 (CH2M Hill, May 2015).

Media potentially impacted by PFAS at the Marten crash site include surface soil, subsurface soil, and groundwater. Surface water and sediment were not identified as media of concern because there are no surface water bodies near the crash site.

# 2.10 CRASH 4 (2001) - AFFF AREA 9

In 2001, 10 gallons of AFFF were spilled from a Base fire department crash truck designated as "Crash 4." The spill occurred near former Building 7140 as shown on Figures 2 and 13. The 2015 PA indicated the spill likely occurred along Menoher Road that led to Building 7140. Building 7140 has been demolished and a live ordnance loading area was constructed over the likely release area.

Media potentially impacted by PFAS at the Crash 4 spill site include surface soil, subsurface soil, and groundwater. Surface water and sediment were not identified as media of concern because there are no surface water bodies near the spill site.

#### 2.11 WASTEWATER TREATMENT PLANT – AFFF AREA 10

The WWTP is in the southeast portion of the Base as shown on Figures 2 and 14. The WWTP ceased operations in July 2014, but according to Base personnel, it has not been decommissioned as was indicated in the 2015 PA.

The WWTP received discharge from several locations on Base where AFFF releases have occurred, including the diversion tanks at 70 row, Building 618, and the fire station. Treated wastewater discharged to Outfall #5, flowed via an unnamed drainage to a golf course lake, and ultimately to Outfall #6 where the water left the Base and discharged to Box Elder Creek. AFFF was likely released in the WWTP effluent and sludge. Additionally, water from Golf Course Lake was sometimes used for irrigation of the golf course.

SCF conducted a limited SI in 2014 to assess impacts from effluent from the WWTP, collecting sediment and surface water samples downstream from Outfall #5. Both individual and combined PFOS and PFOA concentrations exceeded current screening levels in surface water and PFOS concentrations exceeded the current screening level in sediment.

Media known to be, or are potentially, impacted by PFAS at the WWTP include surface soil, subsurface soil, groundwater, sediment, and surface water.

#### 2.12 SPRAY NOZZLE TEST AREA – AFFF AREA 11

Spray nozzle testing was conducted in the grassed infield between the aircraft apron and the runway as shown on Figures 2 and 15. The test area was active in the 1970s and 1980s and unknown quantities of AFFF were sprayed on the ground surface during testing (CH2M Hill, May 2015).

Media potentially impacted by PFAS at the spray nozzle test area include surface soil, subsurface soil, groundwater, sediment, and surface water.

#### 2.13 **BUILDING 88240 – AFFF AREA 12**

Building 88240 is in the munitions storage area on the northern portion of the Base as shown on Figures 2 and 16. The building formerly contained an AFFF fire suppression system and has a trench drain system inside the building. Under normal operating conditions, flow from the trench drains enters an oil/water separator before being released into the sanitary sewer. However, when the AFFF system was activated, a valve was used to route released AFFF into a retention pond south of Building 88240. A limited PA conducted by Ellsworth AFB indicated this pond is either unlined or clay lined (Ellsworth, November 2012). During heavy rainfall, surface water flows from the pond to a culvert south of the pond. Surface drainage in this area flows south toward the live ordnance loading area and Row 100. There are no records of accidental AFFF releases from Building 88240 and the AFFF system has been replaced with a water-only sprinkler system (CH2M Hill, May 2015).

SCF conducted a limited SI in 2014 at the Building 88240 retention pond, collecting subsurface soil, groundwater, sediment, and surface water samples. PFBS and individual and combined PFOS and PFOA concentrations exceeded the current screening level in surface water. Individual and combined PFOS and PFOA concentrations also exceeded the current screening level in groundwater. PFBS, PFOA, and PFOS were also detected above screening levels in sediment. Where detected, PFOS and PFOA concentrations in subsurface soil samples were below the current screening level. PFBS was not detected above screening levels in subsurface soil (surface soil was not sampled in 2014) (SCF, January 2015).

Media known to be, or are potentially, impacted by PFAS at Building 88240 include surface soil, subsurface soil, groundwater, sediment, and surface water.

# 3.0 FIELD ACTIVITIES AND FINDINGS

ASL conducted SI field activities at Ellsworth AFB between April 17, 2018, and July 31, 2018. Fieldwork was conducted in accordance with the QAPP (ASL, March 2016) and the Base-specific field sampling plan addendum to the QAPP (ASL, November 2017). A readiness review (documented in Appendix C) conducted prior to fieldwork covered anticipated hazards, types and proper use of equipment needed for the field activities, sampling procedures, and procedures to be used to prevent cross-contamination of samples with PFAS-containing compounds. Cross-contamination avoidance procedures followed during field activities are detailed in Section 3.2.

## 3.1 FIELD ACTIVITIES AND SAMPLING PROCEDURES

#### 3.1.1 Sampling Methodology

Field activities included installing monitoring wells and sampling surface soil, subsurface soil, groundwater, surface water, and sediment; samples were analyzed for PFAS compounds, including PFBS, PFOA, and PFOS. Sample locations were selected in areas most likely to have been impacted by known or suspected AFFF releases. Soil borings were advanced with a track-mounted, compact sonic drill rig.

Soil cores were collected by advancing a 4-inch, inner core barrel to the desired sample depth (typically in 5-foot or 10-foot intervals) and over-drilling with a 6-inch outer casing. The core barrel and soil core were retrieved, leaving the 6-inch outer casing to maintain the integrity of the borehole. Soil cores were then vibrated from the core barrel into plastic sleeves for logging, field screening, and sample collection. Prior to logging, slits were cut in the sample sleeve and the soil cores screened with a photoionization detector (PID). After recording the PID readings on the boring log, the soil core was measured and the recovered length recorded in the boring log. The sample sleeve was then opened and the core visually logged. All borings were logged by a trained geologist (with a degree from an accredited university) experienced in describing soil core and overseen by a senior geologist. The soil descriptions were in accordance with the Geology Supplement to the Scope of Services (USACE, June 2013) and followed the general format:

- Soil type (fat clay, lean clay, sand, silty gravel, etc.);
- Color (using Munsell soil color charts);
- Grading, grain size, consistency/density, moisture content, cementing;
- Other notable features (staining, organics, fossils, odors, etc.); and
- Unified Soil Classification System (USCS) designation (CH, CL, SP, GM, etc.).

Surface soil samples were collected from 0 to 6 inches below ground surface (bgs) with a combination of stainless steel hand augers and stainless steel spoons. Subsurface soil samples were collected immediately above the water saturated/unsaturated soil interface either with hand augers or from the soil core generated during sonic drilling.

Sediment samples were collected using stainless steel spoons. Surface water samples were collected by attaching the sample container to an extendable rod designed for sampling and dipping the container into the water.

Field duplicate samples were collected at a frequency of one for every 10 samples for each media sampled. Matrix spike/matrix spike duplicate samples were collected at a frequency of one for every 20 samples for each media. Boring logs and sample collection forms are in Appendix C.

All soil, groundwater, sediment, and surface water samples were submitted via overnight courier to Maxxam Analytics International Corporation of Mississauga, Ontario, Canada (Maxxam), under chain of

custody procedures and analyzed for PFBS, PFOA, and PFOS using modified EPA Method 537, "Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/ Tandem Mass Spectrometry (LC/MS/MS)." Eighteen PFAS compounds are included in this analysis; however, only the three analytes listed below have health-based screening levels associated with them.

| _ Analyte                         | *CAS Number |
|-----------------------------------|-------------|
| Perfluorobutane sulfonate (PFBS)  | 29420-43-3  |
| Perfluorooctanoic acid (PFOA)     | 335-67-1    |
| Perfluorooctane sulfonate (PFOS)  | 1763-23-1   |
| *CAS = Chemical Abstracts Service |             |

Laboratory case narratives and analytical data sheets for modified EPA Method 537 are presented in Appendix D.

To provide basic soil parameter information, ASL collected representative composite surface soil and subsurface soil samples and submitted the samples to CT Laboratories of Baraboo, Wisconsin, for physiochemical parameters from each area. These analyses included potential of hydrogen (pH), particle size distribution, percent solids, and total organic carbon (TOC). Laboratory data sheets for the physiochemical parameters and a summary this data (Table E-1) are included in Appendix E.

# 3.1.2 Soil Borings and Monitoring Well Installation

Fifty-one soil borings were completed during the SI and monitoring wells were installed in 38 of the borings. Typically wells were constructed with 2-inch-diameter, 10-foot long schedule 40 polyvinyl chloride (PVC) screens (continuous wrap 0.010-inch slot) and risers with flush threads. In two cases, 15-foot-long screens were used to increase the likelihood of intercepting adequate groundwater to sample (wells MW18PFC0403 and MW18PFC0801). Sand filter packs were installed by tremieing the sand through the outer sonic casing and vibrating it in place. Thirty-one wells were installed with flushmount completions and seven wells were installed with above ground stickup completions (three wells at the current FTA [AFFF Area 1], three wells at Building 88240 [AFFF Area 12], and one well at Outfall #3 [AFFF Area 2]). Borings where monitoring wells were not installed (13 total) were abandoned by pumping cement bentonite grout through a tremie pipe placed near the bottom of the borehole and backfilling the borehole to the surface. Boring logs and well construction diagrams are included in Appendix C. Construction details for the 38 newly installed wells are included in Table F-1 in Appendix F.

#### 3.1.3 Well Development

Newly installed monitoring wells were developed and existing monitoring well MW930107 was redeveloped prior to sampling. Monitoring wells were developed with either air displacement or electric submersible pumps. Wells were developed until pH, temperature, turbidity, and specific conductivity stabilized. Because the wells were screened within lean clay, turbidities remained high during development with most being above the instrument upper range of 1000 nephelometric turbidity units (NTUs). One well (MW18PFC0206) produced very little water and could not be developed. Groundwater samples were collected with peristaltic pumps at 32 wells. Water levels in the seven remaining wells were below the effective range of a peristaltic pump and were sampled using electric submersible pumps. All samples were collected using new disposable low-density polyethylene (LDPE) tubing. Sampling was conducted at least 24 hours after development. Well development logs, groundwater sampling logs, and sample collection forms are included in Appendix C.

#### 3.1.4 Data Quality

Third-party data validation was conducted on 100% of the analytical data. Overall, the quality of the data was acceptable; no data was rejected and all data is considered usable for decision-making. The precision, accuracy, and completeness results were acceptable for the project. Further details are included in the data validation report in Appendix D.

# 3.1.5 Surveying

Coordinates and elevations for soil borings and monitoring wells were established by Ferber Engineering Company, Inc., of Rapid City, South Dakota. All newly installed wells and existing well MW930107 were surveyed. Northing and easting coordinates were based on the South Dakota State Plane Coordinate System, South Zone, North American Datum 1983 (NAD83). Elevations were referenced to North American Vertical Datum 1988 (NAVD 88). ASL personnel recorded sediment/surface water sample points using a Trimble Geo7X handheld global positioning system (GPS) unit.

#### 3.2 PFAS CROSS-CONTAMINATION AVOIDANCE PROCEDURES

Field personnel complied with PFAS cross-contamination avoidance procedures and considerations, which are included in ASL Standard Operating Procedure 028, "Field Sampling Protocols to Avoid Cross-Contamination at Perfluorinated Compounds (PFCs) Sites."

# 3.2.1 Field Equipment

The following steps were taken to avoid cross-contamination from field equipment:

- Teflon®-containing materials (Teflon® tubing, bailers, tape, plumbing paste, or other Teflon® materials) were not used because Teflon® contains fluorinated compounds.
- Peristaltic pumps equipped with silicon tubing were used to sample groundwater at depths of approximately 25 feet or shallower. A submersible electric pump was used to sample groundwater at depths greater than 25 feet.
- LDPE tubing was used downhole for all sampling and well development.
- Field notes were recorded in a bound logbook that did not have waterproof paper.
- All personnel changed gloves between recording and sampling activities to prevent crosscontamination.
- Post-It Notes® were not allowed on site.
- Only Sharpie<sup>®</sup> brand markers were used. Pens were used to document field activities in the logbooks and on field forms, to label sample containers, and to prepare the chains of custody.
- Chemical (blue) ice packs were not used to store samples, food, or drinks.

#### 3.2.2 Field Clothing and Personal Protective Equipment (PPE)

The following requirements for field clothing and PPE were followed to avoid cross-contamination:

• The sampling personnel wore field clothing made of synthetic and natural fibers (preferably cotton). The clothing had to have been laundered at least six times without using a fabric softener

since it was purchased. New clothing was not allowed because it could contain PFAS-related treatments.

- Only rain gear made from polyurethane and wax-coated materials was allowed.
- Clothing or boots containing Gore-Tex<sup>TM</sup> was not allowed because it consists of a PFAS membrane.
- Tyvek® clothing was not allowed on site because it contains fluorinated compounds.
- Disposable nitrile gloves were worn at all times when field activities were being conducted, and a new pair was donned prior to the following activities at each sample location:
  - o Decontamination of reusable sampling equipment;
  - Contact with sample bottles or water containers;
  - o Insertion of anything into the well (LDPE tubing, HydraSleeve® bailer, etc.);
  - o Insertion of silicon tubing into the peristaltic pump;
  - o Completion of monitor well purging;
  - o Sample collection; and
  - Handling of any quality assurance/quality control samples, including field blanks and equipment blanks.
- A new pair of nitrile gloves were worn after handling any non-dedicated sampling equipment, after contact with surfaces that had not been decontaminated, or when field personnel thought it was necessary.

# 3.2.3 Sample Containers

Sample containers met the following requirements to avoid cross-contamination:

- All samples were collected in high-density polyethylene bottles with screw caps made of the same materials. The liners of lined screw caps were not made of Teflon® and did not contain PFAS
- Glass sample containers were not used.
- Container labels were completed using a Sharpie<sup>®</sup> pen after the caps had been placed on each bottle

# 3.2.4 Wet Weather

The following requirements were followed during wet weather to avoid cross-contamination:

- Field personnel who were sampling during wet weather (such as rainfall or snowfall) wore appropriate clothing that did not pose a risk of cross-contamination. Sampling personnel avoided synthetic gear treated with water-repellant finishes containing PFAS. Only rain gear made from polyurethane and wax-coated materials was allowed.
- Field personnel wore gloves when erecting or moving a gazebo tent overtop used for protection
  from rain at sampling locations because the canopy material may have been treated with a PFASbased coating. Gloves were changed immediately after handling the tent, and any further contact
  with the tent was avoided until all sampling activities were finished and the team was ready to
  move on to the next sample location.

# 3.2.5 Equipment Decontamination

Field sampling equipment was decontaminated using Alconox® or Liquinox® soap. Decon 90® was not used during decontamination activities. Laboratory-certified PFAS-free water was used for the final

decontamination rinse of sampling equipment. Larger equipment, such as drill rigs, was decontaminated using potable water and a high-pressure washer and then rinsed with potable water.

# 3.2.6 Personnel Hygiene

The following personal hygiene requirements were followed to avoid cross-contamination:

- Field personnel did not use cosmetics, moisturizers, hand cream, or other related products as part of their personal hygiene routine before a sampling event because these products may contain surfactants and be a potential source of PFAS.
- Because many manufactured sunblock and insect repellants contain PFAS, only sunblock and insect repellants that contain 100% natural ingredients were allowed.
- For restroom breaks, field personnel left the exclusion zone (EZ) before removing PPE. Before returning to the EZ, field personnel washed as normal, allowing extra time to rinse with water after using soap. Field personnel used a mechanical dryer to avoid using paper towels if possible.

#### 3.2.7 Food Considerations

Field personnel did not eat or drink inside the EZ.

#### 3.2.8 Visitors

Site visitors remained outside the EZ during all sampling activities.

#### 3.3 DATA USABILITY

The quality of all analytical data was acceptable; no data was rejected and all data was considered usable for decision-making.

#### 3.4 DEVIATIONS FROM THE FIELD SAMPLING PLAN

There were no significant deviations from the field sampling plan (ASL, November 2017). Minor deviations included the installation of 15-foot screens in two wells—instead of 10-foot screens—(see Section 3.1.2) and the inability to achieve low turbidities during development of some wells (see Section 3.1.3).

#### 3.5 CURRENT FIRE TRAINING AREA (FTA) – AFFF AREA 1

#### 3.5.1 Sample Locations

To assess possible PFAS impacts from use of AFFF at the current FTA, five surface soil samples (four primary and one duplicate), five subsurface soil samples (four primary and one duplicate), and five groundwater samples (four primary and one duplicate) were collected. Surface and subsurface soil samples were collected from soil borings completed for installation of monitoring wells MW18PFC0101, MW18PFC0102, and MW18PFC0103 and from soil boring SB18PFC0102. Groundwater samples were collected from each new monitoring well and from existing monitoring well MW930107. Sample locations for AFFF Area 1 are shown on Figure 5 in Appendix A.

## 3.5.2 Soil Descriptions

Four soil borings completed at the current FTA were terminated at depths ranging from 15.0 to 40.0 feet bgs. Soil types and USCS designations encountered primarily consisted of lean clay (CL) with intervals of well and poorly graded sand (SW and SP) and well graded gravel (GW). Detailed boring logs are included in Appendix C.

#### 3.5.3 Groundwater Flow

Groundwater levels were gauged at three new monitoring wells and one existing well at the current FTA on June 1, 2018. Groundwater was detected at depths ranging from 14.69 feet to 31.75 feet below top of casing (btoc) and at elevations ranging from 3156.63 feet above NAVD 88 (at existing well MW930107) to 3175.98 feet above NAVD 88 (at MW18PFC0101). Groundwater contours developed from these water level measurements indicate shallow groundwater flows east-southeast as shown on Figure 5 in Appendix A. Groundwater level measurements and elevations are summarized in Table F-1 in Appendix F.

# 3.5.4 Analytical Results

## Surface Soil

Five surface soil samples (four primary and one duplicate) were collected at the current FTA. PFBS and PFOA were detected in all five samples, but at concentrations below their respective screening levels. PFOS was detected at concentrations above the screening level in all five samples. Surface soil analytical results are summarized in Table 3 and shown on Figure 17 in Appendix A.

Table 3 Current Fire Training Area (AFFF Area 1) Surface Soil Analytical Results

|                                     |                          | ELSWH01-001- | ELSWH01-001- | ELSWH01-002- |
|-------------------------------------|--------------------------|--------------|--------------|--------------|
|                                     | Sample ID                | SS-001       | SS-901 (dup) | SS-001       |
|                                     | Date Sampled             | 05/17/18     | 05/17/18     | 05/16/18     |
|                                     | Sample Depth<br>(ft bgs) | 0 - 0.5      | 0 - 0.5      | 0 - 0.5      |
|                                     | Screening Level          | Result       | Result       | Result       |
| Analyte                             | (µg/kg)                  | (µg/kg)      | (μg/kg)      | (μg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000°<br>13°          | 4.9 J        | 4.1 J        | 0.58 J       |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                     | 4.1 J        | 15 J         | 2.7          |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                     | 1,900 J      | 3,300 J      | 740          |

Table 3 Current Fire Training Area (AFFF Area 1) Surface Soil Analytical Results (continued)

|                                     |                                         | ELSWH01-003- | ELSWH01-004- |
|-------------------------------------|-----------------------------------------|--------------|--------------|
|                                     | Sample ID                               | SS-001       | SS-001       |
|                                     | Date Sampled                            | 05/15/18     | 05/16/18     |
|                                     | Sample Depth                            |              |              |
|                                     | (ft bgs)                                | 0 - 0.5      | 0 - 0.5      |
|                                     | Screening Level                         | Result       | Result       |
| Analyte                             | (μg/kg)                                 | (μg/kg)      | (µg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.32 J       | 3.6 J        |
| Perfluorooctanoic Acid (PFOA)       | 126°                                    | 2.3          | 21           |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 300          | 1,800 J      |

Bold values indicate analyte detected at concentration indicated. Shaded results indicate value exceeds screening criteria.

 $\mu$ g/kg = micrograms per kilogram

AFFF = aqueous film forming foam
bgs = below ground surface

AFFF = aqueous film forming foam
ft = foot or feet

bgs = below ground surface SS = surface soil

 $\overline{SS}$  = surface soil dup = duplicate ELSWH = ERPIMS designation for Ellsworth Air Force Base ID = identification

J = reported concentration is an estimated value

## Subsurface Soil

Five subsurface soil samples (four primary and one duplicate) were also collected from soil borings at the current FTA. PFBS and PFOA were detected in all five samples, but at concentrations below their respective screening levels. PFOS was detected in all five samples, and exceeded the screening level in two samples. Subsurface soil analytical results are summarized in Table 4 and shown on Figure 17 in Appendix A.

Table 4 Current Fire Training Area (AFFF Area 1) Subsurface Soil Analytical Results

|                                     |                                         | ELSWH01-   | ELSWH01-001-SO- | ELSWH01-002- |
|-------------------------------------|-----------------------------------------|------------|-----------------|--------------|
|                                     | Sample ID                               | 001-SO-013 | 913 (dup)       | SO-012       |
|                                     | Date Sampled                            | 05/17/18   | 05/17/18        | 05/16/18     |
|                                     | Sample Depth<br>(ft bgs)                | 13 - 14    | 13 - 14         | 12 - 13      |
|                                     | Screening Level                         | Result     | Result          | Result       |
| Analyte                             | (µg/kg)                                 | (µg/kg)    | (μg/kg)         | (μg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.71 J     | 0.82 J          | 2.5 J        |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                                    | 1.4        | 1.2             | 4.1 J        |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 72         | 70 J            | 630          |

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>c</sup> Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).

Table 4 Current Fire Training Area (AFFF Area 1) Subsurface Soil Analytical Results (continued)

|                   | Sample ID       | ELSWH01-003-SO-025 | ELSWH01-004-SO-012 |
|-------------------|-----------------|--------------------|--------------------|
|                   | Date Sampled    | 05/15/18           | 05/16/18           |
|                   | Sample Depth    |                    |                    |
|                   | (ft bgs)        | 25 - 26            | 12 - 13            |
|                   | Screening Level | Result             | Result             |
| Analyte           | (μg/kg)         | (μg/kg)            | (μg/kg)            |
| Perfluorobutane   | 130,000a        | 0.40 J             | 0.89               |
| Sulfonate (PFBS)  | 13 <sup>b</sup> | 0.40 J             | 0.89               |
| Perfluorooctanoic | 126°            | 2.4                | 2.6                |
| Acid (PFOA)       | 120             | 3.4                | 2.6                |
| Perfluorooctane   | 126°            | 0.55 1             | 540 J              |
| Sulfonate (PFOS)  | 120             | 0.55 J             | 540 J              |

Bold values indicate analyte detected at concentration indicated. Shaded results indicate value exceeds screening criteria.

bgs = below ground surface

ft = foot or feet

SO = subsurface soil

dup = duplicate

ELSWH = ERPIMS designation for Ellsworth Air Force Base

ID = identification

J = reported concentration is an estimated value

## Soil Physiochemical Analyses

To provide basic soil parameter information, composite surface and subsurface soil samples were collected from AFFF Area 1 soil borings for pH, TOC, percent solids, and grain size analysis. Surface soil sample ELSWH01-005-SS-001 was composed of equal aliquots of soil collected from 0 to 6 inches bgs at the four borings completed at Area 1. Subsurface soil sample ELSWH01-005-SO-025 was composed of equal aliquots of soil collected from the same borings at depths ranging from 12 to 26 feet bgs. Table E-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix E.

#### Groundwater

Five groundwater samples (four primary and one duplicate) were collected from three new monitoring wells and one existing well at the current FTA. PFBS was detected in all five samples, but at concentrations below the screening level. PFOA and PFOS were also detected in each of the five groundwater samples at individual and combined concentrations above the screening level. Groundwater analytical results are summarized in Table 5 and shown on Figure 18 in Appendix A.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

c Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).

μg/kg = micrograms per kilogram

AFFF = aqueous film forming foam

Table 5 Current Fire Training Area (AFFF Area 1) Groundwater Analytical Results

|                   | Well Number       | MW18PFC0101  | MW18PFC0101  | MW18PFC0102  |
|-------------------|-------------------|--------------|--------------|--------------|
|                   | Sample ID         | ELSWH01-001- | ELSWH01-001- | ELSWH01-003- |
|                   |                   | GW-015       | GW-915 (dup) | GW-035       |
|                   | Date Sampled      | 05/20/18     | 05/20/18     | 05/21/18     |
|                   | Screened          |              |              |              |
|                   | Interval (ft bgs) | 9.2 - 19.2   | 9.2 - 19.2   | 27.8 - 37.8  |
|                   | Screening Level   | Result       | Result       | Result       |
| Analyte           | (µg/L)            | (µg/L)       | (µg/L)       | (μg/L)       |
| Perfluorobutane   | 40ª               | 13           | 9.9          | 22           |
| Sulfonate (PFBS)  | 70                | 13           | 7.7          | 22           |
| Perfluorooctanoic | 0.07 <sup>b</sup> | 9.7          | 8.3          | 12           |
| Acid (PFOA)       | 0.07              | 7.1          | 0.5          | 12           |
| Perfluorooctane   | $0.07^{\rm b}$    | 41           | 44           | 17           |
| Sulfonate (PFOS)  | 0.07              | 71           | 77           | 17           |
| Combined          | 0.07°             | 50.7         | 52.3         | 29           |
| PFOA+PFOS         | 0.07              | 30.7         | 34.3         | 29           |

|                   | Well Number       | MW18PFC0103  | MW930107     |
|-------------------|-------------------|--------------|--------------|
|                   | Sample ID         | ELSWH01-004- | ELSWH01-     |
|                   |                   | GW-018       | MW930107-GW- |
|                   |                   |              | 034          |
|                   | Date Sampled      | 05/21/18     | 05/16/18     |
|                   | Screened          |              |              |
|                   | Interval (ft bgs) | 9.4 - 19.4   | 24.5-34.5    |
|                   | Screening Level   | Result       | Result       |
| Analyte           | (μg/L)            | (µg/L)       | (µg/L)       |
| Perfluorobutane   | 40ª               | 2.6          | 28           |
| Sulfonate (PFBS)  | 40                | 2.0          | 20           |
| Perfluorooctanoic | 0.07 <sup>b</sup> | 9.0          | 15           |
| Acid (PFOA)       | 0.07              | 7.0          | 13           |
| Perfluorooctane   | 0.07 <sup>b</sup> | 82           | 72           |
| Sulfonate (PFOS)  | 0.07              | 02           | 12           |
| Combined          | 0.07°             | 91.0         | 87           |
| PFOA+PFOS         | 0.07              | 71.0         | 07           |

**Bold** values indicate analyte detected at concentration indicated.

Shaded results indicate value exceeds screening criteria.

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

 $\mu g/L = micrograms per liter$ 

AFFF = aqueous film forming foam

bgs = below ground surface

ID = identification

ft = foot or feet

GW = groundwater

ELSWH = ERPIMS designation for Ellsworth Air Force Base

dup = duplicate

# 3.5.5 Conclusions

Past use of AFFF at the current FTA has resulted in releases of PFAS to the environment. Media impacted by PFAS above screening levels at AFFF Area 1 include surface and subsurface soil (PFOS) and groundwater (PFOS and PFOA).

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018)

<sup>&</sup>lt;sup>b</sup> EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

 $<sup>^</sup>c$  The EPA Health Advisory value for drinking water of 0.07  $\mu$ g/L applies to the combined detected concentrations of PFOS and PFOA.

## 3.6 70, 80, 90 ROWS AND OUTFALL #3 – AFFF AREA 2

#### 3.6.1 Sample Locations

To further assess PFAS impacts from previous releases of AFFF at the 70, 80, 90 Rows, three surface soil samples, two subsurface soil samples, and five groundwater samples (four primary and one duplicate) were collected. Surface soil samples were collected from soil borings completed for installation of monitoring wells MW18PFC0205, MW18PFC0206, and MW18PFC0207 and subsurface soil samples were collected from soil borings completed for installation of monitoring wells MW18PFC0204 and MW18PFC0205. Groundwater samples were collected from each monitoring well. Sample locations for the 70, 80, 90 Rows are shown on Figure 6a in Appendix A.

To assess possible PFAS impacts at Outfall #3, three subsurface soil samples and three groundwater samples were collected. Subsurface soil samples were collected from soil borings completed for installation of monitoring wells MW18PFC0201, MW18PFC0202, and MW18PFC0203 and groundwater samples were collected from each of the three monitoring wells.

Four paired sediment and surface water samples were also collected at Outfall #3. During the initial field effort in April-June 2018, paired sediment and surface water samples (one primary and one duplicate for each media) were mistakenly collected from Pond #3 (location SW18PFC0204) rather than from a low lying wet area west of Pond #3. On July 31, 2018, paired sediment and surface water samples (one primary and one duplicate from each media) were collected in the correct location west of Pond #3 (location SW18PFC0204A). Sample locations for samples collected at Outfall #3 are shown on Figure 6b in Appendix A.

## 3.6.2 Soil Descriptions

Four soil borings completed at the 70, 80, 90 Rows were terminated at depths ranging from 35.0 to 45.0 feet bgs and three soil borings completed at Outfall #3 were terminated at depths ranging from 20.0 to 50.0 feet bgs. Soil types encountered were variable and included lean clay (CL), fat clay (CH), poorly graded sand (SP), silty sand (SM) and well graded gravel (GW). Detailed boring logs are included in Appendix C.

## 3.6.3 Groundwater Flow

Groundwater levels were gauged at four new monitoring wells at the 70, 80, 90 Rows and at three new monitoring wells at Outfall #3 on June 1, 2018. Groundwater at the 70, 80, 90 Rows was detected at depths ranging from 19.51 feet to 33.74 feet btoc and at elevations ranging from 3201.48 feet above NAVD 88 (at MW18PFC0207) to 3214.85 feet above NAVD 88 (at MW18PFC0206). Groundwater contours developed from these water level measurements and from adjacent AFFF Areas 5 and 9 indicate shallow groundwater flows southeast as shown on Figure 6a in Appendix A.

Groundwater at Outfall #3 was detected at depths ranging from 4.47 feet to 14.07 feet btoc and at elevations ranging from 3194.73 feet above NAVD 88 (at MW18PFC0203) to 3198.31 feet above NAVD 88 (at MW18PFC0202). Groundwater contours developed from these water level measurements indicate shallow groundwater flows southwest as shown on Figure 6b in Appendix A. Groundwater level measurements and elevations are summarized in Table F-1 in Appendix F.

# 3.6.4 Analytical Results

#### Surface Soil

Three surface soil samples were collected at the 70, 80, 90 Rows. PFBS was not detected in any of the samples. PFOS and PFOA were detected in all three samples, but at concentrations below the screening level. Surface soil was not identified as media of concern at Outfall #3 and was not sampled (ASL, November 2017). Surface soil analytical results are summarized in Table 6 and shown on Figure 19a in Appendix A.

Table 6 70, 80, 90 Rows (AFFF Area 2) Surface Soil Analytical Results<sup>1</sup>

|                                     | Sample ID                               | ELSWH02-006-<br>SS-001 | ELSWH02-007-<br>SS-001 | ELSWH02-008-<br>SS-001 |
|-------------------------------------|-----------------------------------------|------------------------|------------------------|------------------------|
|                                     | Date Sampled                            | 05/01/18               | 05/03/18               | 05/02/18               |
|                                     | Sample Depth (ft bgs)                   | 0 - 0.5                | 0 - 0.5                | 0 - 0.5                |
| Analyte                             | Screening Level<br>(μg/kg)              | Result<br>(μg/kg)      | Result<br>(µg/kg)      | Result<br>(μg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.65 U                 | 0.55 U                 | 0.55 U                 |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                                    | 1.4                    | 1.4                    | 0.83 J                 |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 47                     | 9.1                    | 4.6                    |

<sup>&</sup>lt;sup>1</sup>Surface soil was not identified as media of concern at Outfall #3 and was not sampled.

**Bold** values indicate analyte detected at concentration indicated.

μg/kg = micrograms per kilogram

AFFF = aqueous film forming foam

bgs = below ground surface

ft = foot or feet ID = identification

SS = surface soil

SS = surface soil
ELSWH = ERPIMS designation for Ellsworth Air Force Base

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

# Subsurface Soil

Five subsurface soil samples were collected at AFFF Area 2; two samples were collected at the 70, 80, 90 Rows and three samples were collected at Outfall #3. PFBS and PFOA were not detected in any of the samples. PFOS was detected in both subsurface soil samples collected at the 70, 80, 90 Rows and in one of three subsurface soil samples collected at Outfall #3. All detected PFOS concentrations were below the screening level. Subsurface soil analytical results are summarized in Table 7 and shown on Figures 19a and 19b in Appendix A.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>c</sup> Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search).

Table 770, 80, 90 Rows and Outfall #3 (AFFF Area 2) Subsurface Soil Analytical Results

|                        |                  | ELSWH02-001- | ELSWH02-002- | ELSWH02-003- |
|------------------------|------------------|--------------|--------------|--------------|
|                        | Sample ID        | SO-030       | SO-031       | SO-004       |
|                        | Location         | Outfall #3   | Outfall #3   | Outfall #3   |
|                        | Date Sampled     | 04/26/18     | 04/25/18     | 04/25/18     |
|                        | Sample Depth (ft |              |              |              |
|                        | bgs)             | 30 - 31      | 31 - 32      | 4 - 5        |
|                        | Screening Level  | Result       | Result       | Result       |
| Analyte                | (µg/kg)          | (µg/kg)      | (μg/kg)      | (µg/kg)      |
| Perfluorobutane        | 130,000a         | 0.48 U       | 0.50 U       | 0.55 U       |
| Sulfonate (PFBS)       | 13 <sup>b</sup>  | 0.46 U       | 0.30 0       | 0.55 0       |
| Perfluorooctanoic Acid | 126°             | 0.77 U       | 0.80 U       | 0.88 U       |
| (PFOA)                 | 120              | 0.77 0       | 0.80 0       | 0.88 0       |
| Perfluorooctane        | 126°             | 0.77 U       | 0.80 U       | 4.0          |
| Sulfonate (PFOS)       | 120°             | 0.770        | 0.80 0       | 4.0          |

|                        |                  | ELSWH02-005-    | ELSWH02-006-    |
|------------------------|------------------|-----------------|-----------------|
|                        | Sample ID        | SO-034          | SO-024          |
|                        | Location         | 70, 80, 90 Rows | 70, 80, 90 Rows |
|                        | Date Sampled     | 05/07/18        | 05/01/18        |
|                        | Sample Depth (ft |                 |                 |
|                        | bgs)             | 34 - 35         | 24 - 25         |
|                        | Screening Level  | Result          | Result          |
| Analyte                | (µg/kg)          | (µg/kg)         | (μg/kg)         |
| Perfluorobutane        | 130,000a         | 0.41.11         | 0.55.11         |
| Sulfonate (PFBS)       | 13 <sup>b</sup>  | 0.41 U          | 0.55 U          |
| Perfluorooctanoic Acid | 126°             | 0.6611          | 0.0011          |
| (PFOA)                 | 120°             | 0.66 U          | 0.88 U          |
| Perfluorooctane        | 126°             | 27 I            | 111             |
| Sulfonate (PFOS)       | 120°             | 27 J            | 1.1 J           |

**Bold** values indicate analyte detected at concentration indicated.

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

bgs = below ground surface

AFFF = aqueous film forming foam

SO = subsurface soil

ft = foot or feetID = identification

ELSWH = ERPIMS designation for Ellsworth Air Force Base

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

## Soil Physiochemical Analyses

To provide basic soil parameter information, composite surface and subsurface soil samples were collected from AFFF Area 2 soil borings for pH, TOC, percent solids, and grain size analysis. Surface soil sample ELSWH02-009-SS-001 was composed of equal aliquots of soil collected from 0 to 6 inches bgs at three of the five borings at Area 2 (where surface soil was sampled). Subsurface soil sample ELSWH2-009-SO-024 was composed of equal aliquots of soil collected from all five borings at Area 2 at depths ranging from 4 to 35 feet bgs. Table E-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix E.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>&</sup>lt;sup>c</sup> Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search). μg/kg = micrograms per kilogram

#### Groundwater

Eight groundwater samples (seven primary and one duplicate) were collected from seven new monitoring wells at AFFF Area 2 (four wells at the 70, 80, 90 Rows and three wells at Outfall #3). PFBS was detected in each of the four primary samples and in the duplicate sample at the 70, 80, 90 Rows, all at concentrations below the screening level. PFBS was also detected in two of the three samples collected at Outfall #3 at concentrations below the screening level. PFOA and PFOS were also detected in the four primary samples and in the duplicate sample at the 70, 80, 90 Rows, all at individual and/or combined concentrations above the screening level. PFOA and PFOS were also detected in two of the three samples collected at Outfall #3 with both individual and combined concentrations above the screening level. Groundwater analytical results are summarized in Table 8 and shown on Figures 20a and 20b in Appendix A.

Table 8 70, 80, 90 Rows and Outfall #3 (AFFF Area 2) Groundwater Analytical Results

|                                     | Well Number       | MW18PFC0201  | MW18PFC0202  | MW18PFC0203  | MW18PFC0204     |
|-------------------------------------|-------------------|--------------|--------------|--------------|-----------------|
|                                     | Location          | Outfall #3   | Outfall #3   | Outfall #3   | 70, 80, 90 Rows |
|                                     |                   | ELSWH02-001- | ELSWH02-002- | ELSWH02-003- | ELSWH02-005-    |
|                                     | Sample ID         | GW-035       | GW-035       | GW-013       | GW-040          |
|                                     | Date Sampled      | 05/04/18     | 05/04/18     | 04/26/18     | 05/23/18        |
|                                     | Screened Interval |              |              |              |                 |
|                                     | (ft bgs)          | 30 - 40      | 29.3 - 39.3  | 5.8 - 15.8   | 34 - 44         |
|                                     | Screening Level   | Result       | Result       | Result       | Result          |
| Analyte                             | (μg/L)            | (µg/L)       | (µg/L)       | (µg/L)       | (μg/L)          |
| Perfluorobutane<br>Sulfonate (PFBS) | 40ª               | 0.015 U      | 0.63         | 0.017 J      | 0.69            |
| Perfluorooctanoic<br>Acid (PFOA)    | 0.07 <sup>b</sup> | 0.010 U      | 0.78         | 0.48         | 0.30            |
| Perfluorooctane<br>Sulfonate (PFOS) | 0.07 <sup>b</sup> | 0.015 U      | 0.28         | 0.74         | 0.56            |
| Combined PFOA+PFOS                  | 0.07°             | ND           | 1.06         | 1.22         | 0.86            |

|                   | Well Number       | MW18PFC0205     | MW18PFC0206     | MW18PFC0207     | MW18PFC0207     |
|-------------------|-------------------|-----------------|-----------------|-----------------|-----------------|
|                   | Location          | 70, 80, 90 Rows |
|                   |                   | ELSWH02-006-    | ELSWH02-007-    | ELSWH02-008-    | ELSWH02-008-    |
|                   | Sample ID         | GW-030          | GW-018          | GW-029          | GW-929 (dup)    |
|                   | Date Sampled      | 05/04/18        | 05/18/18        | 05/18/18        | 05/18/18        |
|                   | Screened Interval |                 |                 |                 |                 |
|                   | (ft bgs)          | 23.8 - 33.8     | 10.1 - 20.1     | 24.2 - 34.2     | 24.2 - 34.2     |
|                   | Screening Level   | Result          | Result          | Result          | Result          |
| Analyte           | (μg/L)            | (μg/L)          | (μg/L)          | (μg/L)          | (μg/L)          |
| Perfluorobutane   | 40ª               | 0.011 J         | 0.0096 J        | 0.055 J         | 0.019 J         |
| Sulfonate (PFBS)  | 70                | 0.011 3         | 0.0070 3        | 0.033 3         | 0.0170          |
| Perfluorooctanoic | 0.07 <sup>b</sup> | 0.030           | 0.024           | 0.12 J          | 0.040 J         |
| Acid (PFOA)       | 0.07              | 0.050           | 0.024           | 0.12 0          | 0.040 0         |
| Perfluorooctane   | $0.07^{\rm b}$    | 0.074           | 0.17            | 2.5 J           | 0.97 J          |
| Sulfonate (PFOS)  | 0.07              | V.V/ <b>T</b>   | <b>U.1</b> /    | 2.3 3           | 0.77 0          |
| Combined          | $0.07^{c}$        | 0.104           | 0.194           | 2.62 J          | 1.01 J          |
| PFOA+PFOS         | 0.07              | 0.104           | 0.174           | 2.02 3          | 1.01 0          |

Bold values indicate analyte detected at concentration indicated. Shaded results indicate value exceeds screening criteria.

 $\mu$ g/L = micrograms per liter AFFF = aqueous film forming foam bgs = below ground surface dup = duplicate ft = foot or feet ID = identification GW = groundwater ND = not detected

ELSWH = ERPIMS designation for Ellsworth Air Force Base J = reported concentration is an estimated value

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018) (https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfh. <sup>b</sup>EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

<sup>&</sup>quot;The EPA Health Advisory value for drinking water of 0.07 μg/L applies to the combined detected concentrations of PFOS and PFOA.

# <u>Sedime</u>nt

Four sediment samples (two primary and two duplicate) were collected near Outfall #3. PFBS was not detected in any of the samples. PFOS and PFOA were detected in all four samples, but at concentrations below the screening level. Sediment analytical results are summarized in Table 9 and shown on Figure 19b in Appendix A.

Table 9 Outfall #3 (AFFF Area 2) Sediment Analytical Results<sup>1</sup>

|                                     | Sample ID                               | ELSWH02-004-<br>SD-001 | ELSWH02-004-<br>SD-901 (dup) | ELSWH02-004-<br>SD-001A | ELSWH02-004-<br>SD-901A (dup) |
|-------------------------------------|-----------------------------------------|------------------------|------------------------------|-------------------------|-------------------------------|
|                                     | Sample Date                             | 04/26/18               | 04/26/18                     | 07/31/18                | 07/31/18                      |
|                                     | Sample Depth<br>(ft bgs)                | 0 - 0.5                | 0 - 0.5                      | 0 - 0.5                 | 0 - 0.5                       |
| Analyte                             | Screening Level<br>(µg/kg)              | Result<br>(µg/kg)      | Result<br>(µg/kg)            | Result<br>(µg/kg)       | Result<br>(µg/kg)             |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 3.4 U                  | 4.9 U                        | 0.60 U                  | 0.65 U                        |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                                    | 5.2 J                  | 9.2 J                        | 0.69 J                  | 0.90 J                        |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 57 J                   | 90 J                         | 23 J                    | 11 J                          |

Sediment was not identified as media of concern at the 70, 80, 90 Rows and was not sampled.

**Bold** values indicate analyte detected at concentration indicated.

μg/kg = micrograms per kilogram

AFFF = aqueous film forming foam

bgs = below ground surface

ft = foot or feet

SD = sediment

dup = duplicate

ELSWH = ERPIMS designation for Ellsworth Air Force Base

ID = identification

J = reported concentration is an estimated value

 $U = \hat{the}$  analyte was not detected at the reported value

# Surface Water

Four surface water samples (two primary and two duplicate) were also collected at Outfall #3. PFBS was detected in all four samples, but at concentrations below the screening level. PFOS and PFOA were detected in all four samples at both individual and combined concentrations above the screening level. Surface water analytical results are summarized in Table 10 and shown on Figure 20b in Appendix A.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

b EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>c</sup> Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).

Table 10 Outfall #3 (AFFF Area 2) Surface Water Analytical Results<sup>1</sup>

|                                     | Sample ID  Date Sampled | ELSWH02-004-<br>SW-001<br>04/26/18 | ELSWH02-004-<br>SW-901 (dup)<br>04/26/18 | ELSWH02-<br>004-SW-001A<br>07/31/18 | ELSWH02-<br>004-SW-901A<br>(dup)<br>07/31/18 |
|-------------------------------------|-------------------------|------------------------------------|------------------------------------------|-------------------------------------|----------------------------------------------|
| Analyte                             | Screening Level (µg/L)  | Result<br>(μg/L)                   | Result<br>(μg/L)                         | Result<br>(μg/L)                    | Result<br>(μg/L)                             |
| Perfluorobutane<br>Sulfonate (PFBS) | 40ª                     | 0.015 J                            | 0.015 J                                  | 0.030                               | 0.029                                        |
| Perfluorooctanoic<br>Acid (PFOA)    | $0.07^{\rm b}$          | 0.35                               | 0.38                                     | 0.13                                | 0.14                                         |
| Perfluorooctane<br>Sulfonate (PFOS) | $0.07^{\rm b}$          | 0.44                               | 0.42                                     | 0.37                                | 0.32                                         |
| Combined<br>PFOA+PFOS               | 0.07°                   | 0.79                               | 0.80                                     | 0.50                                | 0.46                                         |

Surface water was not identified as media of concern at the 70, 80, 90 Rows and was not sampled.

 $\mu g/L = micrograms per liter$ 

bgs = below ground surface

ft = foot or feet

ELSWH = ERPIMS designation for Ellsworth Air Force Base

J = reported concentration is an estimated value

AFFF = aqueous film forming foam

ID = identification

SW = surface water

dup = duplicate

### 3.6.5 Conclusions

Past releases of AFFF at the 70, 80, 90 Rows and Outfall #3 have resulted in releases of PFAS to the environment. Media impacted by PFAS above screening levels at AFFF Area 2 include groundwater (PFOS and PFOA) at both the 70, 80, 90 Rows and Outfall #3 and surface water (PFOS and PFOA) at Outfall #3.

### 3.7 BUILDING 618 – AFFF AREA 3

### 3.7.1 Sample Locations

To further assess PFAS impacts from apparent AFFF releases at Building 618, five subsurface soil samples (four primary and one duplicate) and three groundwater samples were collected. Subsurface soil samples were collected from soil borings completed for installation of monitoring wells MW18PFC0301, MW18PFC0302, and MW18PFC0303 and from soil boring SB18PFC0304. Groundwater samples were collected from each monitoring well. Sample locations for AFFF Area 3 are shown on Figure 7 in Appendix A.

**Bold** values indicate analyte detected at concentration indicated.

Shaded results indicate value exceeds screening criteria.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup>EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

 $<sup>^{\</sup>circ}$ The EPA Health Advisory value for drinking water of 0.07  $\mu$ g/L applies to the combined detected concentrations of PFOS and PFOA.

### 3.7.2 Soil Descriptions

Four soil borings completed at Building 681 were terminated at depths ranging from 15.0 to 20.0 feet bgs. Soil types encountered were highly variable and included lean clay (CL), fat clay (CH), silt (ML), clayey sand (SC), poorly graded sand (SP), clayey gravel (GC), poorly graded gravel (GP) and well graded gravel (GW). Detailed boring logs are included in Appendix C.

#### 3.7.3 Groundwater Flow

Groundwater levels were gauged at three new monitoring wells at Building 618 on June 1, 2018. Groundwater was detected at depths ranging from 8.91 feet to 11.28 feet btoc and at elevations ranging from 3168.04 feet above NAVD 88 (at MW18PFC0302) to 3170.39 feet above NAVD 88 (at MW18PFC0301). Groundwater contours developed from these water level measurements indicate shallow groundwater flows southeast as shown on Figure 7 in Appendix A. Groundwater level measurements and elevations are summarized in Table F-1 in Appendix F.

# 3.7.4 Analytical Results

### Surface Soil

Surface soil was not identified as media of concern at AFFF Area 3 and was not sampled (ASL, November 2017).

### Subsurface Soil

Five subsurface soil samples (four primary and one duplicate) were collected at AFFF Area 3 around UST 618. PFBS was not detected in any of the samples. PFOA was detected in one primary sample, and PFOS was detected in three of four primary samples and in the duplicate sample, all at concentrations below the screening level. Subsurface soil analytical results are summarized in Table 11 and shown on Figure 21 in Appendix A.

Table 11 Building 618 (AFFF Area 3) Subsurface Soil Analytical Results

|                        |                 | ELSWH03-001- | ELSWH03-002- | ELSWH03-002- |
|------------------------|-----------------|--------------|--------------|--------------|
|                        | Sample ID       | SO-009       | SO-011       | SO-911 (dup) |
|                        | Date Sampled    | 05/17/18     | 05/06/18     | 05/06/18     |
|                        | Sample Depth    |              |              |              |
|                        | (ft bgs)        | 9 - 10       | 11 - 12      | 11 - 12      |
|                        | Screening Level | Result       | Result       | Result       |
| Analyte                | (µg/kg)         | (µg/kg)      | (µg/kg)      | (µg/kg)      |
| Perfluorobutane        | 130,000a        | 0.49 U       | 0.50 U       | 0.49 U       |
| Sulfonate (PFBS)       | 13 <sup>b</sup> | 0.49 0       | 0.50 0       | 0.49 0       |
| Perfluorooctanoic Acid | 126°            | 0.69 J       | 0.80 U       | 0.78 U       |
| (PFOA)                 | 120             | 0.09 J       | 0.80 0       | 0.78 0       |
| Perfluorooctane        | 126°            | 110 J        | 0.80 U       | 0.47 J       |
| Sulfonate (PFOS)       | 120             | 110 J        | 0.80 0       | U.4 / J      |

Table 11 Building 618 (AFFF Area 3) Subsurface Soil Analytical Results (continued)

|                                  | Sample ID                               | ELSWH03-003-SO-011 | ELSWH03-004-SO-011 |
|----------------------------------|-----------------------------------------|--------------------|--------------------|
|                                  | Date Sampled                            | 05/06/18           | 05/07/18           |
|                                  | Sample Depth                            |                    |                    |
|                                  | (ft bgs)                                | 11 - 12            | 11 - 12            |
|                                  | Screening Level                         | Result             | Result             |
| Analyte                          | (µg/kg)                                 | (µg/kg)            | (µg/kg)            |
| Perfluorobutane Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.47 U             | 0.45 U             |
| Perfluorooctanoic Acid (PFOA)    | 126°                                    | 0.74 U             | 0.72 U             |
| Perfluorooctane Sulfonate (PFOS) | 126°                                    | 8.5                | 5.6                |

ft = foot or feet

bgs = below ground surface SO = subsurface soil

SO = subsurface soil dup = duplicate ELSWH = ERPIMS designation for Ellsworth Air Force Base ID = identification

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

# Soil Physiochemical Analyses

To provide basic soil parameter information, a composite subsurface soil sample was collected from AFFF Area 3 soil borings for pH, TOC, percent solids, and grain size analysis. Subsurface soil sample ELSWH03-005-SO-011 was composed of equal aliquots of soil collected from the four borings at Area 3 at depths ranging from 9 to 12 feet bgs. No surface soil samples were collected at Area 3. Table E-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix E.

# **Groundwater**

Groundwater samples were collected from three new monitoring wells at UST 618, adjacent to Building 618. PFBS was detected in all three samples, but at concentrations below the screening level. PFOA and PFOS were also detected in each of the three groundwater samples at individual and combined concentrations above the screening level. Groundwater analytical results are summarized in Table 12 and shown on Figure 22 in Appendix A.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

c Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).
μg/kg = micrograms per kilogram

AFFF = aqueous film forming foam

Table 12 Building 618 (AFFF Area 3) Groundwater Analytical Results

|                           | Well Number       | MW18PFC0301  | MW18PFC0302  | MW18PFC0303  |
|---------------------------|-------------------|--------------|--------------|--------------|
|                           |                   | ELSWH03-001- | ELSWH03-002- | ELSWH03-003- |
|                           | Sample ID         | GW-015       | GW-017       | GW-016       |
|                           | Date Sampled      | 05/24/18     | 05/10/18     | 05/10/18     |
|                           | Screened Interval |              |              |              |
|                           | (ft bgs)          | 9 - 19       | 9.6 - 19.6   | 9 - 19       |
|                           | Screening Level   | Result       | Result       | Result       |
| Analyte                   | (µg/L)            | (µg/L)       | (µg/L)       | (µg/L)       |
| Perfluorobutane Sulfonate | 40ª               | 0.044        | 0.059        | 0.006        |
| (PFBS)                    | 40"               | 0.044        | 0.059        | 0.086        |
| Perfluorooctanoic Acid    | $0.07^{\rm b}$    | 0.073        | 0.12         | 0.10         |
| (PFOA)                    | 0.07              | 0.073        | 0.12         | 0.10         |
| Perfluorooctane Sulfonate | $0.07^{\rm b}$    | 1.6          | 1.4          | 1.2          |
| (PFOS)                    | 0.07°             | 1.6          | 1.4          | 1.3          |
| Combined PFOA+PFOS        | 0.07°             | 1.673        | 1.52         | 1.40         |

Shaded results indicate value exceeds screening criteria.

 $\mu$ g/L = micrograms per liter

AFFF = aqueous film forming foam

bgs = below ground surface

ft = foot or feet

GW = groundwater

ID = identification

ELSWH = ERPIMS designation for Ellsworth Air Force Base

#### 3.7.5 Conclusions

Past releases of AFFF at Building 618 have resulted in releases of PFAS to the environment. Groundwater is the only sampled media impacted by PFAS (PFOS and PFOA) above screening levels at AFFF Area 3.

# 3.8 FORMER FIRE STATION (BUILDING 7506) – AFFF AREA 4

### 3.8.1 Sample Locations

To assess possible PFAS impacts from reported releases of AFFF at the former Fire Station (Building 7506), three surface soil samples, five subsurface soil samples, and three groundwater samples were collected. Surface and subsurface soil samples were collected from soil borings completed for installation of monitoring wells MW18PFC0401, MW18PFC0402, and MW18PFC0403; subsurface soil samples were also collected from soil borings SB18PFC0404 and SB18PFC0405. Groundwater samples were collected from each monitoring well. Sample locations for AFFF Area 4 are shown on Figure 8 in Appendix A.

# 3.8.2 Soil Descriptions

Five soil borings completed at the former fire station were terminated at depths ranging from 35.0 to 50.0 feet bgs. Soil types encountered were variable, consisting primarily of lean clay (CL) with some intervals

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup>EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

 $<sup>^{\</sup>circ}$ The EPA Health Advisory value for drinking water of 0.07  $\mu$ g/L applies to the combined detected concentrations of PFOS and PFOA.

of silty sand (SM) and lesser amounts of fat clay (CH), silt (ML), clayey sand (SC), clayey gravel (GC), and well graded gravel (GW). Detailed boring logs are included in Appendix C.

#### 3.8.3 Groundwater Flow

Groundwater levels were gauged at three new monitoring wells at the former fire station (Building 7506) on June 1, 2018. Groundwater was detected at depths ranging from 20.39 feet to 29.28 feet btoc and at elevations ranging from 3183.14 feet above NAVD 88 (at MW18PFC0403) to 3191.24 feet above NAVD 88 (at MW18PFC0401). Groundwater contours developed from these water level measurements indicate shallow groundwater flows south-southeast as shown on Figure 8 in Appendix A. Groundwater level measurements and elevations are summarized in Table F-1 in Appendix F.

# 3.8.4 Analytical Results

#### Surface Soil

Three surface soil samples were collected at the site of the former fire station (Building 7506). PFBS and PFOA were detected in all three samples at concentrations below their respective screening levels. PFOS was also detected in all three samples and exceeded the screening level in one sample. Surface soil analytical results are summarized in Table 13 and shown on Figure 23 in Appendix A.

Table 13 Former Fire Station (Building 7506) (AFFF Area 4) Surface Soil Analytical Results

|                                  | Sample ID                  | ELSWH04-001-<br>SS-001 | ELSWH04-002-<br>SS-001 | ELSWH04-003-<br>SS-001 |
|----------------------------------|----------------------------|------------------------|------------------------|------------------------|
|                                  | Date Sampled               | 05/22/18               | 05/18/18               | 05/18/18               |
|                                  | Sample Depth<br>(ft bgs)   | 0 - 0.5                | 0 - 0.5                | 0 - 0.5                |
| Analyte                          | Screening Level<br>(µg/kg) | Result<br>(μg/kg)      | Result<br>(μg/kg)      | Result<br>(µg/kg)      |
| Perfluorobutane Sulfonate (PFBS) | 130,000°<br>13°            | 0.38 J                 | 0.40 J                 | 8.2 J                  |
| Perfluorooctanoic Acid (PFOA)    | 126°                       | 3.0                    | 2.9                    | 62                     |
| Perfluorooctane Sulfonate (PFOS) | 126°                       | 48                     | 82                     | 3,000                  |

**Bold** values indicate analyte detected at concentration indicated.

Shaded results indicate value exceeds screening criteria.

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

(https://semspub.epa.gov/work/HQ/197416.pdf https://semspub.epa.gov/work/HQ/197416.pdf).

 $\mu g/kg = micrograms \; per \; kilogram$ 

AFFF = aqueous film forming foam

bgs = below ground surface

ft = foot or feet

SS = surface soil

ID = identification

ELSWH = ERPIMS designation for Ellsworth Air Force Base

J = reported concentration is an estimated value

#### Subsurface Soil

Five subsurface soil samples were collected at the site of the former fire station (Building 7506). PFBS and PFOA were detected in all five samples and PFOS was detected in four samples. All PFBS, PFOA,

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>&</sup>lt;sup>c</sup> Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).

and PFOS detections were below their respective screening levels. Subsurface soil analytical results are summarized in Table 14 and shown on Figure 23 in Appendix A.

Table 14 Former Fire Station (Building 7506) (AFFF Area 4) Subsurface Soil Analytical Results

|                   | Sample ID       | ELSWH04-001-<br>SO-029 | ELSWH04-002-<br>SO-035 | ELSWH04-003-<br>SO-027 |
|-------------------|-----------------|------------------------|------------------------|------------------------|
|                   | Date Sampled    | 05/22/18               | 05/18/18               | 05/18/18               |
|                   | Sample Depth    |                        |                        |                        |
|                   | (ft bgs)        | 29 - 30                | 35 - 36                | 27 - 28                |
|                   | Screening Level | Result                 | Result                 | Result                 |
| Analyte           | (μg/kg)         | (μg/kg)                | (μg/kg)                | (μg/kg)                |
| Perfluorobutane   | 130,000a        | 0.62 J                 | 0.61 J                 | 0.53 J                 |
| Sulfonate (PFBS)  | 13 <sup>b</sup> | 0.02 J                 | 0.01 J                 | 0.55 J                 |
| Perfluorooctanoic | 126°            | 1.0                    | 1.6                    | 2.1                    |
| Acid (PFOA)       | 120             | 1.9                    | 1.0                    | 2.1                    |
| Perfluorooctane   | 126°            | 1.0 U                  | 7.6                    | 11                     |
| Sulfonate (PFOS)  | 120°            | 1.0 U                  | 7.6                    | 11                     |

|                   |                      | ELSWH04-004- | ELSWH04-005- |
|-------------------|----------------------|--------------|--------------|
|                   | Sample ID            | SO-031       | SO-020       |
|                   | Date Sampled         | 05/18/18     | 05/18/18     |
|                   | Sample Depth         |              |              |
|                   | (ft bgs)             | 31 - 32      | 20 - 21      |
|                   | Screening Level      | Result       | Result       |
| Analyte           | (µg/kg)              | (µg/kg)      | (µg/kg)      |
| Perfluorobutane   | 130,000 <sup>a</sup> | 0.41 J       | 0.28 J       |
| Sulfonate (PFBS)  | 13 <sup>b</sup>      | 0.41 J       | 0.20 J       |
| Perfluorooctanoic | 126°                 | 0.86 J       | 0.24 I       |
| Acid (PFOA)       | 120                  | 0.00 J       | 0.24 J       |
| Perfluorooctane   | 126°                 | 10           | 1.5          |
| Sulfonate (PFOS)  | 120                  | 10           | 1.5          |

**Bold** values indicate analyte detected at concentration indicated.

(https://semspub.epa.gov/work/HQ/197416.pdf https://semspub.epa.gov/work/HQ/197416.pdf).

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

bgs = below ground surface

AFFF = aqueous film forming foam ft = foot or feet

SO = subsurface soil

dup = duplicate

ELSWH = ERPIMS designation for Ellsworth Air Force Base

J = reported concentration is an estimated value

ID = identification

U = analyte was not detected above the reported value

# Soil Physiochemical Analyses

To provide basic soil parameter information, composite surface and subsurface soil samples were collected from AFFF Area 4 soil borings for pH, TOC, percent solids, and grain size analysis. Surface soil sample ELSWH04-006-SS-001 was composed of equal aliquots of soil collected from 0 to 6 inches bgs at three of the five borings completed at Area 4 (where surface soil was sampled). Subsurface soil sample ELSWH04-006-SO-035 was composed of equal aliquots of soil collected from each of the five borings at depths ranging from 20 to 36 feet bgs. Table E-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix E.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

b EPA Regional Screening Level for Protection of Groundwater (November 2018)

Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search). μg/kg = micrograms per kilogram

### Groundwater

Groundwater samples were collected from three new monitoring wells at the former fire station (Building 7506). PFBS was detected in all three samples, but at concentrations below the screening level. PFOA and PFOS were also detected in each of the three groundwater samples at individual and combined concentrations above the screening level. Groundwater analytical results are summarized in Table 15 and shown on Figure 24 in Appendix A.

Table 15 Former Fire Station (Building 7506) (AFFF Area 4) Groundwater Analytical Results

|                                     | Well Number                    | MW18PFC0401            | MW18PFC0402            | MW18PFC0403            |
|-------------------------------------|--------------------------------|------------------------|------------------------|------------------------|
|                                     | Sample ID                      | ELSWH04-001-<br>GW-032 | ELSWH04-002-<br>GW-038 | ELSWH04-003-<br>GW-033 |
|                                     | Date Sampled Screened Interval | 05/31/18               | 05/31/18               | 05/31/18               |
|                                     | (ft bgs)                       | 24.3 - 34.3            | 33.9 - 43.9            | 24.0 - 39.0            |
| Analyte                             | Screening Level (μg/L)         | Result<br>(μg/L)       | Result<br>(μg/L)       | Result<br>(μg/L)       |
| Perfluorobutane<br>Sulfonate (PFBS) | 40ª                            | 0.11                   | 0.048                  | 0.40                   |
| Perfluorooctanoic<br>Acid (PFOA)    | 0.07 <sup>b</sup>              | 0.31                   | 0.11                   | 0.76                   |
| Perfluorooctane<br>Sulfonate (PFOS) | 0.07ь                          | 0.16                   | 0.71                   | 0.79                   |
| Combined<br>PFOA+PFOS               | 0.07°                          | 0.47                   | 0.82                   | 1.55                   |

**Bold** values indicate analyte detected at concentration indicated.

Shaded results indicate value exceeds screening criteria.

 $\mu g/L = micrograms per liter$ 

bgs = below ground surface

ft = foot or feet

ELSWH = ERPIMS designation for Ellsworth Air Force Base

AFFF = aqueous film forming foam

ID = identification

GW = groundwater

### 3.8.5 Conclusions

Past releases of AFFF at the former fire station have resulted in releases of PFAS to the environment. Media impacted by PFAS above screening levels at AFFF Area 4 include surface soil (PFOS) and groundwater (PFOS and PFOA).

### 3.9 B-52 CRASH (1972) – AFFF AREA 5

### 3.9.1 Sample Locations

To assess possible PFAS impacts from use of AFFF at the B-52 crash site, three surface soil samples, four subsurface soil samples (three primary and one duplicate), and two groundwater samples were collected. Surface and subsurface soil samples were collected from soil borings completed for installation of monitoring wells MW18PFC0501 and MW18PFC0502. A subsurface soil sample was also collected from

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HO/197416.pdf).

<sup>&</sup>lt;sup>b</sup>EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

 $<sup>^{</sup>c}$ The EPA Health Advisory value for drinking water of 0.07  $\mu$ g/L applies to the combined detected concentrations of PFOS and PFOA.

soil boring SB18PFC0503 and groundwater samples were collected from both monitoring wells. Sample locations for AFFF Area 5 are shown on Figure 9 in Appendix A.

#### 3.9.2 **Soil Descriptions**

Three soil borings completed at the B-52 crash site were terminated at depths ranging from 15.0 to 35.0 feet bgs. Soil types encountered were variable, consisting primarily of lean clay (CL) with some intervals of silty sand (SM) and lesser amounts of fat clay (CH), silt (ML), clayey sand (SC), and well graded gravel (GW). Detailed boring logs are included in Appendix C.

#### 3.9.3 **Groundwater Flow**

Groundwater levels were gauged at two new monitoring wells at the B-52 crash site on June 1, 2018. Groundwater was detected at depths of 17.43 feet and 19.40 feet btoc and at elevations of 3202.83 feet above NAVD 88 (at MW18PFC0501) and 3203.08 feet above NAVD 88 (at MW18PFC0502). Groundwater contours developed from these water level measurements and from adjacent AFFF Area 2 (70, 80, 90 Rows) indicate shallow groundwater flows southeast as shown on Figure 9 in Appendix A. Groundwater level measurements and elevations are summarized in Table F-1 in Appendix F.

#### 3.9.4 **Analytical Results**

#### Surface Soil

Three surface soil samples were collected at the B-52 crash site. PFBS was not detected in any of the three samples. PFOA and PFOS were detected in all three samples at concentrations below the screening level. Surface soil analytical results are summarized in Table 16 and shown on Figure 25 in Appendix A.

Table 16 B-52 Crash (AFFF Area 5) Surface Soil Analytical Results

|                                     | Sample ID                               | ELSWH05-001-<br>SS-001 | ELSWH05-002-<br>SS-001 | ELSWH05-003-<br>SS-001 |
|-------------------------------------|-----------------------------------------|------------------------|------------------------|------------------------|
|                                     | Date Sampled                            | 05/02/18               | 05/01/18               | 05/02/18               |
|                                     | Sample Depth<br>(ft bgs)                | 0 - 0.5                | 0 - 0.5                | 0 - 0.5                |
| Analyte                             | Screening Level (µg/kg)                 | Result<br>(µg/kg)      | Result<br>(µg/kg)      | Result<br>(µg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.50 U                 | 0.60 U                 | 0.55 U                 |
| Perfluorooctanoic Acid (PFOA)       | 126°                                    | 1.8                    | 0.62 J                 | 3.1                    |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 68                     | 11                     | 75                     |

**Bold** values indicate analyte detected at concentration indicated.

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

(https://semspub.epa.gov/work/HO/197416.pdfhttps://semspub.epa.gov/work/HO/197416.pdf).

 $\mu g/kg = micrograms per kilogram$ 

AFFF = aqueous film forming foam

bgs = below ground surface

ft = foot or feet

ID = identification

SS = surface soil

ELSWH = ERPIMS designation for Ellsworth Air Force Base

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>&</sup>lt;sup>c</sup> Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search).

# Subsurface Soil

Four subsurface soil samples (three primary and one duplicate) were collected at the B-52 crash site. PFBS was not detected in any of the samples. PFOA was detected in one sample and PFOS was detected in three samples; all at concentrations below the screening level. Subsurface soil analytical results are summarized in Table 17 and shown on Figure 25 in Appendix A.

Table 17 B-52 Crash (AFFF Area 5) Subsurface Soil Analytical Results

|                                     | Sample ID                               | ELSWH05-001-<br>SO-028 | ELSWH05-002-<br>SO-020 | ELSWH05-003-<br>SO-009      | ELSWH05-003-<br>SO-909 (dup) |
|-------------------------------------|-----------------------------------------|------------------------|------------------------|-----------------------------|------------------------------|
|                                     | Date Sampled Sample Depth               | 05/02/18<br>28 - 29    | 05/01/18<br>20 - 21    | 05/02/18<br>9 - 10          | 05/02/18<br>9 - 10           |
| Analyte                             | (ft bgs) Screening Level (μg/kg)        | Result<br>(μg/kg)      | Result<br>(μg/kg)      | 9 - 10<br>Result<br>(μg/kg) | 9 - 10<br>Result<br>(μg/kg)  |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.48 U                 | 0.46 U                 | 0.50 U                      | 0.47 U                       |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                                    | 0.77 U                 | 0.73 U                 | 0.80 U                      | 0.37 J                       |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 0.37 J                 | 0.73 U                 | 0.90 J                      | 1.4                          |

**Bold** values indicate analyte detected at concentration indicated.

AFFF = aqueous film forming foam

bgs = below ground surface

ft = foot or feet

SO = subsurface soil

dup = duplicate

ELSWH = ERPIMS designation for Ellsworth Air Force Base

ID = identification

J = reported concentration is an estimated value

U = analyte was not detected at the reported value

### Soil Physiochemical Analyses

To provide basic soil parameter information, composite surface and subsurface soil samples were collected from AFFF Area 5 soil borings for pH, TOC, percent solids, and grain size analysis. Surface soil sample ELSWH05-004-SS-001 was composed of equal aliquots of soil collected from 0 to 6 inches bgs at the three borings completed at Area 5. Subsurface soil sample ELSWH05-004-SO-020 was composed of equal aliquots of soil collected from the same borings at depths ranging from 9 to 29 feet bgs. Table E-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix E.

### Groundwater

Two groundwater samples were collected from two new monitoring wells at the B-52 crash site. PFBS was detected in both samples, but at concentrations below the screening level. PFOA and PFOS were also detected in both groundwater samples at individual and combined concentrations above the screening level. Groundwater analytical results are summarized in Table 18 and shown on Figure 26 in Appendix A.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>c</sup> Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).

μg/kg = micrograms per kilogram

Table 18 B-52 Crash (AFFF Area 5) Groundwater Analytical Results

|                                  | Well Number                   | MW18PFC0501        | MW18PFC0502        |
|----------------------------------|-------------------------------|--------------------|--------------------|
|                                  | Sample ID                     | ELSWH05-001-GW-030 | ELSWH05-002-GW-025 |
|                                  | Date Sampled                  | 05/04/18           | 05/03/18           |
|                                  | Screened Interval<br>(ft bgs) | 24.1 - 34.1        | 19 - 29            |
| Analyte                          | Screening Level<br>(μg/L)     | Result<br>(µg/L)   | Result<br>(µg/L)   |
| Perfluorobutane Sulfonate (PFBS) | 40ª                           | 0.015 J            | 0.014 J            |
| Perfluorooctanoic Acid (PFOA)    | 0.07 <sup>b</sup>             | 0.095              | 0.088              |
| Perfluorooctane Sulfonate (PFOS) | 0.07 <sup>b</sup>             | 0.34               | 0.24               |
| Combined PFOA+PFOS               | 0.07°                         | 0.435              | 0.328              |

Shaded results indicate value exceeds screening criteria.

 $\mu g/L = micrograms \ per \ liter$ 

bgs = below ground surface

ft = foot or feet

ELSWH = ERPIMS designation for Ellsworth Air Force Base

J = reported concentration is an estimated value

AFFF = aqueous film forming foam

ID = identification GW = groundwater

### 3.9.5 Conclusions

Use of AFFF at the B-52 crash site has resulted in a release of PFAS to the environment. Groundwater is the only media impacted by PFAS (PFOS and PFOA) above screening levels at AFFF Area 5.

### 3.10 B-1 CRASH (1988) - AFFF AREA 6

### 3.10.1 Sample Locations

To assess possible PFAS impacts from use of AFFF at the B-1 crash site in 1988, five surface soil samples (four primary and one duplicate), four subsurface soil samples, and four groundwater samples (three primary and one duplicate) were collected. Surface and subsurface soil samples were collected from soil borings completed for installation of monitoring wells MW18PFC0601, MW18PFC0602, and MWPFC0603 and from soil boring SB18PFC0604. Groundwater samples were collected from each monitoring well. Sample locations for AFFF Area 6 are shown on Figure 10 in Appendix A.

# 3.10.2 Soil Descriptions

Four soil borings completed at the B-1 crash site were terminated at depths ranging from 20.0 to 60.0 feet bgs. Soil types encountered were variable, consisting primarily of lean clay (CL) with occasional intervals

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup>EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

 $<sup>^{\</sup>circ}$ The EPA Health Advisory value for drinking water of 0.07  $\mu$ g/L applies to the combined detected concentrations of PFOS and PFOA.

of silty sand (SM), silt (ML), clayey sand (SC), and well graded sand (SW). Detailed boring logs are included in Appendix C.

### 3.10.3 Groundwater Flow

Groundwater levels were gauged at three new monitoring wells at the B-1 crash site on June 1, 2018. Groundwater was detected at depths ranging from 10.77 feet to 14.92 feet bloc and at elevations ranging from 3150.99 feet above NAVD 88 (at MW18PFC0603) to 3160.98 feet above NAVD 88 (at MW18PFC0601). Groundwater contours developed from these water level measurements indicate shallow groundwater flows south as shown on Figure 10 in Appendix A. Groundwater level measurements and elevations are summarized in Table F-1 in Appendix F.

# 3.10.4 Analytical Results

### Surface Soil

Five surface soil samples (four primary and one duplicate) were collected at the B-1 crash site. PFBS was not detected in any of the samples. PFOS and PFOA were detected in all five samples, but at concentrations below the screening level. Surface soil analytical results are summarized in Table 19 and shown on Figure 27 in Appendix A.

Table 19 B-1 Crash (AFFF Area 6) Surface Soil Analytical Results

|                   |                 | ELSWH06-001- | ELSWH06-002- | ELSWH06-003- |
|-------------------|-----------------|--------------|--------------|--------------|
|                   | Sample ID       | SS-001       | SS-001       | SS-001       |
|                   | Date Sampled    | 05/06/18     | 05/05/18     | 05/05/18     |
|                   | Sample Depth    |              |              |              |
|                   | (ft bgs)        | 0 - 0.5      | 0 - 0.5      | 0 - 0.5      |
|                   | Screening Level | Result       | Result       | Result       |
| Analyte           | (µg/kg)         | (µg/kg)      | (μg/kg)      | (µg/kg)      |
| Perfluorobutane   | 130,000a        | 0.45 U       | 0.55 U       | 0.49 U       |
| Sulfonate (PFBS)  | 13 <sup>b</sup> | 0.43 0       | 0.55 0       | 0.49 0       |
| Perfluorooctanoic |                 | 0.79 J       | 0.73 J       | 0.57 J       |
| Acid (PFOA)       | 126°            | U.79 J       | 0.73 3       | 0.37 3       |
| Perfluorooctane   |                 | 61           | 6.8          | 4.6          |
| Sulfonate (PFOS)  | 126°            | VI           | 0.0          | 7.0          |

Table 19 B-1 Crash (AFFF Area 6) Surface Soil Analytical Results (continued)

|                           |                      | ELSWH06-004- | ELSWH06-004- |
|---------------------------|----------------------|--------------|--------------|
|                           | Sample ID            | SS-001       | SS-901 (dup) |
|                           | Date Sampled         | 05/06/18     | 05/06/18     |
|                           | Sample Depth         |              |              |
|                           | (ft bgs)             | 0 - 0.5      | 0 - 0.5      |
|                           | Screening Level      | Result       | Result       |
| Analyte                   | (µg/kg)              | (μg/kg)      | (μg/kg)      |
| Perfluorobutane Sulfonate | 130,000 <sup>a</sup> | 0.46 U       | 0.49 U       |
| (PFBS)                    | 13 <sup>b</sup>      | 0.46 0       | 0.49 0       |
| Perfluorooctanoic Acid    |                      | 1.2 J        | 1.8 J        |
| (PFOA)                    | 126°                 | 1.2 J        | 1.0 J        |
| Perfluorooctane Sulfonate |                      | 29 J         | 22           |
| (PFOS)                    | 126°                 | 29 J         | 22           |

### Subsurface Soil

Four subsurface soil samples were also collected at the B-1 crash site. PFBS and PFOA were not detected in any of the samples. PFOS was detected in two of the four samples, but at concentrations below the screening level. Subsurface soil analytical results are summarized in Table 20 and shown on Figure 27 in Appendix A.

ID = identification

SS = surface soil

Table 20 B-1 Crash (AFFF Area 6) Subsurface Soil Analytical Results

|                                     |                                         | ELSWH06-          | ELSWH06-002-      | ELSWH06-003-      | ELSWH06-004-      |
|-------------------------------------|-----------------------------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Sample ID                               | 001-SO-012        | SO-010            | SO-054            | SO-035            |
|                                     | Date Sampled                            | 05/06/18          | 05/05/18          | 05/05/18          | 05/06/18          |
|                                     | Sample<br>Depth<br>(ft bgs)             | 12 - 13           | 10 - 11           | 54 - 55           | 35 - 36           |
| Analyte                             | Screening<br>Level<br>(µg/kg)           | Result<br>(µg/kg) | Result<br>(µg/kg) | Result<br>(µg/kg) | Result<br>(µg/kg) |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.43 U            | 0.48 U            | 0.46 U            | 0.50 U            |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                                    | 0.68 U            | 0.76 U            | 0.73 U            | 0.80 U            |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 0.77 J            | 0.51 J            | 0.73 U            | 0.80 U            |

**Bold** values indicate analyte detected at concentration indicated.

ft = foot or feet

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdf https://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

cScreening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search). μg/kg = micrograms per kilogram AFFF = aqueous film forming foam bgs = below ground surface

dup = duplicate ft = foot or feet ELSWH = ERPIMS designation for Ellsworth Air Force Base

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

c Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search).

μg/kg = micrograms per kilogram AFFF = aqueous film forming foam bgs = below ground surface

SO = subsurface soil ID = identification ELSWH = ERPIMS designation for Ellsworth Air Force Base

### Soil Physiochemical Analyses

To provide basic soil parameter information, composite surface and subsurface soil samples were collected from AFFF Area 6 soil borings for pH, TOC, percent solids, and grain size analysis. Surface soil sample ELSWH06-005-SS-001 was composed of equal aliquots of soil collected from 0 to 6 inches bgs at the four borings completed at Area 6. Subsurface soil sample ELSWH06-005-SO-054 was composed of equal aliquots of soil collected from the same borings at depths ranging from 10 to 55 feet bgs. Table E-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix E.

### Groundwater

Four groundwater samples (three primary and one duplicate) were collected from three new monitoring wells at the B-1 crash site. PFBS was detected in three of the four samples, but at concentrations below the screening level. PFOA and PFOS were also detected in one of the three groundwater samples at individual and combined concentrations above the screening level. Groundwater analytical results are summarized in Table 21 and shown on Figure 28 in Appendix A.

Table 21 B-1 Crash (AFFF Area 6) Groundwater Analytical Results

|                                     | Well Number    | MW18PFC0601  | MW18PFC0602  | MW18PFC0602  | MW18PFC0603  |
|-------------------------------------|----------------|--------------|--------------|--------------|--------------|
|                                     |                | ELSWH06-001- | ELSWH06-002- | ELSWH06-002- | ELSWH06-003- |
|                                     | Sample ID      | GW-018       | GW-018       | GW-918 (dup) | GW-055       |
|                                     | Date Sampled   | 05/09/18     | 05/09/18     | 05/09/18     | 05/07/18     |
| Screened<br>Interval<br>(ft bgs)    |                | 8.6 - 18.6   | 8.9 - 18.9   | 8.9 - 18.9   | 49.3 - 59.3  |
|                                     | Screening      |              |              |              |              |
|                                     | Level          | Result       | Result       | Result       | Result       |
| Analyte                             | (μg/L)         | (µg/L)       | (µg/L)       | (µg/L)       | (μg/L)       |
| Perfluorobutane<br>Sulfonate (PFBS) | 40ª            | 0.022        | 0.016 J      | 0.015 J      | 0.015 U      |
| Perfluorooctanoic<br>Acid (PFOA)    | $0.07^{\rm b}$ | 0.19         | 0.010 U      | 0.010 U      | 0.010 U      |
| Perfluorooctane<br>Sulfonate (PFOS) | $0.07^{\rm b}$ | 0.40         | 0.015 U      | 0.015 U      | 0.015 U      |
| Combined<br>PFOA+PFOS               | 0.07°          | 0.59         | ND           | ND           | ND           |

**Bold** values indicate analyte detected at concentration indicated.

Shaded results indicate value exceeds screening criteria.

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

 $\mu$ g/L = micrograms per liter AFFF = aqueous film forming foam bgs = below ground surface dup = duplicate ft = foot or feet GW = groundwater

ID = identification ND = not detected ELSWH = ERPIMS designation for Ellsworth Air Force Base

J = reported concentration is an estimated value U = analyte was not detected at the reported value

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018)

<sup>&</sup>lt;sup>b</sup>EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

 $<sup>^{</sup>c}$ The EPA Health Advisory value for drinking water of 0.07  $\mu$ g/L applies to the combined detected concentrations of PFOS and PFOA.

#### 3.10.5 Conclusions

Use of AFFF at the B-1 crash site has resulted in a release of PFAS to the environment. Groundwater is the only media impacted by PFAS (PFOS and PFOA) above screening levels at AFFF Area 6.

# 3.11 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7

### 3.11.1 Sample Locations

To assess possible PFAS impacts from a 2000 AFFF spill on Delta Taxiway West (resulting from a vehicle crash), four surface soil samples, four subsurface soil samples, and three groundwater samples were collected. Surface and subsurface soil samples were collected from soil borings completed for installation of monitoring wells MW18PFC0701, MW18PFC0702, and MWPFC0703 and from soil boring SB18PFC0704. Groundwater samples were collected from each monitoring well. Sample locations for AFFF Area 7 are shown on Figure 11 in Appendix A.

# 3.11.2 Soil Descriptions

Four soil borings completed at the Delta Taxiway West crash site were terminated at depths ranging from 20.0 to 60.0 feet bgs. Soil types encountered were highly variable, consisting primarily of lean clay (CL) with occasional intervals of silty sand (SM), well graded sand (SW), silt (ML), clayey sand (SC), and clayey gravel (GC). Detailed boring logs are included in Appendix C.

#### 3.11.3 Groundwater Flow

Groundwater levels were gauged at three new monitoring wells at the Delta Taxiway West crash site on June 1, 2018. Groundwater was detected at depths ranging from 13.66 feet to 15.41 feet btoc and at elevations ranging from 3189.84 feet above NAVD 88 (at MW18PFC0702) to 3190.55 feet above NAVD 88 (at MW18PFC0703). Groundwater contours developed from these water level measurements indicate shallow groundwater flows southeast as shown on Figure 11 in Appendix A. Groundwater level measurements and elevations are summarized in Table F-1 in Appendix F.

### 3.11.4 Analytical Results

### Surface Soil

Four surface soil samples were collected at the Delta Taxiway West crash site. PFBS was not detected in any of the samples. PFOS was detected in all four samples and PFOA was detected in three of four samples, all at concentrations below the screening level. Surface soil analytical results are summarized in Table 22 and shown on Figure 29 in Appendix A.

Table 22 Delta Taxiway West Crash (AFFF Area 7) Surface Soil Analytical Results

|                                     | Sample ID                     | ELSWH07-<br>001-SS-001 | ELSWH07-002-<br>SS-001 | ELSWH07-003-<br>SS-001 | ELSWH07-004-<br>SS-001 |
|-------------------------------------|-------------------------------|------------------------|------------------------|------------------------|------------------------|
|                                     | Date Sampled                  | 05/08/18               | 05/09/18               | 05/15/18               | 05/08/18               |
|                                     | Sample Depth<br>(ft bgs)      | 0 - 0.5                | 0 - 0.5                | 0 - 0.5                | 0 - 0.5                |
| Analyte                             | Screening<br>Level<br>(µg/kg) | Result<br>(µg/kg)      | Result<br>(µg/kg)      | Result<br>(µg/kg)      | Result<br>(μg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000a<br>13 <sup>b</sup>   | 0.55 U                 | 0.45 U                 | 0.43 U                 | 0.50 U                 |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                          | 2.6                    | 0.36 J                 | 0.69 U                 | 0.60 J                 |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                          | 18                     | 18                     | 1.8                    | 5.9                    |

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

bgs = below ground surface

ft = foot or feet

SS = surface soil

ID = identification

ELSWH = ERPIMS designation for Ellsworth Air Force Base

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

### Subsurface Soil

Four subsurface soil samples were also collected at the Delta Taxiway West crash site. PFBS and PFOA were not detected in any of the samples. PFOS was detected in two of four samples, both at concentrations below the screening level. Subsurface soil analytical results are summarized in Table 23 and shown on Figure 29 in Appendix A.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>c</sup> Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).

μg/kg = micrograms per kilogram

AFFF = aqueous film forming foam

Table 23 Delta Taxiway West Crash (AFFF Area 7) Subsurface Soil Analytical Results

|                                     | Sample ID                               | ELSWH07-001-<br>SO-029 | ELSWH07-002-<br>SO-013 | ELSWH07-003-<br>SO-016 | ELSWH07-004-<br>SO-013 |
|-------------------------------------|-----------------------------------------|------------------------|------------------------|------------------------|------------------------|
|                                     | Date<br>Sampled                         | 05/08/18               | 05/09/18               | 05/15/18               | 05/08/18               |
|                                     | Sample<br>Depth<br>(ft bgs)             | 29 - 30                | 13 - 14                | 16 - 17                | 13 - 14                |
| Analyte                             | Screening<br>Level<br>(µg/kg)           | Result<br>(μg/kg)      | Result<br>(μg/kg)      | Result<br>(μg/kg)      | Result<br>(μg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.50 U                 | 0.41 U                 | 0.40 U                 | 0.41 U                 |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                                    | 0.80 U                 | 0.66 U                 | 0.64 U                 | 0.65 U                 |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 0.80 U                 | 1.1                    | 0.34 J                 | 0.65 U                 |

ft = foot or feet

bgs = below ground surface SO = subsurface soil

dup = duplicate

ELSWH = ERPIMS designation for Ellsworth Air Force Base

ID = identification

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

#### Soil Physiochemical Analyses

To provide basic soil parameter information, composite surface and subsurface soil samples were collected from AFFF Area 7 soil borings for pH, TOC, percent solids, and grain size analysis. Surface soil sample ELSWH07-005-SS-001 was composed of equal aliquots of soil collected from 0 to 6 inches bgs at the four borings completed at Area 7. Subsurface soil sample ELSWH07-005-SO-001 was composed of equal aliquots of soil collected from the same borings at depths ranging from 13 to 30 feet bgs. Table E-1, summarizing the physiochemical data, and supporting laboratory data sheets are included in Appendix E.

### **Groundwater**

Groundwater samples were collected from three new monitoring wells at the Delta Taxiway West crash site. PFBS was detected in two of the three samples, but at concentrations below the screening level. PFOA and PFOS were also detected in two of the three groundwater samples; however, both the individual and combined concentrations of PFOA and PFOS were below the screening level. Groundwater analytical results are summarized in Table 24 and shown on Figure 30 in Appendix A.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>c</sup> Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search). AFFF = aqueous film forming foam

μg/kg = micrograms per kilogram

Table 24 Delta Taxiway West Crash (AFFF Area 7) Groundwater Analytical Results

|                                     | Well Number                    | MW18PFC0701            | MW18PFC0702            | MW18PFC0703            |
|-------------------------------------|--------------------------------|------------------------|------------------------|------------------------|
|                                     | Sample ID                      | ELSWH07-001-<br>GW-035 | ELSWH07-002-<br>GW-021 | ELSWH07-003-<br>GW-021 |
|                                     | Date Sampled Screened Interval | 05/15/18               | 05/21/18               | 05/21/18               |
|                                     | (ft bgs)                       | 29.1 - 39.1            | 14.3 - 24.3            | 14.1 - 24.1            |
| Analyte                             | Screening Level (μg/L)         | Result<br>(μg/L)       | Result<br>(μg/L)       | Result<br>(μg/L)       |
| Perfluorobutane<br>Sulfonate (PFBS) | 40ª                            | 0.015 U                | 0.018 J                | 0.016 J                |
| Perfluorooctanoic<br>Acid (PFOA)    | 0.07 <sup>b</sup>              | 0.010 U                | 0.010 J                | 0.0094 J               |
| Perfluorooctane<br>Sulfonate (PFOS) | 0.07 <sup>b</sup>              | 0.015 U                | 0.017 J                | 0.017 J                |
| Combined PFOA+PFOS                  | $0.07^{\rm b}$                 | ND                     | 0.027 J                | 0.0264 J               |

 $\mu g/L = micrograms per liter$ 

bgs = below ground surface

ft = foot or feet

ELSWH = ERPIMS designation for Ellsworth Air Force Base

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

AFFF = aqueous film forming foam

ID = identification

GW = groundwater

ND = not detected

### 3.11.5 Conclusions

Although an AFFF spill occurred at the Delta Taxiway West crash site, soil and groundwater were not impacted by PFBS, PFOA, or PFOS above screening levels.

### 3.12 MARTEN CRASH (2006) – AFFF AREA 8

### 3.12.1 Sample Locations

To assess possible PFAS impacts from use of AFFF at a 2006 truck crash, four surface soil samples, five subsurface soil samples (four primary and one duplicate), and three groundwater samples were collected. Surface and subsurface soil samples were collected from soil borings completed for installation of monitoring wells MW18PFC0801, MW18PFC0802, and MWPFC0803 and from soil boring SB18PFC0804. Groundwater samples were collected from each monitoring well. Sample locations for AFFF Area 8 are shown on Figure 12 in Appendix A.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup>EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

 $<sup>^{\</sup>circ}$ The EPA Health Advisory value for drinking water of 0.07  $\mu$ g/L applies to the combined detected concentrations of PFOS and PFOA.

### 3.12.2 Soil Descriptions

Four soil borings completed at the Marten crash site were terminated at depths ranging from 50.0 to 60.0 feet bgs. Soils encountered at Area 8 were very consistent; lean clay (CL) was the only soil type encountered in each of the four borings. Detailed boring logs are included in Appendix C.

### 3.12.3 Groundwater Flow

Groundwater levels were gauged at three new monitoring wells at the Marten crash site on June 1, 2018. Groundwater was detected at depths ranging from 14.36 feet to 15.07 feet btoc and at elevations ranging from 3058.49 feet above NAVD 88 (at MW18PFC0802) to 3059.65 feet above NAVD 88 (at MW18PFC0801). Groundwater contours developed from these water level measurements indicate shallow groundwater flows south-southeast as shown on Figure 12 in Appendix A. Groundwater level measurements and elevations are summarized in Table F-1 in Appendix F.

# 3.12.4 Analytical Results

# Surface Soil

Four surface soil samples were collected at the Marten crash site. PFBS was not detected in any of the samples. PFOS and PFOA were detected in all four samples, but at concentrations below the screening level. Surface soil analytical results are summarized in Table 25 and shown on Figure 31 in Appendix A.

Table 25 Marten Crash (2006) (AFFF Area 8) Surface Soil Analytical Results

|                                     | Sample ID                               | ELSWH08-001-<br>SS-001 | ELSWH08-002-<br>SS-001 | ELSWH08-003-<br>SS-001 | ELSWH08-004-<br>SS-001 |
|-------------------------------------|-----------------------------------------|------------------------|------------------------|------------------------|------------------------|
|                                     | Date<br>Sampled                         | 04/23/18               | 04/22/18               | 04/21/18               | 04/21/18               |
| Sample<br>Depth<br>(ft bgs)         |                                         | 0 - 0.5                | 0 - 0.5                | 0 - 0.5                | 0 - 0.5                |
| Analyte                             | Screening<br>Level<br>(µg/kg)           | Result<br>(μg/kg)      | Result<br>(μg/kg)      | Result<br>(μg/kg)      | Result<br>(µg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.60 U                 | 0.45 U                 | 0.45 U                 | 0.50 U                 |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                                    | 0.64 J                 | 0.57 J                 | 0.75 J                 | 1.1                    |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 13                     | 5.2                    | 12                     | 12                     |

**Bold** values indicate analyte detected at concentration indicated.

μg/kg = micrograms per kilogram

AFFF = aqueous film forming foam

bgs = below ground surface

ft = foot or feet

SS = surface soil

ID = identification

SS – Surface Soil

ID – Identification

ELSWH = ERPIMS designation for Ellsworth Air Force Base U = analyte was not detected above the reported value

J = reported concentration is an estimated value

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdf https://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>c</sup> Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).

# Subsurface Soil

Five subsurface soil samples (four primary and one duplicate) were collected at the Marten crash site. PFBS, PFOS, and PFOA were not detected in any of the samples. Subsurface soil analytical results are summarized in Table 26 and shown on Figure 31 in Appendix A.

Table 26 Marten Crash (2006) (AFFF Area 8) Subsurface Soil Analytical Results

|                                     |                                         | ELSWH08-001- | ELSWH08-002- | ELSWH08-002- |
|-------------------------------------|-----------------------------------------|--------------|--------------|--------------|
|                                     | Sample ID                               | SO-030       | SO-040       | SO-940 (dup) |
|                                     | Date Sampled                            | 04/23/18     | 04/23/18     | 04/23/18     |
|                                     | Sample Depth                            |              |              |              |
|                                     | (ft bgs)                                | 30 - 31      | 40 - 41      | 40 - 41      |
|                                     | Screening Level                         | Result       | Result       | Result       |
| Analyte                             | (µg/kg)                                 | (µg/kg)      | (μg/kg)      | (µg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.60 U       | 0.55 U       | 0.60 U       |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                                    | 0.96 U       | 0.88 U       | 0.96 U       |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 0.96 U       | 0.88 U       | 0.96 U       |

|                                     |                                         | ELSWH08-003- | ELSWH08-004- |
|-------------------------------------|-----------------------------------------|--------------|--------------|
|                                     | Sample ID                               | SO-046       | SO-051       |
|                                     | Date Sampled                            | 04/22/18     | 04/22/18     |
|                                     | Sample Depth                            |              |              |
|                                     | (ft bgs)                                | 46 - 47      | 51 - 52      |
|                                     | Screening Level                         | Result       | Result       |
| Analyte                             | (µg/kg)                                 | (µg/kg)      | (µg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.55 U       | 0.50 U       |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                                    | 0.88 U       | 0.80 U       |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 0.88 U       | 0.80 U       |

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

μg/kg = micrograms per kilogram AFFF = aqueous film forming foam

bgs = below ground surface ft = foot or feetSO = subsurface soil dup = duplicate

ELSWH = ERPIMS designation for Ellsworth Air Force Base ID = identification

U = analyte was not detected above the reported value

# Soil Physiochemical Analyses

To provide basic soil parameter information, composite surface and subsurface soil samples were collected from AFFF Area 8 soil borings for pH, TOC, percent solids, and grain size analysis. Surface soil sample ELSWH08-005-SS-001 was composed of equal aliquots of soil collected from 0 to 6 inches bgs at the four borings completed at Area 8. Subsurface soil sample ELSWH08-005-SO-046 was composed of equal aliquots of soil collected from the same borings at depths ranging from 30 to 52 feet bgs. Table E-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix E.

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>c</sup> Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).

### Groundwater

Groundwater samples were collected from three new monitoring wells at the Marten crash site. PFBS, PFOS, and PFOA were not detected in any of the samples. Groundwater analytical results are summarized in Table 27 and shown on Figure 32 in Appendix A.

Table 27 Marten Crash (2006) (AFFF Area 8) Groundwater Analytical Results

|                                     | Well Number                   | MW18PFC0801            | MW18PFC0802            | MW18PFC0803            |
|-------------------------------------|-------------------------------|------------------------|------------------------|------------------------|
|                                     | Sample ID                     | ELSWH08-001-<br>GW-044 | ELSWH08-002-<br>GW-045 | ELSWH08-003-<br>GW-045 |
|                                     | Date Sampled                  | 05/01/18               | 04/26/18               | 04/26/18               |
|                                     | Screened Interval<br>(ft bgs) | 35.9 - 50.9            | 39.3 - 49.3            | 40.1 - 50.1            |
| Analyte                             | Screening Level<br>(μg/L)     | Result<br>(μg/L)       | Result<br>(μg/L)       | Result<br>(μg/L)       |
| Perfluorobutane<br>Sulfonate (PFBS) | $40^{a}$                      | 0.015 U                | 0.015 U                | 0.015 U                |
| Perfluorooctanoic<br>Acid (PFOA)    | 0.07 <sup>b</sup>             | 0.010 U                | 0.010 U                | 0.010 U                |
| Perfluorooctane<br>Sulfonate (PFOS) | 0.07 <sup>b</sup>             | 0.015 U                | 0.015 U                | 0.015 U                |
| Combined<br>PFOA+PFOS               | $0.07^{\rm c}$                | ND                     | ND                     | ND                     |

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018)

 $\mu g/L = micrograms per liter$ 

bgs = below ground surface

ft = foot or feet

ELSWH = ERPIMS designation for Ellsworth Air Force Base

U = analyte was not detected above the reported value

AFFF = aqueous film forming foam

ID = identification

GW = groundwater

ND = not detected

#### 3.12.5 Conclusions

Although AFFF was used at the Marten crash site, soil and groundwater have not been impacted by PFBS, PFOS, or PFOA above screening levels.

# 3.13 CRASH 4 (2001) - AFFF AREA 9

### 3.13.1 Sample Locations

To assess possible PFAS impacts from an AFFF spill from emergency response vehicle "Crash 4," four surface soil samples (three primary and one duplicate), three subsurface soil samples, and two groundwater samples were collected. Surface and subsurface soil samples were collected from soil borings SB18PFC0901, MW18PFC0902, and SB18PFC0903. Monitoring wells installed in soil borings SB18PFC0901 and SB18PFC0902 did not produce water and were determined to be too shallow. These wells were abandoned and deeper replacement wells MW18PFC0901A and MW18PFC0902A were installed near the original well locations and sampled. Sample locations for AFFF Area 9 are shown on Figure 13 in Appendix A.

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup>EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

 $<sup>^{\</sup>circ}$ The EPA Health Advisory value for drinking water of 0.07  $\mu$ g/L applies to the combined detected concentrations of PFOS and PFOA.

### 3.13.2 Soil Descriptions

Five soil borings completed at the Crash 4 spill site were terminated at depths ranging from 18.0 to 35.0 feet bgs. Soil types encountered were highly variable, consisting primarily of lean clay (CL) with occasional intervals of silty sand (SM), well graded sand (SW), fat clay (CH), silt (ML), and clayey sand (SC). Detailed boring logs are included in Appendix C.

#### 3.13.3 Groundwater Flow

Groundwater levels were gauged at two new monitoring wells at the Crash 4 spill site on June 1, 2018. Groundwater was detected at depths of 25.70 feet and 31.72 feet btoc and at elevations of 3215.09 feet above NAVD 88 (at MW18PFC0901A) and 3222.52 feet above NAVD 88 (at MW18PFC0902A). Groundwater contours developed from these water level measurements and from adjacent AFFF Area 2 (70, 80, 90 Rows) indicate shallow groundwater flows southeast as shown on Figure 13 in Appendix A. Groundwater level measurements and elevations are summarized in Table F-1 in Appendix F.

### 3.13.4 Analytical Results

### Surface Soil

Four surface soil samples (three primary and one duplicate) were collected at the Crash 4 spill site. PFBS was not detected in any of the samples. PFOS was detected in all four samples and PFOA was detected in two of the three primary samples and in the duplicate sample, all at concentrations below the screening level. Surface soil analytical results are summarized in Table 28 and shown on Figure 33 in Appendix A.

Table 28 Crash 4 (AFFF Area 9) Surface Soil Analytical Results

|                                     | Sample ID                               | ELSWH09-<br>001-SS-001 | ELSWH09-002-<br>SS-001 | ELSWH09-002-<br>SS-901 (dup) | ELSWH09-003-<br>SS-001 |
|-------------------------------------|-----------------------------------------|------------------------|------------------------|------------------------------|------------------------|
|                                     | Date<br>Sampled                         | 05/21/18               | 05/21/18               | 05/21/18                     | 05/04/18               |
|                                     | Sample<br>Depth<br>(ft bgs)             | 0 - 0.5                | 0 - 0.5                | 0 - 0.5                      | 0 - 0.5                |
| Analyte                             | Screening<br>Level<br>(µg/kg)           | Result<br>(μg/kg)      | Result<br>(µg/kg)      | Result<br>(μg/kg)            | Result<br>(µg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.49 U                 | 0.55 U                 | 0.55 U                       | 0.60 U                 |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                                    | 0.62 J                 | 0.88 U                 | 0.64 J                       | 1.1 J                  |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 32                     | 4.0 J                  | 31 J                         | 3.0                    |

**Bold** values indicate analyte detected at concentration indicated.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>c</sup> Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).

 $<sup>\</sup>mu$ g/kg = micrograms per kilogram AFFF = aqueous film forming foam bgs = below ground surface dup = duplicate ft = foot or feet ID = identification SS = surface soil

ELSWH = ERPIMS designation for Ellsworth Air Force Base J = reported concentration is an estimated value

U = analyte was not detected above the reported value

# Subsurface Soil

Three subsurface soil samples were collected at the Crash 4 spill site. PFBS was not detected in any of the samples. PFOS was detected in two of three samples and PFOA was detected in one of three samples, all at concentrations below the screening level. Subsurface soil analytical results are summarized in Table 29 and shown on Figure 33 in Appendix A.

Table 29 Crash 4 (AFFF Area 9) Subsurface Soil Analytical Results

|                                     | Sample ID                               | ELSWH09-001-<br>SO-005 | ELSWH09-002-<br>SO-005 | ELSWH09-003-<br>SO-028 |
|-------------------------------------|-----------------------------------------|------------------------|------------------------|------------------------|
|                                     | Date Sampled                            | 05/21/18               | 05/21/18               | 05/04/18               |
|                                     | Sample Depth<br>(ft bgs)                | 5 - 6                  | 5 - 6                  | 28 - 29                |
| Analyte                             | Screening Level (µg/kg)                 | Result<br>(μg/kg)      | Result<br>(μg/kg)      | Result<br>(μg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.49 U                 | 0.50 U                 | 0.42 U                 |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                                    | 4.5                    | 0.80 U                 | 0.67 U                 |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 1.0                    | 2.1                    | 0.67 U                 |

**Bold** values indicate analyte detected at concentration indicated.

 $\mu$ g/kg = micrograms per kilogram AFFF = aqueous film forming foam bgs = below ground surface

ft = foot or feet SO = subsurface soil ID = identification

ELSWH = ERPIMS designation for Ellsworth Air Force Base U = analyte was not detected above the reported value

# Soil Physiochemical Analyses

To provide basic soil parameter information, composite surface and subsurface soil samples were collected from AFFF Area 9 soil borings for pH, TOC, percent solids, and grain size analysis. Surface soil sample ELSWH09-004-SS-001 was composed of equal aliquots of soil collected from 0 to 6 inches bgs at the three borings completed at Area 9. Subsurface soil sample ELSWH09-004-SO-028 was composed of equal aliquots of soil collected from the same borings at depths ranging from 5 to 29 feet bgs. Table E-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix E.

#### Groundwater

Groundwater samples were collected from two new monitoring wells at the Crash 4 spill site. PFBS was detected in one sample at a concentration below the screening level. PFOS and PFOA were detected in both samples. PFOS exceeded the screening level in one groundwater sample and the combined PFOS and PFOA concentrations exceeded the screening level in both samples. Groundwater analytical results are summarized in Table 30 and shown on Figure 34 in Appendix A.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdf https://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

c Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).

Table 30 Crash 4 (AFFF Area 9) Groundwater Analytical Results

|                                  | Well Number                | MW18PFC0901A     | MW18PFC0902A     |
|----------------------------------|----------------------------|------------------|------------------|
|                                  |                            | ELSWH09-001-     | ELSWH09-002-     |
|                                  | Sample ID                  | GW-033A          | GW-030A          |
|                                  | Date Sampled               | 05/31/18         | 05/31/18         |
|                                  | Screened Interval (ft bgs) | 23.9 - 33.9      | 24.1 - 34.1      |
| Analyte                          | Screening Level<br>(μg/L)  | Result<br>(μg/L) | Result<br>(μg/L) |
| Perfluorobutane Sulfonate (PFBS) | 40ª                        | 0.016 U          | 0.017 J          |
| Perfluorooctanoic Acid (PFOA)    | $0.07^{\rm b}$             | 0.013 J          | 0.065            |
| Perfluorooctane Sulfonate (PFOS) | $0.07^{\rm b}$             | 0.16             | 0.0076 J         |
| Combined<br>PFOA+PFOS            | 0.07°                      | 0.173 J          | 0.0726 J         |

Shaded results indicate value exceeds screening criteria.

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

 $\mu g/L = micrograms per liter$ 

bgs = below ground surface

ft = foot or feet

ELSWH = ERPIMS designation for Ellsworth Air Force Base

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

AFFF = aqueous film forming foam

ID = identification

GW = groundwater

### 3.13.5 Conclusions

An AFFF spill at the Crash 4 site has resulted in a release of PFAS to the environment. Groundwater is the only media impacted by PFAS (PFOS and PFOA) above screening levels at AFFF Area 9.

#### 3.14 WASTEWATER TREATMENT PLANT – AFFF AREA 10

### 3.14.1 Sample Locations

To further assess PFAS impacts from releases of AFFF from the WWTP, three surface soil samples, three subsurface soil samples, and four groundwater samples (three primary and one duplicate) were collected. Surface and subsurface soil samples were collected from soil borings completed for installation of monitoring wells MW18PFC1001 and MW18PFC1002 at the former unlined sludge drying beds and MW18PFC1003 on the golf course. Groundwater samples were also collected from each monitoring well. In addition, paired surface water and sediment samples were collected at location SW18PFC1004 downstream from the former WWTP effluent discharge in an unnamed drainage that flows to a lake on the golf course. Sample locations for AFFF Area 10 are shown on Figure 14 in Appendix A.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018)

<sup>&</sup>lt;sup>b</sup>EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

 $<sup>^{\</sup>circ}$ The EPA Health Advisory value for drinking water of 0.07  $\mu$ g/L applies to the combined detected concentrations of PFOS and PFOA.

### 3.14.2 Soil Descriptions

Three soil borings completed at the WWTP were terminated at depths ranging from 40.0 to 60.0 feet bgs. Gravel fill (GP and GW) was encountered at borings MW18PFC1001 and MW18PFC1002 installed in the former sludge drying beds. Subsurface soil encountered below the gravel fill at the sludge bed borings and encountered at the ground surface at MW18PFC1003 was very uniform, consisting entirely of lean clay (CL). Detailed boring logs are included in Appendix C.

#### 3.14.3 Groundwater Flow

Groundwater levels were gauged at three new monitoring wells at the WWTP on June 4, 2018. Groundwater was detected at depths ranging from 7.99 feet to 9.80 feet btoc and at elevations ranging from 3105.17 feet above NAVD 88 (at MW18PFC1003) to 3113.58 feet above NAVD 88 (at MW18PFC1001). Groundwater contours developed from these water level measurements indicate shallow groundwater flows southeast as shown on Figure 14 in Appendix A. Groundwater level measurements and elevations are summarized in Table F-1 in Appendix F.

# 3.14.4 Analytical Results

### Surface Soil

Three surface soil samples were collected at the WWTP. PFBS was not detected in any of the samples. PFOS was detected in all three samples and exceeded the screening level in one sample. PFOA was also detected in all three samples, but at concentrations below the screening level. Surface soil analytical results are summarized in Table 31 and shown on Figure 35 in Appendix A.

Table 31 Wastewater Treatment Plant (AFFF Area 10) Surface Soil Analytical Results

|                                     | Sample ID                               | ELSWH10-001-<br>SS-001 | ELSWH10-002-<br>SS-001 | ELSWH10-003-<br>SS-001 |
|-------------------------------------|-----------------------------------------|------------------------|------------------------|------------------------|
|                                     | Date Sampled                            | 04/24/18               | 05/04/18               | 05/24/18               |
|                                     | Sample Depth (ft bgs)                   | 0 - 0.5                | 0 - 0.5                | 0 - 0.5                |
| Analyte                             | Screening Level<br>(μg/kg)              | Result<br>(μg/kg)      | Result<br>(µg/kg)      | Result<br>(μg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.55 U                 | 0.60 U                 | 0.60 U                 |
| Perfluorooctanoic Acid (PFOA)       | 126°                                    | 0.97 J                 | 1.5                    | 1.9                    |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 5.4                    | 5.2                    | 140                    |

**Bold** values indicate analyte detected at concentration indicated.

Shaded results indicate value exceeds screening criteria.

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

bgs = below ground surface

ft = foot or feet

SS = surface soil

ID = identification

ELSWH = ERPIMS designation for Ellsworth Air Force Base

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

c Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).
μg/kg = micrograms per kilogram

AFFF = aqueous film forming foam

### Subsurface Soil

Three subsurface soil samples were collected at the WWTP. PFBS, PFOS, and PFOA were not detected in any of the samples. Subsurface soil analytical results are summarized in Table 32 and shown on Figure 35 in Appendix A.

Table 32 Wastewater Treatment Plant (AFFF Area 10) Subsurface Soil Analytical Results

|                                     | Sample ID                               | ELSWH10-001-<br>SO-040 | ELSWH10-002-<br>SO-029 | ELSWH10-003-<br>SO-050 |
|-------------------------------------|-----------------------------------------|------------------------|------------------------|------------------------|
|                                     | Date Sampled                            | 04/24/18               | 05/04/18               | 05/31/18               |
|                                     | Sample Depth<br>(ft bgs)                | 40 - 41                | 29 - 30                | 50 - 51                |
| Analyte                             | Screening Level<br>(μg/kg)              | Result<br>(μg/kg)      | Result<br>(μg/kg)      | Result<br>(µg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.49 U                 | 0.55 U                 | 0.55 U                 |
| Perfluorooctanoic Acid (PFOA)       | 126°                                    | 0.78 U                 | 0.88 U                 | 0.88 U                 |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 0.78 U                 | 0.88 U                 | 0.88 U                 |

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

bgs = below ground surface ft = foot or feet
SO = subsurface soil
ID = identification

ELSWH = ERPIMS designation for Ellsworth Air Force Base U = analyte was not detected above the reported value

# Soil Physiochemical Analyses

To provide basic soil parameter information, composite surface and subsurface soil samples were collected from AFFF Area 10 soil borings for pH, TOC, percent solids, and grain size analysis. Surface soil sample ELSWH10-005-SS-001 was composed of equal aliquots of soil collected from 0 to 6 inches bgs at the three borings completed at Area 10. Subsurface soil sample ELSWH10-005-SO-040 was composed of equal aliquots of soil collected from the same borings at depths ranging from 29 to 51 feet bgs. Table E-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix E.

### Groundwater

Four groundwater samples (three primary and one duplicate) were collected from three new monitoring wells at the WWTP. PFBS was not detected in any of the samples. PFOS and PFOA were detected in one primary sample; however, both individual and combined concentrations were below the screening level. Groundwater analytical results are summarized in Table 33 and shown on Figure 36 in Appendix A.

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

c Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).

μg/kg = micrograms per kilogram

AFFF = aqueous film forming foam

Table 33 Wastewater Treatment Plant (AFFF Area 10) Groundwater Analytical Results

|                                     | Well Number       | MW18PFC1001  | MW18PFC1002  | MW18PFC1002  | MW18PFC1003  |
|-------------------------------------|-------------------|--------------|--------------|--------------|--------------|
|                                     |                   | ELSWH10-001- | ELSWH10-002- | ELSWH10-002- | ELSWH10-003- |
|                                     | Sample ID         | GW-045       | GW-035       | GW-935 (dup) | GW-059       |
|                                     | Date Sampled      | 05/19/18     | 05/19/18     | 05/19/18     | 06/03/18     |
|                                     | Screened          |              |              |              |              |
|                                     | Interval          |              |              |              |              |
|                                     | (ft bgs)          | 38.8 - 48.8  | 29.3 - 39.3  | 29.3 - 39.3  | 49.4 - 59.4  |
|                                     | Screening         |              |              |              |              |
|                                     | Level             | Result       | Result       | Result       | Result       |
| Analyte                             | (μg/L)            | (μg/L)       | (μg/L)       | (μg/L)       | (µg/L)       |
| Perfluorobutane<br>Sulfonate (PFBS) | 40ª               | 0.015 U      | 0.015 U      | 0.015 U      | 0.017 U      |
| Perfluorooctanoic                   | $0.07^{\rm b}$    | 0.010 U      | 0.010 U      | 0.010 U      | 0.0065 J     |
| Acid (PFOA)                         | 0.07              | 0.010 C      | 0.010 0      | 0.010 C      | 0.0005 J     |
| Perfluorooctane                     | 0.07 <sup>b</sup> | 0.015 U      | 0.015 U      | 0.015 U      | 0.014 J      |
| Sulfonate (PFOS)                    | 0.07              | 0.013 0      | 0.013 0      | 0.013 0      | 0.014 J      |
| Combined                            | $0.07^{\rm b}$    | ND           | ND           | ND           | 0.0205 J     |
| PFOA+PFOS                           | 0.07              | ND           | ND           | ND           | 0.0203 3     |

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

 $\mu g/L = micrograms per liter$  AFFF = aqueous film forming foam bgs = below ground surface dup = duplicate

ID = identification ft = foot or feet GW = groundwater

ELSWH = ERPIMS designation for Ellsworth Air Force Base J = reported concentration is an estimated value

U = analyte was not detected above the reported value

# <u>Sediment</u>

One sediment sample was collected downstream from the WWTP. PFBS and PFOA were detected at concentrations below their respective screening levels and PFOS was detected at a concentration above the screening level. Sediment analytical results are summarized in Table 34 and shown on Figure 35 in Appendix A.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018)

<sup>&</sup>lt;sup>b</sup>EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

 $<sup>^{</sup>c}$ The EPA Health Advisory value for drinking water of 0.07  $\mu$ g/L applies to the combined detected concentrations of PFOS and PFOA

Table 34 Wastewater Treatment Plant (AFFF Area 10) Sediment Analytical Results

|                                  | Sample ID                               | ELSWH10-004-SD-001 |
|----------------------------------|-----------------------------------------|--------------------|
|                                  | Date Sampled                            | 05/16/18           |
|                                  | Sample Depth (ft bgs)                   | 0 - 0.5            |
|                                  | Screening Level                         | Result             |
| Analyte                          | (μg/kg)                                 | (µg/kg)            |
| Perfluorobutane Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 1.9 J              |
| Perfluorooctanoic Acid (PFOA)    | 126°                                    | 8.8                |
| Perfluorooctane Sulfonate (PFOS) | 126°                                    | 710                |

Bold values indicate analyte detected at concentration indicated. Shaded results indicate value exceeds screening criteria.

### Surface Water

One surface water sample was also collected downstream from the WWTP. PFBS was detected at a concentration below the screening level. PFOS and PFOA were detected at individual and combined concentrations above the screening level. Surface water analytical results are summarized in Table 35 and shown on Figure 36 in Appendix A.

Table 35 Wastewater Treatment Plant (AFFF Area 10) Surface Water Analytical Results

|                                  | Sample ID              | ELSWH10-004-SW-001 |
|----------------------------------|------------------------|--------------------|
|                                  | Date Sampled           | 05/16/18           |
|                                  | Screening Level (μg/L) | Result<br>(µg/L)   |
| Perfluorobutane Sulfonate (PFBS) | $40^{\mathrm{a}}$      | 0.12               |
| Perfluorooctanoic Acid (PFOA)    | $0.07^{\rm b}$         | 0.22               |
| Perfluorooctane Sulfonate (PFOS) | $0.07^{\rm b}$         | 0.96               |
| Combined PFOA+PFOS               | $0.07^{\rm b}$         | 1.18               |

**Bold** values indicate analyte detected at concentration indicated.

Shaded results indicate value exceeds screening criteria.

(https://semspub.epa.gov/work/HQ/197416.pdf).

<sup>b</sup>EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

 $^{\circ}$ The EPA Health Advisory value for drinking water of 0.07  $\mu$ g/L applies to the combined detected concentrations of PFOS and PFOA.

 $\mu$ g/L = micrograms per liter

AFFF = aqueous film forming foam

ID = identification

SW = surface water

ELSWH = ERPIMS designation for Ellsworth Air Force Base

ID = identification

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

J = reported concentration is an estimated value

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018)

#### 3.14.5 Conclusions

Past releases of AFFF-impacted effluent from the WWTP have resulted in releases of PFAS to the environment. Media impacted by PFAS above screening levels at AFFF Area 10 include surface soil (PFOS), sediment (PFOS), and surface water (PFOS and PFOA).

### 3.15 SPRAY NOZZLE TEST AREA – AFFF AREA 11

### 3.15.1 Sample Locations

To assess possible PFAS impacts from releases of AFFF at the spray nozzle test area, five surface soil samples, six subsurface soil samples (five primary and one duplicate), and three groundwater samples were collected. Surface and subsurface soil samples were collected from soil borings completed for installation of monitoring wells MW18PFC1101, MW18PFC1102, and MW18PFC1103 and from soil borings SB18PFC1104 and SB18PFC1105. Groundwater samples were also collected from each monitoring well. In addition, paired sediment and surface water samples were collected at location SW18PFC1106 at a storm drain outfall downgradient from the spray test area and southwest of Pumphouse #2. Sample locations for AFFF Area 11 are shown on Figure 15 in Appendix A.

# 3.15.2 Soil Descriptions

Five soil borings completed at the spray nozzle test area were terminated at depths ranging from 15.0 to 25.0 feet bgs. Soil types encountered were highly variable and included lean clay (CL), fat clay (CH), silt, (ML), silty sand (SM), poorly graded sand (SP), well graded sand (SW), clayey sand (SC), clayey gravel (GC), and well graded gravel (GW). Detailed boring logs are included in Appendix C.

#### 3.15.3 Groundwater Flow

Groundwater levels were gauged at three new monitoring wells at the spray nozzle test area on June 1, 2018. Groundwater was detected at depths ranging from 9.32 feet to 13.76 feet btoc and at elevations ranging from 3181.15 feet above NAVD 88 (at MW18PFC1103) to 3187.80 feet above NAVD 88 (at MW18PFC1101). Groundwater contours developed from these water level measurements (and from wells in adjacent AFFF Areas 4 and 7) indicate shallow groundwater flows southeast as shown on Figure 15 in Appendix A. Groundwater level measurements and elevations are summarized in Table F-1 in Appendix F.

### 3.15.4 Analytical Results

# Surface Soil

Five surface soil samples were collected at the spray nozzle test area. PFBS was not detected in any of the samples. PFOS was detected in all five samples and PFOA was detected in four of five samples, all at concentrations below the screening level. Surface soil analytical results are summarized in Table 36 and shown on Figure 37 in Appendix A.

Table 36 Spray Nozzle Test Area (AFFF Area 11) Surface Soil Analytical Results

|                                     | Sample ID                               | ELSWH11-001-<br>SS-001 | ELSWH11-002-<br>SS-001 | ELSWH11-003-<br>SS-001 |
|-------------------------------------|-----------------------------------------|------------------------|------------------------|------------------------|
|                                     | Date Sampled                            | 05/09/18               | 05/09/18               | 05/04/18               |
|                                     | Sample Depth<br>(ft bgs)                | 0 - 0.5                | 0 - 0.5                | 0 - 0.5                |
| Analyte                             | Screening Level (µg/kg)                 | Result<br>(μg/kg)      | Result<br>(μg/kg)      | Result<br>(μg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.43 U                 | 0.42 U                 | 0.50 U                 |
| Perfluorooctanoic Acid (PFOA)       | 126°                                    | 1.1                    | 0.34 J                 | 0.80 U                 |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 5.9                    | 6.7                    | 0.46 J                 |

|                                     | Sample ID                               | ELSWH11-004-<br>SS-001 | ELSWH11-005-<br>SS-001 |
|-------------------------------------|-----------------------------------------|------------------------|------------------------|
|                                     | Date Sampled                            | 05/09/18               | 05/04/18               |
|                                     | Sample Depth<br>(ft bgs)                | 0 - 0.5                | 0 - 0.5                |
| Analyte                             | Screening Level (µg/kg)                 | Result<br>(μg/kg)      | Result<br>(μg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 0.48 U                 | 0.48 U                 |
| Perfluorooctanoic Acid (PFOA)       | 126°                                    | 0.59 J                 | 0.59 J                 |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 15                     | 9.6                    |

bgs = below ground surface

ft = foot or feet

SS = surface soil

ID = identification

ELSWH = ERPIMS designation for Ellsworth Air Force Base

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

### Subsurface Soil

Six subsurface soil samples (five primary and one duplicate) were also collected at the spray nozzle test area. PFBS was not detected in any of the samples. PFOS was detected in three of five primary samples and PFOA was detected in one of five primary samples, all at concentrations below the screening level. Subsurface soil analytical results are summarized in Table 37 and shown on Figure 37 in Appendix A.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdf https://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>c</sup> Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).
μg/kg = micrograms per kilogram

AFFF = aqueous film forming foam

Table 37 Spray Nozzle Test Area (AFFF Area 11) Subsurface Soil Analytical Results

|                                     | Sample ID                   | ELSWH11-001-<br>SO-012 | ELSWH11-002-<br>SO-010 | ELSWH11H-002-<br>SO-910 (dup) |
|-------------------------------------|-----------------------------|------------------------|------------------------|-------------------------------|
|                                     | Date Sampled                | 05/09/18               | 05/09/18               | 05/09/18                      |
|                                     | Sample Depth<br>(ft bgs)    | 12 - 13                | 10 - 11                | 10 - 11                       |
| Analyte                             | Screening Level (μg/kg)     | Result<br>(μg/kg)      | Result<br>(µg/kg)      | Result<br>(µg/kg)             |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000°<br>13 <sup>b</sup> | 0.41 U                 | 0.50 U                 | 0.50 U                        |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                        | 0.65 U                 | 0.79 U                 | 0.80 U                        |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                        | 0.51 J                 | 0.79 U                 | 0.80 U                        |

|                                     | Sample ID                | ELSWH11-003-<br>SO-015 | ELSWH11-004-<br>SO-012 | ELSWH11-005-<br>SO-013 |
|-------------------------------------|--------------------------|------------------------|------------------------|------------------------|
|                                     | Date Sampled             | 05/04/18               | 05/09/18               | 05/09/18               |
|                                     | Sample Depth<br>(ft bgs) | 15 - 16                | 12 - 13                | 13 - 14                |
| Analyte                             | Screening Level (μg/kg)  | Result<br>(µg/kg)      | Result<br>(μg/kg)      | Result<br>(µg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000°<br>13°          | 0.46 U                 | 0.55 U                 | 0.48 U                 |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                     | 0.42 J                 | 0.88 U                 | 0.77 U                 |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                     | 1.0                    | 0.88 U                 | 0.31 J                 |

(https://semspub.epa.gov/work/HQ/197416.pdf https://semspub.epa.gov/work/HQ/197416.pdf).

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

 $\mu g/kg = micrograms per kilogram$ 

AFFF = aqueous film forming foam

bgs = below ground surface

ft = foot or feet

SO = subsurface soil

dup = duplicate

ELSWH = ERPIMS designation for Ellsworth Air Force Base

ID = identification

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

# Soil Physiochemical Analyses

To provide basic soil parameter information, composite surface and subsurface soil samples were collected from AFFF Area 11 soil borings for pH, TOC, percent solids, and grain size analysis. Surface soil sample ELSWH11-007-SS-001 was composed of equal aliquots of soil collected from 0 to 6 inches bgs at the five borings completed at Area 11. Subsurface soil sample ELSWH11-007-SO-015 was composed of equal aliquots of soil collected from the same borings at depths ranging from 10 to 16 feet bgs. Table E-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix E.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>&</sup>lt;sup>c</sup> Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).

### Groundwater

Groundwater samples were collected from three new monitoring wells at the spray nozzle test area. PFBS was detected in all three of the samples at concentrations below the screening level. PFOS and PFOA were also detected in all three groundwater samples at individual and combined concentrations above the screening level. Groundwater analytical results are summarized in Table 38 and shown on Figure 38 in Appendix A.

Table 38 Spray Nozzle Test Area (AFFF Area 11) Groundwater Analytical Results

|                                     | Well Number                   | MW18PFC1101      | MW18PFC1102      | MW18PFC1103      |
|-------------------------------------|-------------------------------|------------------|------------------|------------------|
|                                     |                               | ELSWH11-001-     | ELSWH11-002-     | ELSWH11-003-     |
|                                     | Sample ID                     | GW-015           | GW-015           | GW-020           |
|                                     | Date Sampled                  | 05/20/18         | 05/20/18         | 05/20/18         |
|                                     | Screened Interval<br>(ft bgs) | 9.2 - 19.2       | 9.1 - 19.1       | 13.5 - 23.5      |
| Analyte                             | Screening Level<br>(μg/L)     | Result<br>(μg/L) | Result<br>(μg/L) | Result<br>(μg/L) |
| Perfluorobutane<br>Sulfonate (PFBS) | 40ª                           | 0.061            | 0.044            | 0.077            |
| Perfluorooctanoic<br>Acid (PFOA)    | 0.07 <sup>b</sup>             | 0.25             | 0.16             | 0.13             |
| Perfluorooctane<br>Sulfonate (PFOS) | 0.07 <sup>b</sup>             | 0.25             | 0.25             | 0.34             |
| Combined<br>PFOA+PFOS               | 0.07°                         | 0.50             | 0.41             | 0.47             |

**Bold** values indicate analyte detected at concentration indicated.

Shaded results indicate value exceeds screening criteria.

 $\mu g/L = micrograms per liter$ 

bgs = below ground surface

ft = foot or feet

ELSWH = ERPIMS designation for Ellsworth Air Force Base

AFFF = aqueous film forming foam

ID = identification

GW = groundwater

#### Sediment

One sediment sample was collected at a storm drain downgradient from the spray test area. PFBS was not detected in the sample and PFOS and PFOA were detected at concentrations below the screening level. Sediment analytical results are summarized in Table 39 and shown on Figure 37 in Appendix A.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HO/197416.pdf).

<sup>&</sup>lt;sup>b</sup>EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

 $<sup>^{\</sup>circ}$ The EPA Health Advisory value for drinking water of 0.07  $\mu$ g/L applies to the combined detected concentrations of PFOS and PFOA.

Table 39 Spray Nozzle Test Area (AFFF Area 11) Sediment Analytical Results

|                                  | Sample ID                  | ELSWH11-006-SD-001 |
|----------------------------------|----------------------------|--------------------|
|                                  | Date Sampled               | 05/16/18           |
|                                  | Sample Depth (ft bgs)      | 0 - 0.5            |
| Analyte                          | Screening Level<br>(μg/kg) | Result<br>(μg/kg)  |
| Perfluorobutane Sulfonate (PFBS) | 130,000 <sup>a</sup>       | 1.3 U              |
| Perfluorooctanoic Acid (PFOA)    | 126°                       | 1.9 J              |
| Perfluorooctane Sulfonate (PFOS) | 126°                       | 81                 |

 $\mu g/kg = micrograms per kilogram$ ft = foot or feetID = identification SD = sediment

ELSWH = ERPIMS designation for Ellsworth Air Force Base J = reported concentration is an estimated value

U = analyte was not detected above the reported value

### Surface Water

One surface sample was also collected at the storm drain downgradient from the spray test area. PFBS, PFOS, and PFOA were all detected in the sample. PFBS and PFOA concentrations were below the screening level, but the PFOS concentration and the combined PFOS and PFOA concentration were above the screening level. Surface water analytical results are summarized in Table 40 and shown on Figure 38 in Appendix A.

Table 40 Spray Nozzle Test Area (AFFF Area 11) Surface Water Analytical Results

|                                  | Sample ID                 | ELSWH11-006-SW-001 |
|----------------------------------|---------------------------|--------------------|
|                                  | Date Sampled              | 05/16/18           |
| Analyte                          | Screening Level<br>(μg/L) | Result<br>(μg/L)   |
| Perfluorobutane Sulfonate (PFBS) | $40^{a}$                  | 0.011 J            |
| Perfluorooctanoic Acid (PFOA)    | $0.07^{\rm b}$            | 0.057              |
| Perfluorooctane Sulfonate (PFOS) | $0.07^{\rm b}$            | 0.43               |
| Combined PFOA+PFOS               | 0.07°                     | 0.487              |

**Bold** values indicate analyte detected at concentration indicated.

Shaded results indicate value exceeds screening criteria.

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>b</sup>EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

The EPA Health Advisory value for drinking water of 0.07 µg/L applies to the combined detected concentrations of PFOS and PFOA.

AFFF = aqueous film forming foam  $\mu g/L = micrograms per liter$ bgs = below ground surface ID = identification ft = foot or feetSW = surface waterELSWH = ERPIMS designation for Ellsworth Air Force Base

J = reported concentration is an estimated value

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>c</sup> Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search). AFFF = aqueous film forming foam bgs = below ground surface

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018)

#### 3.15.5 Conclusions

Past releases of AFFF at the spray nozzle test area have resulted in releases of PFAS to the environment. Media impacted by PFAS above screening levels at AFFF Area 11 include groundwater (PFOS and PFOA) and surface water (PFOS and PFOA).

#### 3.16 **BUILDING 88240 – AFFF AREA 12**

### 3.16.1 Sample Locations

To further assess PFAS impacts from apparent AFFF releases at Building 88240, four surface soil samples (three primary and one duplicate), three subsurface soil samples, and three groundwater samples were collected. Surface and subsurface soil samples were collected from soil borings completed for installation of monitoring wells MW18PFC1201, MW18PFC1202, and MW18PFC1203 and groundwater samples were collected from each monitoring well. In addition, paired sediment and surface water samples were collected at location SW18PFC1204 at a culvert south of, and downstream from, the pond. Sample locations for AFFF Area 12 are shown on Figure 16 in Appendix A.

# 3.16.2 Soil Descriptions

Three soil borings completed at Building 88240 were terminated at depths ranging from 35.0 to 55.0 feet bgs. Lean clay (CL) was encountered in each of the three borings. Detailed boring logs are included in Appendix C.

### 3.16.3 Groundwater Flow

Groundwater levels were gauged at three new monitoring wells at Building 88240 area on June 1, 2018. Groundwater was detected at depths ranging from 12.49 feet to 30.50 feet btoc and at elevations ranging from 3291.66 feet above NAVD 88 (at MW18PFC1203) to 3318.02 feet above NAVD 88 (at MW18PFC1201). Groundwater contours developed from these water level measurements indicate shallow groundwater flows south as shown on Figure 16 in Appendix A. Groundwater level measurements and elevations are summarized in Table F-1 in Appendix F.

### 3.16.4 Analytical Results

### Surface Soil

Four surface soil samples (three primary and one duplicate) were collected south of Building 88240. PFBS was detected in two of three primary samples at concentrations below the screening level. PFOA was detected in all four samples at concentrations below the screening level. PFOS was detected in all four samples at concentrations above the screening level. Surface soil analytical results are summarized in Table 41 and shown on Figure 39 in Appendix A.

Table 41 Building 88240 (AFFF Area 12) Surface Soil Analytical Results

|                                     | Camula ID                               | ELSWH12-001- | ELSWH12-001- | ELSWH12-002- | ELSWH12-003- |
|-------------------------------------|-----------------------------------------|--------------|--------------|--------------|--------------|
|                                     | Sample ID                               | SS-001       | SS-901 (dup) | SS-001       | SS-001       |
|                                     | Date Sampled                            | 04/19/18     | 04/19/18     | 04/19/18     | 04/20/18     |
|                                     | Sample Depth                            |              |              |              |              |
|                                     | (ft bgs)                                | 0 - 0.5      | 0 - 0.5      | 0 - 0.5      | 0 - 0.5      |
|                                     | Screening                               |              |              |              |              |
|                                     | Level                                   | Result       | Result       | Result       | Result       |
| Analyte                             | (μg/kg)                                 | (μg/kg)      | (µg/kg)      | (µg/kg)      | (μg/kg)      |
| Perfluorobutane<br>Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 1.1 J        | 5.5 U        | 0.65 U       | 0.55 J       |
| Perfluorooctanoic<br>Acid (PFOA)    | 126°                                    | 5.2          | 9.7 J        | 1.1 J        | 2.4          |
| Perfluorooctane<br>Sulfonate (PFOS) | 126°                                    | 260 J        | 390 J        | 250          | 160          |

Shaded results indicate value exceeds screening criteria.

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

ft = foot or feet SS = subsurface soil

dup = duplicate

ELSWH = ERPIMS designation for Ellsworth Air Force Base

ID = identification

J = reported concentration is an estimated value

U = analyte was not detected above the reported value

# Subsurface Soil

Three subsurface soil samples were also collected south of Building 88240. PFBS, PFOS, and PFOA were detected in one of three samples, all at concentrations below their respective screening levels. Subsurface soil analytical results are summarized in Table 42 and shown on Figure 39 in Appendix A.

Table 42 Building 88240 (AFFF Area 12) Subsurface Soil Analytical Results

|                   | Sample ID            | ELSWH12-001- | ELSWH12-002- | ELSWH12-003- |
|-------------------|----------------------|--------------|--------------|--------------|
|                   |                      | SO-023       | SO-036       | SO-006       |
|                   | Date Sampled         | 04/19/18     | 04/19/18     | 04/20/18     |
|                   | Sample Depth         |              |              |              |
|                   | (ft bgs)             | 23 - 24      | 36 - 37      | 6 - 7        |
|                   | Screening Level      | Result       | Result       | Result       |
| Analyte           | (µg/kg)              | (µg/kg)      | (μg/kg)      | (µg/kg)      |
| Perfluorobutane   | 130,000 <sup>a</sup> | 0.50 U       | 0.60 U       |              |
| Sulfonate (PFBS)  | 13 <sup>b</sup>      | 0.30 0       | 0.60 0       | 1.1 J        |
| Perfluorooctanoic |                      | 0.80 U       | 0.96 U       | 1.7          |
| Acid (PFOA)       | 126°                 | 0.80 0       | 0.90 0       | 1.7          |
| Perfluorooctane   |                      | 0.80 U       | 0.96 U       | 00           |
| Sulfonate (PFOS)  | 126°                 | 0.80 U       | 0.90 0       | 88           |

**Bold** values indicate analyte detected at concentration indicated.

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

SO = subsurface soil U = analyte was not detected above the reported value

ELSWH = ERPIMS designation for Ellsworth Air Force Base

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

c Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).

μg/kg = micrograms per kilogram

AFFF = aqueous film forming foam

bgs = below ground surface

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdf https://semspub.epa.gov/work/HQ/197416.pdf).

ft = foot or feet ID = identification J = reported concentration is an estimated value

### Soil Physiochemical Analyses

To provide basic soil parameter information, composite surface and subsurface soil samples were collected from AFFF Area 12 soil borings for pH, TOC, percent solids, and grain size analysis. Surface soil sample ELSWH12-005-SS-001 was composed of equal aliquots of soil collected from 0 to 6 inches bgs at the three borings completed at Area 12. Subsurface soil sample ELSWH12-005-SO-036 was composed of equal aliquots of soil collected from the same borings at depths ranging from 6 to 37 feet bgs. Table E-1 summarizing the physiochemical data and supporting laboratory data sheets are included in Appendix E.

### Groundwater

Groundwater samples were collected from three new monitoring wells south of Building 88240. PFBS was detected in two of three samples at concentrations below the screening level. PFOS was detected in all three samples and exceeded the screening level in two samples. PFOA was detected in two of three samples and exceeded the screening level in one sample. Combined PFOS and PFOA concentrations also exceeded the screening level in two of three samples. Groundwater analytical results are summarized in Table 43 and shown on Figure 40 in Appendix A.

Table 43 Building 88240 (AFFF Area 12) Groundwater Analytical Results

|                                     | Well Number                   | MW18PFC1201            | MW18PFC1202            | MW18PFC1203            |
|-------------------------------------|-------------------------------|------------------------|------------------------|------------------------|
|                                     | Sample ID                     | ELSWH12-001-<br>GW-032 | ELSWH12-002-<br>GW-045 | ELSWH12-003-<br>GW-016 |
|                                     | Date Sampled                  | 04/25/18               | 04/22/18               | 04/22/18               |
|                                     | Screened Interval<br>(ft bgs) | 24.6 - 34.6            | 37.9 - 47.9            | 5.1 - 15.1             |
| Analyte                             | Screening Level (µg/L)        | Result<br>(μg/L)       | Result<br>(μg/L)       | Result<br>(µg/L)       |
| Perfluorobutane<br>Sulfonate (PFBS) | 40ª                           | 0.31                   | 0.015 U                | 2.8                    |
| Perfluorooctanoic<br>Acid (PFOA)    | 0.07 <sup>b</sup>             | 0.035                  | 0.010 U                | 0.11                   |
| Perfluorooctane<br>Sulfonate (PFOS) | 0.07 <sup>b</sup>             | 0.096                  | 0.056                  | 1.1                    |
| Combined PFOA+PFOS                  | 0.07°                         | 0.131                  | 0.056                  | 1.21                   |

**Bold** values indicate analyte detected at concentration indicated.

Shaded results indicate value exceeds screening criteria.

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

 $\mu g/L = micrograms \ per \ liter$ 

bgs = below ground surface

ft = foot or feet

ELSWH = ERPIMS designation for Ellsworth Air Force Base

U = analyte was not detected above the reported value

AFFF = aqueous film forming foam

ID = identification

GW = groundwater

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018)

<sup>&</sup>lt;sup>b</sup>EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

 $<sup>^{\</sup>circ}$ The EPA Health Advisory value for drinking water of 0.07  $\mu$ g/L applies to the combined detected concentrations of PFOS and PFOA.

# <u>Sediment</u>

One sediment sample was collected at a culvert downstream from Building 88240. PFBS, PFOS, and PFOA were detected in the sample, but at concentrations below the screening level. Sediment analytical results are summarized in Table 44 and shown on Figure 39 in Appendix A.

Table 44 Building 88240 (AFFF Area 12) Sediment Analytical Results

|                                  | Sample ID                               | ELSWH12-004-SD-001 |
|----------------------------------|-----------------------------------------|--------------------|
|                                  | Date Sampled                            | 04/22/18           |
|                                  | Sample Depth (ft bgs)                   | 0 - 0.5            |
| Analyte                          | Screening Level<br>(μg/kg)              | Result<br>(μg/kg)  |
| Perfluorobutane Sulfonate (PFBS) | 130,000 <sup>a</sup><br>13 <sup>b</sup> | 1.9                |
| Perfluorooctanoic Acid (PFOA)    | 126°                                    | 1.5                |
| Perfluorooctane Sulfonate (PFOS) | 126°                                    | 59                 |

**Bold** values indicate analyte detected at concentration indicated.

(https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

has = below ground surface

ft = foot or feet

bgs = below ground surface SD = sediment

ID = identification

ELSWH = ERPIMS designation for Ellsworth Air Force Base

### Surface Water

One surface water sample was also collected at the culvert downstream from Building 88240. PFBS was detected but at a concentration below the screening level. PFOS and PFOA were detected at both individual and combined concentrations above the screening level. Surface water analytical results are summarized in Table 45 and shown on Figure 40 in Appendix A.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Residential Soil (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup> EPA Regional Screening Level for Protection of Groundwater (November 2018)

c Screening level calculated using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search).

μg/kg = micrograms per kilogram

AFFF = aqueous film forming foam

Table 45 Building 88240 (AFFF Area 12) Surface Water Analytical Results

|                                  | Sample ID                 | ELSWH12-004-SW-001 |
|----------------------------------|---------------------------|--------------------|
|                                  | Date Sampled              | 04/22/18           |
| Analyte                          | Screening Level<br>(μg/L) | Result<br>(µg/L)   |
| Perfluorobutane Sulfonate (PFBS) | 40ª                       | 2.9                |
| Perfluorooctanoic Acid (PFOA)    | 0.07 <sup>b</sup>         | 0.82               |
| Perfluorooctane Sulfonate (PFOS) | 0.07 <sup>b</sup>         | 3.8                |
| Combined PFOA+PFOS               | $0.07^{\rm b}$            | 4.62               |

**Bold** values indicate analyte detected at concentration indicated.

Shaded results indicate value exceeds screening criteria.

 $\mu g/L = micrograms per liter$ 

AFFF = aqueous film forming foam

bgs = below ground surface

ID = identification

ft = foot or feet

SW = surface water

ELSWH = ERPIMS designation for Ellsworth Air Force Base

#### 3.16.5 Conclusions

Past releases of AFFF at Building 88240 have resulted in releases PFAS to the environment. Media impacted by PFAS above screening levels at AFFF Area 12 include surface soil (PFOS), groundwater (PFOS and PFOA), and surface water (PFOS and PFOA).

#### 3.17 INVESTIGATION-DERIVED WASTE

The USAF has awarded a separate contract to others for the removal and disposal of soil and water investigation-derived waste (IDW) generated during this SI. All waste soil and water were placed in Department of Transportation (DOT)-approved steel drums (53 drums of soil and 19 drums of water) and staged on pallets in Building 6905, pending disposal. Note that the readiness review forms (Appendix C) indicate some IDW would not be containerized; however, all IDW was drummed for offsite disposal based on regulator input. A representative sample was collected from each media, submitted to CT Laboratories, and analyzed for total petroleum hydrocarbons, toxicity (using the Toxicity Characteristic Leaching Procedure [TCLP] for the full TCLP list of analytes), flashpoint, pH, cyanide, and sulfide. A representative sample of each media was also submitted to Maxxam and analyzed for PFAS. These analytical results have been submitted to the USAF electronically and are also included in Appendix G. All IDW was removed from the Base by Heritage Transport LLC (EPA ID IND058484114) in two shipments on July 23, 2018, and July 25, 2018, and transported to Heritage Environmental Services of Kansas City, Missouri (EPA ID MOD981505555), for disposal. Note that these waste shipments and manifests included additional IDW drums generated during an ongoing RI at the former FTA (by others). A copy of the waste manifests are in Appendix G.

<sup>&</sup>lt;sup>a</sup> EPA Regional Screening Level for Tap Water (November 2018)

<sup>(</sup>https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf).

<sup>&</sup>lt;sup>b</sup>EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) and EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

 $<sup>^{\</sup>circ}$ The EPA Health Advisory value for drinking water of 0.07  $\mu$ g/L applies to the combined detected concentrations of PFOS and PFOA.

#### 4.0 GROUNDWATER PATHWAY

The objectives of groundwater sampling during the SI were to

- determine if a confirmed release of PFAS has occurred at sites selected for SI;
- determine if PFAS are present in groundwater at the site in concentrations exceeding the EPA lifetime Has, tap water RSLs, or a state standard; and
- identify potential receptor pathways with immediate impacts to human health.

#### 4.1 HYDROGEOLOGY

One shallow unconfined aquifer and three confined aquifers (the Inyan Kara, the Minnelusa, and the Madison) have been identified at Ellsworth AFB (EA, May 1995). These aquifers (from shallowest to deepest) are discussed below.

# Shallow Unconfined Aquifer

The upper shallow aquifer consists of both alluvial and colluvial deposits and weathered/fractured Pierre Shale. The shallow aguifer is absent in some areas and extends in depth from only a few feet below the surface to 60 feet or less in depth in other areas. The thickness and yield of the shallow aguifer depend upon the extent of alluvial material and the thickness of water-yielding fractures in the Pierre Shale. In several areas toward the northern end of Ellsworth AFB, no groundwater-bearing zones were found, while in the southern area of the Base, alluvial sand and gravel beds and shallow fracture zones typically produce less than 2 gallons per minute to monitoring wells. The shallow, unconfined aquifer at Ellsworth AFB is present within the fractured shale horizon near the top of the Pierre Shale and the contiguous overlying deposits of unconsolidated material. The shallow unconfined aquifer is considered a federal Class IIB aquifer (potential drinking water source). In addition, according to ARSD 74:54:01:03, any groundwater in South Dakota that has an ambient concentration of 10,000 milligrams per liter (mg/L) or less of total dissolved solids is classified as having the beneficial use of drinking water supplies suitable for human consumption. Groundwater within the shallow aquifer generally flows southeast in the northern portion of the Base and to the south-southeast within the southern portion of the Base. None of the confined aquifers discussed below are in hydraulic communication with the shallow unconfined aquifer. Further, shallow groundwater from the Base likely discharges to Box Elder Creek, south of the Base precluding migration of impacted groundwater further south.

#### Inyan Kara Aquifer

The Inyan Kara Aquifer is a confined aquifer bounded by confining beds of the Pierre Shale and other relatively impermeable Upper Cretaceous strata above and Permian-Jurassic strata below. The aquifer lies about 1,900 feet beneath Ellsworth AFB and consists of 350 to 500 feet of permeable sandstone belonging to the Fall River and Lakota Formations. Groundwater flow direction is assumed based on published data; west of Ellsworth AFB, it is assumed to be toward the east-northeast based on the direction of dip.

#### Minnelusa Aquifer

The Minnelusa Aquifer is a confined aquifer that lies beneath approximately 1,000 feet of Permian-Jurassic confining beds and above Pennsylvanian confining beds. The aquifer is a limestone unit approximately 600 feet thick and lies 3,460 feet beneath Ellsworth AFB. Groundwater flow direction is assumed to be toward the east-northeast based on the direction of dip.

# Madison Aquifer

The Madison Aquifer (also known as Pahasapa Aquifer) is the deepest aquifer used as a drinking water source in the region. This limestone aquifer averages 350 feet in thickness, lies 4,150 feet bgs, and is

below a 240- to 450-foot-thick Lower Pennsylvanian confining unit. Groundwater flow direction is assumed to be toward the east-northeast in the direction of dip.

#### 4.1.1 Drinking Water Sources

#### Base Drinking Water

Five public water supply wells installed in deep bedrock aquifers previously provided drinking water for the Base, but these wells have been abandoned/decommissioned. Base drinking water is now supplied by the Rapid City Municipal Distribution System. Sources of water for this system come from two infiltration galleries installed in the Rapid Creek alluvium: Jackson Springs Gallery and Girl Scout Gallery. These galleries are on Rapid Creek, approximately 11 miles southwest of and upstream from the mid-point of the Base airfield. Water is also drawn from eight wells that tap the Minnelusa and Madison aquifers (Rapid City Water Division, 2017).

#### Off-Base Public and Community Drinking Water Sources from Groundwater

The City of Box Elder, approximately 1 mile south of the Base, uses groundwater as a drinking water source. Groundwater is extracted from six wells with total depths ranging from 2,000 feet to 4,574 feet and tap the Inyan Kara and Madison aquifers (see Map ID locations 89 through 94 on Figure 41 in Appendix A).

The city of New Underwood, approximately 12 miles east-southeast and downstream from the Base (on Box Elder Creek), also uses groundwater as a drinking water source. Groundwater is extracted from the Inyan Kara aquifer from two wells (Wells #1 and #2) with total depths of 2,762 feet and 2,960 feet, respectively.

Sunset Ranch, a private housing development approximately 7.5 miles east-southeast, also uses groundwater as a drinking water source. The Sunset Ranch well was drilled to a depth of 2,954 feet deep and plugged back to a depth of 2,631 feet. The well report indicates multiple sections of well screen were installed from 2,398 to a depth of 2,486 within the Dakota Sandstone slightly above the Inyan Kara aquifer (SD DENR, July 2018).

#### 4.1.2 Off-Base Drinking Water Wells within Four Miles of Ellsworth AFB

#### SD DENR Well Database Wells

Based on information in the SD DENR well database and as shown on Figure 41 in Appendix A, there are 72 wells within four miles of the Base including 59 domestic wells, seven municipal wells, five stock wells, and one irrigation well. Six of the municipal wells are deep wells owned by the City of Box Elder and one (Well 68 on Figure 41) is a shallow private community well (30 feet deep) which provides water for the Plainsview Mobile Manor Public Water System (map location 95 on Figure 41). Well 68 is 1.1 miles southwest of the current FTA and 1.8 miles south of Outfall #3. A second private community system (Whispering Willows) included in the SD DENR water supply system database was indicated immediately north of location 95; however, this system purchases water from the City of Box Elder (SD DENR, August 2018b).

Of the 72 wells within 4 miles of the base, 11 wells (including the six municipal wells for the City of Box Elder) are deep—ranging from 1,624 feet to 4,574 feet—and are less vulnerable to surface contaminants.

The remaining 61 wells (within four miles) are 100 feet deep or less and would be vulnerable to contaminants released to the ground surface. Most of the shallow wells are either upgradient or side gradient from the Base and are unlikely to be impacted by AFFF releases. Downgradient wells, however,

are at risk of PFAS impacts. The extent of PFAS impacts to groundwater south of the Base are unclear at this time. Stage 3 of an ongoing RI being conducted by others will further assess the southern extent of impacted groundwater and determine the extent to which Box Elder Creek may act as a hydraulic barrier.

#### Wells Not Listed in the SD DENR Database

A recent (2018) off-Base door-to-door survey and sampling effort conducted for the Air Force by others has determined that there are several water wells classified as household use or non-household use south of (and potentially downgradient from) the Base which were not listed in the SD DENR database. Preliminary results of this sampling effort indicated a number of these wells have been impacted by PFOS and PFOA at concentrations above the EPA HA of 0.07 µg/L.

#### 4.1.3 Groundwater Use Restrictions

Groundwater-use restrictions have been established in several areas surrounding the Base, as shown on Figure 41 (Krebs, August 2018). Most of the areas of restricted groundwater use were established due to trichloroethene (TCE)-impacted groundwater (Ellsworth, February 2012). One groundwater-use restriction area south of the Base was established due to PFAS-impacted groundwater. A PFAS groundwater plume originating from the former FTA (AOC PFC-1) is migrating off-Base to the south (CB&I, August 2017; Ayuda, November 2017). Note that there are numerous domestic wells that are not shown on Figure 41 because they are located within these areas of groundwater use restrictions. Groundwater use restrictions have not been established in areas where the door-to-door survey and sampling (discussed above) identified impacted drinking water wells.

#### 4.2 CURRENT FIRE TRAINING AREA – AFFF AREA 1

Both individual and combined PFOA and PFOS concentrations in shallow groundwater at the current FTA (AFFF Area 1) exceeded the screening level. Groundwater at the site flows east-southeast toward an unnamed tributary of Box Elder Creek. Groundwater at AOC PFC-1 (immediately south of the current FTA) flows south-southeast (Ayuda, August 2017). Based on south-southeast groundwater flow and the presence of downgradient off-Base wells that have been impacted above the EPA HA, the human exposure pathway for ingestion of impacted groundwater is potentially complete.

#### 4.3 70, 80, 90 ROWS AND OUTFALL #3 – AFFF AREA 2

Both individual and combined PFOA and PFOS concentrations in shallow groundwater exceeded the screening level at 70, 80, 90 Rows and at Outfall #3 (AFFF Area 2). Groundwater at the outfall flows southwest towards an unnamed tributary of Box Elder Creek. Based on the SD DENR database and the door-to-door survey, there are several shallow domestic wells south of and potentially downgradient from Outfall #3, as shown on Figure 41. The domestic wells represent a potentially complete human ingestion exposure pathway via consumption of impacted drinking water.

Groundwater at the 70, 80, 90 Rows flows southeast toward Box Elder Creek. Based on southeast groundwater flow and the presence of downgradient off-Base wells that have been impacted above the EPA HA, the human exposure pathway for ingestion of impacted groundwater is potentially complete.

#### 4.4 BUILDING 618 – AFFF AREA 3

Both individual and combined PFOA and PFOS concentrations in shallow groundwater exceeded the screening level at Building 618 (AFFF Area 3). Groundwater at Building 618 flows southeast toward Box

Elder Creek. Based on southeast groundwater flow and the presence of downgradient off-Base wells that have been impacted above the EPA HA, the human exposure pathway for ingestion of impacted groundwater is potentially complete.

#### 4.5 FORMER FIRE STATION (BUILDING 7506) – AFFF AREA 4

Both individual and combined PFOA and PFOS concentrations in shallow groundwater exceeded the screening level at the former fire station (AFFF Area 4). Groundwater flows south-southeast toward Box Elder Creek. Based on south-southeast groundwater flow and the presence of downgradient off-Base wells that have been impacted above the EPA HA, the human exposure pathway for ingestion of impacted groundwater is potentially complete.

# 4.6 B-52 CRASH (1972) – AFFF AREA 5

Both individual and combined PFOA and PFOS concentrations in shallow groundwater exceeded the screening level at the B-52 crash site (AFFF Area 5). Groundwater flows southeast toward Box Elder Creek. Based on southeast groundwater flow and the presence of downgradient off-Base wells that have been impacted above the EPA HA, the human exposure pathway for ingestion of impacted groundwater is potentially complete.

#### 4.7 B-1 CRASH (1988) – AFFF AREA 6

Both individual and combined PFOA and PFOS concentrations in shallow groundwater exceeded the screening level in one of three monitoring wells installed at the B-1 crash site (AFFF Area 6). Although the extent appears to be limited, PFAS impacts to groundwater have not been fully delineated. Groundwater at the site flows south toward Box Elder Creek. Based on groundwater flow to the south and the presence of downgradient off-Base wells that have been impacted above the EPA HA, the human exposure pathway for ingestion of impacted groundwater is potentially complete.

#### 4.8 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7

Combined PFOA and PFOS concentrations in shallow groundwater at the Delta Taxiway West vehicle crash site (AFFF Area 7) did not exceed the screening level. Since PFAS concentrations in groundwater are below the screening level at the crash site, the human exposure pathway through the ingestion of impacted drinking water is incomplete.

# 4.9 MARTEN CRASH (2006) – AFFF AREA 8

Combined PFOA and PFOS concentrations in shallow groundwater at the Marten truck crash site (AFFF Area 8) did not exceed the screening level. Since PFAS concentrations in groundwater are below the screening level at the crash site, the human exposure pathway through the ingestion of impacted drinking water is incomplete.

#### 4.10 CRASH 4 (2001) - AFFF AREA 9

Individual and/or combined PFOA and PFOS concentrations in shallow groundwater exceeded the screening level at the Crash 4 spill site (AFFF Area 9). Groundwater at the site flows southeast toward AFFF Area 2 and ultimately toward Box Elder Creek. Based on southeast groundwater flow and the

presence of downgradient off-Base wells that have been impacted above the EPA HA, the human exposure pathway for ingestion of impacted groundwater is potentially complete.

#### 4.11 WASTEWATER TREATMENT PLANT – AFFF AREA 10

Combined PFOA and PFOS concentrations in shallow groundwater at the WWTP (AFFF Area 10) did not exceed the screening level. Since PFAS concentrations in groundwater are below the screening level at the WWTP, the human exposure pathway through the ingestion of impacted groundwater migrating from the WWTP is incomplete. Note, however, that the surface water pathway (as discussed in Section 5.11) is potentially complete based on possible surface water to groundwater impacts downstream from the WWTP.

#### 4.12 SPRAY NOZZLE TEST AREA – AFFF AREA 11

Both individual and combined PFOA and PFOS concentrations in shallow groundwater exceeded the screening level at the spray nozzle test area (AFFF Area 11). Groundwater flows southeast toward Box Elder Creek. Based on southeast groundwater flow and the presence of downgradient off-Base wells that have been impacted above the EPA HA, the human exposure pathway for ingestion of impacted groundwater is potentially complete.

#### 4.13 **BUILDING 88240 – AFFF AREA 12**

Both individual and combined PFOA and PFOS concentrations in shallow groundwater exceeded the screening level at Building 88240 (AFFF Area 12). Groundwater at Area 12 flows south toward AFFF Areas 2 and 9. From Areas 2 and 9, groundwater flows southeast toward Box Elder Creek. Based on south to southeast groundwater flow and the presence of downgradient off-Base use wells that have been impacted above the EPA HA, the human exposure pathway for ingestion of impacted groundwater is potentially complete.

#### 5.0 SURFACE WATER PATHWAY

The objectives of surface water sampling during the SI were to

- determine if a confirmed release of PFAS has occurred at sites selected for SI;
- determine if PFAS are present in surface water at the site in concentrations exceeding the EPA lifetime HAs, tap water RSLs, or a state standard; and
- identify potential receptor pathways with immediate impacts to human health.

#### 5.1 BASE HYDROLOGIC SETTING

Ellsworth AFB is located within the Missouri River Basin. The north border of Ellsworth AFB is a steep northward-facing escarpment drained by seven unnamed ephemeral drainages which flow into Elk Creek approximately 5 miles to the northeast. Surface drainage on the plateau itself (and most of the Base) follows a topographic slope primarily flowing south-southeast via retention ponds, ditches, storm sewers, and ephemeral streams with eventual discharge into Box Elder Creek one mile to the south; although, some surface flow in the western and southwestern portions of Ellsworth AFB is southwest toward an unnamed drainage west of the installation that ultimately discharges to Box Elder Creek. Elk Creek is a perennial stream while Box Elder is considered ephemeral. Ephemeral streams contain water only when sufficient runoff is available to support flow, typically during or immediately following precipitation events (EA, May 1994). Floodplains occur along the main Base drainage, as well as along several of the creek drainages on the northern and southern portion of the Base. The northern limit of the Box Elder Creek floodplain is approximately 50 feet south of the southern Base boundary (Ellsworth AFB, 2017).

# **Drinking Water Sources from Surface Water**

Although groundwater provides the bulk of drinking water in the region, the Rapid City Municipal Distribution System also uses surface water from Rapid Creek. This surface water originates from drainage areas west of Rapid City and upstream from the Base. This drainage area also includes Deerfield Reservoir on Castle Creek and Pactola Reservoir on Rapid Creek. The distribution system drinking water intakes are also upstream from the Base (Rapid City Water Division, 2017).

There are no drinking water intakes within 15 miles downstream of the Base. Sunset Ranch, a private housing development approximately 7.5 miles east-southeast of the Base, uses groundwater as a drinking water source. The city of New Underwood, approximately 12 miles east-southeast and downstream from Ellsworth (on Box Elder Creek), also obtains drinking water from groundwater (SD DENR, June 2018).

#### Potential Migration of Surface Water to Groundwater

Although there are no drinking water intakes within 15 miles downstream of the Base, surface water in Box Elder Creek and its tributaries may migrate to groundwater seasonally or at least during periods of low precipitation and lower groundwater levels. Known as "losing stream" conditions, the possible migration of surface water to groundwater could result in PFAS impacts to shallow drinking water wells near Box Elder Creek and downstream from the Base.

#### 5.2 CURRENT FIRE TRAINING AREA – AFFF AREA 1

Surface water was not identified as media of concern at AFFF Area 1 and no surface water samples were collected. Surface water south of the current FTA is being investigated by others as part of an RI at the former fire training area.

#### 5.3 70, 80, 90 ROWS AND OUTFALL #3 – AFFF AREA 2

Surface water from the 70, 80, 90 Rows drains to the southwest to Pond #3 and flows off-Base at Outfall #3 and ultimately to Box Elder Creek (Figure 2, Appendix A). PFOS and PFOA were detected above screening levels in surface water in Pond #3 (in 2014 and 2018), in a low-lying area west of Pond #3 (in 2018), and at Outfall #3 (in 2014). As discussed in Section 5.1, although there are no drinking water intakes within 15 miles downstream of the Base, there is the potential of surface water impacts to groundwater. Shallow drinking water wells downstream from Outfall #3 represent a potentially complete human exposure pathway for ingestion of impacted drinking water.

#### 5.4 **BUILDING 618 – AFFF AREA 3**

There are no surface water bodies near Building 618. Surface water was not identified as media of concern and no surface water samples were collected.

#### 5.5 FORMER FIRE STATION (BUILDING 7506) – AFFF AREA 4

There are no surface water bodies near Building 7506. Surface water was not identified as media of concern and no surface water samples were collected.

#### 5.6 B-52 CRASH (1972) – AFFF AREA 5

There are no surface water bodies near the B-52 crash site. Surface water was not identified as media of concern and no surface water samples were collected.

#### 5.7 B-1 CRASH (1988) - AFFF AREA 6

There are no surface water bodies near the B-1 crash site. Surface water was not identified as media of concern and no surface water samples were collected.

#### 5.8 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7

There are no surface water bodies near the Delta Taxiway West crash site. Surface water was not identified as media of concern and no surface water samples were collected.

#### 5.9 MARTEN CRASH (2006) - AFFF AREA 8

There are no surface water bodies near the Marten crash site. Surface water was not identified as media of concern and no surface water samples were collected.

#### 5.10 CRASH 4 (2001) - AFFF AREA 9

There are no surface water bodies near the Crash 4 site. Surface water was not identified as media of concern and no surface water samples were collected.

#### 5.11 WASTEWATER TREATMENT PLANT – AFFF AREA 10

Until it ceased operation in July 2014, the WWTP received discharge from several locations on Base where AFFF releases have occurred and discharged effluent potentially impacted by PFAS at Outfall #5 (Figure 2, Appendix A). This effluent then flowed via an unnamed drainage feature to Golf Course Lake, off-Base to Outfall #6, and ultimately to Box Elder Creek. PFOS and PFOA were detected above screening levels in surface water samples collected from the drainage downstream from Outfall #5 (in 2014 and in 2018) and from Golf Course Lake (in 2014). As discussed in Section 5.1, although there are no drinking water intakes within 15 miles downstream of the Base, there is the potential of surface water impacts to groundwater. The possible presence of shallow drinking water wells downstream from Outfall #6 represents a potentially complete human exposure pathway for ingestion of impacted drinking water.

#### 5.12 SPRAY NOZZLE TEST AREA – AFFF AREA 11

Surface water from the spray nozzle test area drains to the southeast to an unnamed tributary of Box Elder Creek and flows off-Base at Outfall #1 (Figure 2, Appendix A). PFOS (and combined PFOS and PFOA) were detected above the screening level in a surface water sample collected at a storm drain outfall southwest of the test area and upstream from Outfall #1. As discussed in Section 5.1, although there are no drinking water intakes within 15 miles downstream of the Base, there is the potential of surface water impacts to groundwater. The presence of shallow drinking water wells downstream from Outfall #1 represents a potentially complete human exposure pathway for ingestion of impacted drinking water.

#### **5.13** BUILDING **88240** – AFFF AREA **12**

When the AFFF system was activated in Building 88240, the water/foam mixture was routed into a retention pond south of Building 88240. During heavy rainfall, surface water flows from the pond to a culvert south of the pond. From the culvert, surface water flows south toward the live ordnance loading area and Row 100. Any surface water that does not infiltrate the subsurface would likely flow to Outfall #3. PFOS and PFOA were detected above the screening level in a surface water sample collected from the retention pond (in 2014) and at the culvert south of the retention pond (in 2018). Surface water at Outfall #3 (Figure 2, Appendix A) ultimately flows to Box Elder Creek. As discussed in Section 5.1, although there are no drinking water intakes within 15 miles downstream of the Base, there is the potential of surface water impacts to groundwater. The presence of shallow drinking water wells downstream from Outfall #3 represents a potentially complete human exposure pathway for ingestion of impacted drinking water.

#### 6.0 SOIL AND SEDIMENT EXPOSURE AND AIR PATHWAYS

The objectives of soil and sediment sampling during the SI were to

- determine if a confirmed release of PFAS has occurred at sites selected for SI;
- determine if PFAS are present in soil and sediment at the site in concentrations exceeding residential soil screening levels, or a state standard; and
- identify potential receptor pathways with immediate impacts to human health.

The approved QAPP and site-specific QAPP addendum indicated PFOS and PFOA concentrations in soil would be compared to calculated residential RSLs. RSLs protective of groundwater for PFOS and PFOA are typically several orders of magnitude lower than residential RSLs. Soil pathways discussed below do not include possible exposure to surface soil from use of PFAS-impacted groundwater for irrigation.

#### 6.1 CURRENT FIRE TRAINING AREA – AFFF AREA 1

PFOS was detected in surface and subsurface soil at concentrations above the residential screening level at the current FTA. The FTA surface is covered with concrete pavement and the surrounding area is vegetated, inhibiting fugitive dust emissions. Human ingestion through exposure to the soil is also unlikely. Although a complete human ingestion pathway is unlikely, PFOS-impacted surface soil could represent an ongoing source of groundwater impacts. Sediment was not identified as media of concern at AFFF Area 1.

# 6.2 70, 80, 90 ROWS AND OUTFALL #3 – AFFF AREA 2

Where detected, PFAS concentrations in surface soil, subsurface soil, and sediment samples collected at the 70, 80, 90 Rows and Outfall #3 were below residential screening levels. PFOS was, however, detected in a sediment sample collected from Pond #3 in 2014 at a concentration above the residential screening level. Although human ingestion of PFAS through exposure to the sediment is unlikely, PFOS-impacted sediment at Pond #3 could represent an ongoing source of surface water and/or groundwater impacts.

#### 6.3 BUILDING 618 – AFFF AREA 3

Where detected, PFAS concentrations in subsurface soil at Building 618 were below residential screening levels (both in samples collected during this SI in 2018 and in samples collected in 2014). Lacking concentrations of PFAS above residential screening levels, the human ingestion pathway is incomplete at AFFF Area 3. Surface soil and sediment were not identified as media of concern at Area 3.

#### 6.4 FORMER FIRE STATION (BUILDING 7506) – AFFF AREA 4

PFOS was detected in one surface soil sample at Area 4 at a concentration above the residential screening level. The area is well vegetated and the surrounding area paved inhibiting fugitive dust emissions. Human ingestion through exposure to the soil is also unlikely. Although a complete human ingestion pathway is unlikely, PFOS-impacted surface soil could represent an ongoing source of groundwater impacts. Sediment was not identified as media of concern at AFFF Area 4.

#### 6.5 B-52 CRASH (1972) – AFFF AREA 5

Where detected, PFAS concentrations in surface and subsurface soil samples collected at the B-52 crash site were below residential screening levels. Lacking concentrations of PFAS above residential screening

levels, the human ingestion pathway is incomplete at AFFF Area 5. Sediment was not identified as media of concern at Area 5.

#### 6.6 B-1 CRASH (1988) - AFFF AREA 6

Where detected, PFAS concentrations in surface and subsurface soil samples collected at the B-1 crash site were below residential screening levels. Lacking concentrations of PFAS above residential screening levels, the human ingestion pathway is incomplete at AFFF Area 6. Sediment was not identified as media of concern at Area 6.

#### 6.7 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7

Where detected, PFAS concentrations in surface and subsurface soil samples collected at the Delta Taxiway West crash site were below residential screening levels. Lacking concentrations of PFAS above residential screening levels, the human ingestion pathway is incomplete at AFFF Area 7. Sediment was not identified as media of concern at Area 7.

#### 6.8 MARTEN CRASH (2006) – AFFF AREA 8

Where detected, PFAS concentrations in surface and subsurface soil samples collected at the Marten crash site were below residential screening levels. Lacking concentrations of PFAS above residential screening levels, the human ingestion pathway is incomplete at AFFF Area 8. Sediment was not identified as media of concern at Area 8.

#### 6.9 CRASH 4 (2001) – AFFF AREA 9

Where detected, PFAS concentrations in surface and subsurface soil samples collected at the Crash 4 spill site were below residential screening levels. Lacking concentrations of PFAS above residential screening levels, the human ingestion pathway is incomplete at AFFF Area 9. Sediment was not identified as media of concern at Area 9.

#### 6.10 WASTEWATER TREATMENT PLANT – AFFF AREA 10

PFOS was detected at concentrations above the residential screening level in one surface soil sample (collected in 2018) and in two sediment samples (one collected in 2014 and one collected in 2018). Both sediment samples were collected downgradient and downstream from the WWTP on the adjacent golf course. The area is well vegetated, which would inhibit fugitive dust emissions. Human ingestion through exposure to the soil or sediment is also unlikely. Although a complete human ingestion pathway is unlikely, PFOS-impacted surface soil and sediment could represent an ongoing source of groundwater and/or surface water impacts.

#### 6.11 SPRAY NOZZLE TEST AREA – AFFF AREA 11

Where detected, PFAS concentrations in surface soil, subsurface soil, and sediment samples collected at the spray nozzle test area were below residential screening levels. Lacking concentrations of PFAS above residential screening levels, the human ingestion pathway is incomplete at AFFF Area 11.

#### 6.12 **BUILDING 88240 – AFFF AREA 12**

PFOS was detected in surface soil samples collected at Area 12 at concentrations above the residential screening level. The area is well vegetated, which would inhibit fugitive dust emissions, and human ingestion through exposure to the soil is also unlikely. PFAS concentrations in the one sediment sample collected during this SI were below residential screening levels. PFBS, PFOA, and PFOS concentrations in a sediment sample collected from the retention pond in 2014 all exceeded their respective screening values. Although a complete human ingestion pathway is unlikely, PFOS-impacted surface soil could represent an ongoing source of groundwater impacts at AFFF Area 12.

#### 7.0 UPDATES TO CONCEPTUAL SITE MODELS

The following sections contain updates to the conceptual site models (CSMs) for AFFF Areas 1 through 12 as presented in the QAPP addendum (ASL, November 2017). The discussions address PFOA and PFOS in soil, groundwater, surface water, and sediment. Based on analytical results presented in Sections 3.0, PFOS and PFOA are the primary PFAS contaminants of concern. PFBS detections in all samples collected from all media for this SI were below screening levels. PFBS will not be discussed in the following sections with the exception of Section 7.12, Building 88240 (AFFF Area 12), where PFBS was detected above the current screening level in a surface water sample collected in 2014.

#### 7.1 CURRENT FIRE TRAINING AREA – AFFF AREA 1

The QAPP addendum CSM identified surface soil, subsurface soil, and groundwater as media potentially impacted by releases of AFFF at the current FTA (ASL, November 2017). PFOS was detected in surface and subsurface soil at concentrations above the residential screening level. However, as discussed in Section 6.1, human ingestion of impacted soil is unlikely. PFOS and PFOA were also detected in groundwater at concentrations above screening levels and, as discussed in Section 4.2, the human exposure pathway for ingestion of impacted groundwater is potentially complete. Surface soil, subsurface soil, and groundwater remain media of concern at AFFF Area 1.

#### 7.2 70, 80, 90 ROWS AND OUTFALL #3 – AFFF AREA 2

The QAPP addendum CSM identified surface soil, subsurface soil, and groundwater as media potentially impacted by releases of AFFF at the 70, 80, 90 Rows and identified subsurface soil, groundwater, sediment, and surface water as media potentially impacted by releases of AFFF to Outfall #3 (ASL, November 2017). PFOS and PFOA were not detected above residential screening levels in surface soil or subsurface soil at the 70, 80, 90 Rows or in subsurface soil or sediment at Outfall #3 during this SI. PFOS was detected in a 2014 sediment sample at a concentration above the current residential screening level.

PFOS and PFOA were detected in groundwater above screening levels at the 70, 80, 90 Rows. As discussed in Section 4.3, the human ingestion exposure pathway for impacted groundwater at the 70, 80, 90 Rows is potentially complete and groundwater remains media of concern.

PFOS and PFOA were also detected in surface water and groundwater above screening levels at Outfall #3. As discussed in Section 5.3, the human exposure pathway for ingestion of impacted surface water via drinking water is potentially complete based on possible surface water to groundwater impacts. In addition, as discussed in Section 4.3, due to the presence of shallow domestic wells potentially downgradient from Outfall #3, the human exposure pathway for the ingestion of impacted groundwater is potentially complete. Further, although a complete human ingestion exposure pathway from impacted sediment has not been identified (based on current receptors), sediment remains media of concern at AFFF Area 2 (in addition to groundwater and surface water).

#### 7.3 BUILDING 618 – AFFF AREA 3

The QAPP addendum CSM identified subsurface soil and groundwater as media potentially impacted by releases of AFFF at Building 618 (ASL, November 2017). PFOS and PFOA were not detected above residential screening levels in subsurface soil. PFOS and PFOA were, however, detected in groundwater at concentrations above screening levels. As discussed in Section 4.4, the human exposure pathway for ingestion of impacted groundwater is potentially complete and groundwater remains media of concern at AFFF Area 3.

#### 7.4 FORMER FIRE STATION (BUILDING 7506) – AFFF AREA 4

The QAPP addendum CSM identified surface soil, subsurface soil, and groundwater as media potentially impacted by releases of AFFF at the former fire station (ASL, November 2017). PFOS was detected in surface soil at concentrations above the residential screening level. However, as discussed in Section 6.1, human ingestion of impacted surface soil is unlikely. PFOS and PFOA were not detected above residential screening levels in subsurface soil. PFOS and PFOA were, however, detected in groundwater at concentrations above screening levels. As discussed in Section 4.5, the human exposure pathway for ingestion of impacted groundwater is potentially complete. Surface soil and groundwater remain media of concern at AFFF Area 4.

# 7.5 B-52 CRASH (1972) – AFFF AREA 5

The QAPP addendum CSM identified surface soil, subsurface soil, and groundwater as media potentially impacted by use of AFFF at the B-52 crash site (ASL, November 2017). PFOS and PFOA were not detected in surface soil or subsurface soil at concentrations above the residential screening level. PFOS and PFOA were, however, detected in groundwater at concentrations above screening levels. As discussed in Section 4.6, the human exposure pathway for ingestion of impacted groundwater is potentially complete and groundwater remains media of concern at AFFF Area 5.

#### 7.6 B-1 CRASH (1988) – AFFF AREA 6

The QAPP addendum CSM identified surface soil, subsurface soil, and groundwater as media potentially impacted by use of AFFF at the B-1 crash site (ASL, November 2017). PFOS and PFOA were not detected in surface soil or subsurface soil at concentrations above the residential screening level. PFOS and PFOA were, however, detected in groundwater at concentrations above screening levels. As discussed in Section 4.7, the human exposure pathway for ingestion of impacted groundwater is potentially complete and groundwater remains media of concern at AFFF Area 6.

#### 7.7 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7

The QAPP addendum CSM identified surface soil, subsurface soil, and groundwater as media potentially impacted by use of AFFF at the Delta Taxiway West crash site. As discussed in Sections 6.7 and 4.8, PFOS and PFOA concentrations in surface soil, subsurface soil, and groundwater were all below their respective screening levels. Lacking contaminant levels above screening levels, human exposure pathways are incomplete at AFFF Area 7. Several other PFAS compounds were detected in soil and groundwater at AFFF Area 7 for which there are currently no HA or RSL values. Future characterization may be warranted at Area 7 if state or federal soil/groundwater standards are promulgated for any of these analytes.

#### 7.8 MARTEN CRASH (2006) – AFFF AREA 8

The QAPP addendum CSM identified surface soil, subsurface soil, and groundwater as media potentially impacted by use of AFFF at the Marten crash site. As discussed in Sections 6.8 and 4.9, PFOS and PFOA concentrations in surface soil, subsurface soil, and groundwater were all below screening levels. Lacking contaminant levels above screening levels, human exposure pathways are incomplete and no media remain a concern at AFFF Area 8. Several other PFAS compound were detected in soil and groundwater at AFFF Area 8 for which there are currently no HA or RSL values. Future characterization may be

warranted at Area 8 if state or federal soil/groundwater standards are promulgated for any of these analytes.

# 7.9 CRASH 4 (2001) – AFFF AREA 9

The QAPP addendum CSM identified surface soil, subsurface soil, and groundwater as media potentially impacted by use of AFFF at the Crash 4 spill site (ASL, November 2017). PFOS and PFOA were not detected in surface soil or subsurface soil at concentrations above the residential screening level. PFOS and combined PFOS and PFOA were, however, detected in groundwater at concentrations above screening levels. As discussed in Section 4.10, the human exposure pathway for ingestion of impacted groundwater is potentially complete and groundwater remains media of concern at AFFF Area 9.

# 7.10 WASTEWATER TREATMENT PLANT (WWTP) - AFFF AREA 10

The QAPP addendum CSM identified surface soil, subsurface soil, groundwater, sediment, and surface water as media potentially impacted by releases of AFFF in effluent from the WWTP (ASL, November 2017). PFOS was detected in surface soil and sediment at concentrations above the residential screening level. However, as discussed in Section 6.10, human ingestion of impacted soil or sediment is unlikely. PFOS and PFOA were also detected in surface water at concentrations above the screening level. As discussed in Section 5.11, the human ingestion exposure pathway for impacted surface water is potentially complete based on possible surface water to groundwater impacts. PFOS and PFOA were not detected in subsurface soil or groundwater at concentrations above screening levels. Surface soil, sediment, and surface water remain media of concern at AFFF Area 10.

#### 7.11 SPRAY NOZZLE TEST AREA – AFFF AREA 11

The QAPP addendum CSM identified surface soil, subsurface soil, groundwater, sediment, and surface water as media potentially impacted by releases of AFFF at the spray nozzle test area (ASL, November 2017). PFOS and PFOA were not detected in surface soil, subsurface soil, or sediment at concentrations above the residential screening level. PFOS and PFOA were, however, detected in groundwater and surface water at concentrations above screening levels. As discussed in Sections 4.12 and 5.12, the human ingestion exposure pathways for impacted surface water and groundwater are potentially complete and remain media of concern at AFFF Area 11.

#### 7.12 **BUILDING 88240 – AFFF AREA 12**

The QAPP addendum CSM identified surface soil, subsurface soil, groundwater, sediment, and surface water as media potentially impacted by releases of AFFF at Building 88240 (ASL, November 2017). PFOS was detected in surface soil at concentrations above the residential screening level. PFBS, PFOA, and PFOS were also detected in a 2014 sediment sample collected from the retention pond, all at concentrations exceeding their respective screening values. However, as indicated in Section 6.12, human ingestion of impacted soil or sediment is unlikely. PFOS and PFOA were not detected in subsurface soil at concentrations above residential screening levels.

PFOS and PFOA were also detected in groundwater and surface water at concentrations above screening levels. As discussed in Sections 4.13 and 5.13, the human ingestion exposure pathways for impacted surface water and groundwater are potentially complete. Surface soil, groundwater, sediment, and surface water remain media of concern at AFFF Area 12.

#### 8.0 CONCLUSIONS AND RECOMMENDATIONS

ASL completed SIs at 12 known or suspected areas of AFFF releases at Ellsworth AFB, as detailed in the site-specific QAPP addendum (ASL, November 2017). The areas inspected included

| • | Current Fire Training Area          | AFFF Area 1  |
|---|-------------------------------------|--------------|
| • | 70, 80, 90 Rows and Outfall #3      | AFFF Area 2  |
| • | Building 618                        | AFFF Area 3  |
| • | Former Fire Station (Building 7506) | AFFF Area 4  |
| • | B-52 Crash (1972)                   | AFFF Area 5  |
| • | B-1 Crash (1988)                    | AFFF Area 6  |
| • | Delta Taxiway West Crash (2000)     | AFFF Area 7  |
| • | Marten Crash (2006)                 | AFFF Area 8  |
| • | Crash 4 (2001)                      | AFFF Area 9  |
| • | Wastewater Treatment Plant          | AFFF Area 10 |
| • | Spray Nozzle Test Area              | AFFF Area 11 |
| • | Building 88240                      | AFFF Area 12 |

The objectives of the SIs were to

- determine if a confirmed release of PFAS has occurred at sites selected for SI;
- determine if PFAS are present in soil, groundwater, surface water, or sediment at the site in concentrations exceeding the EPA lifetime HAs or tap water RSLs, residential soil screening levels, or a state standard;
- identify potential receptor pathways with immediate impacts to human health; and
- provide recommendations for follow-on investigations if detected concentrations of PFAS equal or exceed project action levels (PALs). For PFAS without a specific numerical screening value, results will be discussed in terms of whether the chemical was detected.

Surface soil and/or subsurface soil and groundwater were sampled at each of the 12 AFFF areas. Sediment and surface water were also sampled at

- Outfall #3 (AFFF Area 2),
- the WWTP (AFFF Area 10),
- the spray nozzle test area (AFFF Area 11), and
- Building 88240 (AFFF Area 12).

Sampling was primarily limited to the immediate areas of known or suspected AFFF releases and biased toward locations most likely to have been impacted by the releases.

A 2014 screening-level site investigation conducted at Ellsworth AFB determined the presence of combined PFOS and PFOA above screening levels in groundwater at the 70, 80, 90 Rows and Outfall #3, Building 618, and Building 88240 (now designated AFFF Areas 2, 3, and 12). The 2014 investigation also determined the presence of combined PFOS and PFOA at concentrations above screening levels in surface water at Outfall #3 (AFFF Area 2) and the WWTP (AFFF Area 10). The 2014 investigation also determined the presence of combined PFOS, PFOA, and PFBS above screening levels in surface water and sediment at the Building 88240 retention pond (AFFF Area 12). PFOS was also detected above screening levels in sediment samples collected at Outfall #3 and the WWTP.

All samples were analyzed for 18 PFAS compounds, including PFBS, PFOA, and PFOS, using modified EPA Method 537. Analytical results for PFBS in soil, sediment, groundwater, and surface water were compared to published EPA RSLs (HQ=0.1). Analytical results for PFOA and PFOS in soil and sediment were compared to calculated residential RSLs ( $126 \mu g/kg$  for both PFOA and PFOS; HQ=0.1). Analytical

results for PFOA and PFOS in groundwater and surface water were compared to the EPA HA of 0.07 µg/L (for the individual and combined concentrations of PFOA and PFOS) for drinking water.

AFFF releases at Ellsworth AFB have resulted in PFOA and PFOS concentrations above screening levels in groundwater at AFFF Areas 1, 2, 3, 4, 5, 6, 9, 11, and 12 (nine of 12 areas investigated). Human ingestion exposure pathways for impacted groundwater are potentially complete at AFFF Areas 1, 2, 3, 4, 5, 6, 9, 11, and 12. Impacted groundwater at from these areas may be migrating off-Base and may have impacted downgradient domestic wells. The presence of PFOA and PFOS in groundwater represents a potentially complete human ingestion exposure pathway, and may pose immediate risk to human health. Sampling of private domestic wells downgradient of the base (conducted by others) indicated the presence of PFOS and PFOA at concentrations above the EPA HA in several wells. The groundwater ingestion exposure pathway for groundwater is incomplete for AFFF Areas 7, 8, and 10 where PFOA and PFOS concentrations were below screening levels.

PFOA and PFOS were also detected at concentrations above screening levels in surface water at AFFF Areas 2, 10, 11, and 12. Impacted surface water discharging from Outfall #3 (AFFF Area 2) and from Outfall #5 (at the former WWTP at AFFF Area 10) may be impacting groundwater downstream from the outfalls. There is also the potential for discharge of impacted groundwater from the base to surface water (i.e., Box Elder Creek and its tributaries) based on groundwater flow to the southeast. The human ingestion exposure pathway for impacted surface water is, therefore, potentially complete via surface water to groundwater interactions.

PFOS was also detected above residential screening levels in surface soil at AFFF Areas 1, 4, 10 and 12; in subsurface soil at Area 1; and in sediment at AFFF Area 10. Complete human ingestion exposure pathways for PFOS-impacted soil or sediment are unlikely, but impacted soil or sediment could represent a continuing source for groundwater and/or surface water impacts.

Table 46 (at the end of this section) summarizes detected concentrations of PFBS, PFOA, and PFOS for media sampled at each area. Brief summaries of key findings, conclusions, and recommendations for each area (focusing on PFOA and PFOS screening level exceedances) are included in Sections 8.1 through 8.12.

#### 8.1 CURRENT FIRE TRAINING AREA – AFFF AREA 1

Use of AFFF during training activities at the current FTA has resulted in PFAS impacts to surface soil, subsurface soil, and groundwater at concentrations above screening levels. PFOS was detected in surface soil at a maximum concentration of 3,300  $\mu$ g/kg and in subsurface soil at a maximum concentration of 630  $\mu$ g/kg. PFOS and PFOA were detected in groundwater at a maximum combined concentration of 91  $\mu$ g/L.

PFOS concentrations above residential screening levels in soil do not represent an immediate risk to human health. As indicated in Section 6.1, human ingestion of PFOS-impacted surface soil is unlikely. However, as indicated in Section 4.2, the human ingestion exposure pathway for impacted groundwater is potentially complete. Surface soil, subsurface soil, and groundwater remain media of concern at the current FTA and an RI is recommended.

#### 8.2 70, 80, 90 ROWS AND OUTFALL #3 – AFFF AREA 2

Releases of AFFF at the 70, 80, 90 Rows and Outfall #3 have resulted in PFAS impacts to groundwater at concentrations above screening levels (at both the 70, 80, 90 Rows and Outfall #3) and to surface water

(at Outfall #3). PFOS and PFOA were detected in groundwater at a maximum combined concentration of  $2.62 \mu g/L$  at the 70, 80, 90 Rows and  $1.22 \mu g/L$  at Outfall #3. PFOS and PFOA were detected in surface water at a maximum combined concentration of  $0.80 \mu g/L$  at Outfall #3.

PFOS/PFOA concentrations above screening levels in groundwater at the 70, 80, 90 Rows represent an immediate risk to human health. As indicated in Section 4.3, the human ingestion exposure pathway for impacted groundwater at the 70, 80, 90 Rows is potentially complete. Groundwater remains media of concern at the 70, 80, 90 Rows and an RI is recommended.

PFOS/PFOA concentrations above screening levels in surface water at Outfall #3 also represents an immediate threat to human health. As indicated in Section 5.2, the human ingestion exposure pathway is potentially complete for impacted surface water (based on possible surface water to groundwater impacts). PFOS/PFOA concentrations above screening levels in groundwater at Outfall #3 also represent an immediate risk to human health. As indicated in Section 4.3, the human ingestion exposure pathway for impacted groundwater is potentially complete at Outfall #3. Based on the presence of domestic wells potentially downgradient from Outfall #3 and the possible, immediate threat to human health, an expanded SI is recommended. Subsequent to this SI, sampling of private domestic wells downgradient of Outfall #3 was conducted and an additional groundwater investigation is in progress. This work is being performed under a separate contract by others.

#### 8.3 BUILDING 618 – AFFF AREA 3

Releases of AFFF at Building 618 have resulted in PFAS impacts to groundwater at concentrations above screening levels. PFOS and PFOA were detected in groundwater at a maximum combined concentration of 1.673  $\mu$ g/L. PFOS/PFOA concentrations above screening levels in groundwater represent an immediate risk to human health. As indicated in Section 4.4, the human ingestion exposure pathway for impacted groundwater is potentially complete. Groundwater remains media of concern at Building 618 and an RI is recommended.

#### 8.4 FORMER FIRE STATION (BUILDING 7506) – AFFF AREA 4

Releases of AFFF at the former fire station have resulted in PFAS impacts to surface soil and groundwater above screening levels. PFOS was detected in surface soil above the residential screening level at a concentration of 3,000  $\mu$ g/kg. PFOS and PFOA were detected in groundwater at a maximum combined concentration of 1.55  $\mu$ g/L.

PFOS concentrations above the residential screening level in surface soil do not represent an immediate risk to human health. As indicated in Section 6.4, human ingestion of PFOS-impacted soil is unlikely. PFOS/PFOA concentrations above screening levels in groundwater do represent an immediate risk to human health. As indicated in Section 4.5, the human ingestion exposure pathway for impacted groundwater is potentially complete. Surface soil and groundwater remain media of concern at Building 618 and an RI is recommended.

#### 8.5 B-52 CRASH (1972) – AFFF AREA 5

Use of AFFF at the B-52 crash site has resulted in PFAS impacts to groundwater at concentrations above screening levels. PFOS and PFOA were detected in groundwater at a maximum combined concentration of  $0.435~\mu g/L$ . PFOS/PFOA concentrations above screening levels in groundwater represent an immediate risk to human health. As indicated in Section 4.6, the human ingestion exposure pathway for

impacted groundwater is potentially complete. Groundwater remains media of concern at the B-52 crash site, and an RI is recommended.

#### 8.6 B-1 CRASH (1988) – AFFF AREA 6

Use of AFFF at the B-1 crash site has resulted in PFAS impacts to groundwater at concentrations above screening levels. PFOS and PFOA were detected in groundwater at a maximum combined concentration of 0.59 µg/L. PFOS/PFOA concentrations above screening levels in groundwater represent an immediate risk to human health. As indicated in Section 4.7, the human ingestion exposure pathway for impacted groundwater is potentially complete. Groundwater remains media of concern at the B-1 crash site and an RI is recommended.

# 8.7 DELTA TAXIWAY WEST CRASH (2000) – AFFF AREA 7

As discussed in Sections 6.7 and 4.8, release of AFFF at the Delta Taxiway West crash site has not resulted in PFAS impacts to surface soil, subsurface soil, or groundwater above screening levels. Lacking concentrations of PFAS above screening levels, there are no complete exposure pathways, and a determination of NFRAP is recommended for AFFF Area 7.

#### 8.8 MARTEN CRASH (2006) – AFFF AREA 8

As discussed in Sections 6.8 and 4.9, use of AFFF at the Marten crash site has not resulted in PFAS impacts to surface soil, subsurface soil, or groundwater above screening levels. Lacking concentrations of PFAS above screening levels, there are no complete exposure pathways, and a determination of NFRAP is recommended for AFFF Area 8.

# 8.9 CRASH 4 (2001) – AFFF AREA 9

A release of AFFF at the Crash 4 spill site has resulted in PFAS impacts to groundwater at concentrations above screening levels. PFOS and PFOA were detected in groundwater at a maximum combined concentration of  $0.173~\mu g/L$  (estimated value). PFOS/PFOA concentrations above screening levels in groundwater represent an immediate risk to human health. As indicated in Section 4.10, the human ingestion exposure pathway for impacted groundwater is potentially complete. Groundwater remains media of concern at the Crash 4 spill site and an RI is recommended.

#### 8.10 WASTEWATER TREATMENT PLANT – AFFF AREA 10

Releases of AFFF impacted effluent at the WWTP have resulted in PFAS impacts to surface soil, sediment, and surface water at concentrations above screening levels. PFOS was detected in surface soil and sediment at maximum concentrations of 140  $\mu$ g/kg and 710  $\mu$ g/kg, respectively. PFOS and PFOA were detected in surface water at a maximum combined concentration of 1.18  $\mu$ g/L.

PFOS/PFOA concentrations above screening levels in surface soil and sediment do not represent an immediate risk to human health. As indicated in Section 6.10, human ingestion of impacted soil or sediment is unlikely. As indicated in Section 5.11, the human ingestion exposure pathway for impacted surface water is potentially complete (based on possible surface water to groundwater impacts). Surface soil, groundwater, sediment, and surface water remain media of concern at the WWTP, and an RI is recommended.

#### 8.11 SPRAY NOZZLE TEST AREA – AFFF AREA 11

Releases of AFFF at the spray nozzle test area have resulted in PFAS impacts to groundwater and surface water at concentrations above screening levels. PFOS and PFOA were detected in groundwater and surface water at maximum combined concentrations of 0.50 µg/L and 0.487 µg/L, respectively.

PFOS/PFOA concentrations above screening levels in groundwater and surface water do not represent an immediate risk to human health. As indicated in Sections 4.12 and 5.12, the human ingestion exposure pathway for impacted groundwater and surface water are potentially complete. Groundwater and surface water remain media of concern at the spray nozzle test area and an RI is recommended.

#### 8.12 **BUILDING 88240 – AFFF AREA 12**

Releases of AFFF at Building 88240 have resulted in PFAS impacts to surface soil, groundwater, and surface water at concentrations above screening levels. PFOS was detected in surface soil at a maximum concentration of 390 µg/kg (estimated). PFOS and PFOA were detected in groundwater and surface water at maximum combined concentrations of 1.21 µg/L and 4.62 µg/L, respectively.

As indicated in Section 6.12, human ingestion through exposure to impacted soil is unlikely. PFOS/PFOA concentrations above screening levels in groundwater and surface water represent an immediate risk to human health. As indicated in Sections 4.13 and 5.13, the human ingestion exposure pathway for impacted groundwater and surface water are potentially complete. Groundwater and surface water remain media of concern at the spray nozzle test area and an RI is recommended.

Table 46 Summary of PFBS, PFOA, and PFOS Detections and Screening Level Exceedances

| AFFF Area   | Associated<br>Existing<br>IRP ID | Parameter       | Maximum<br>Detected<br>Concentration | Screening<br>Level                      | Number of<br>Samples /<br>Number of<br>Exceedances <sup>a</sup> | Exceeds<br>Screening<br>Level | Potentially<br>Complete<br>Exposure<br>Pathway | Recommendation     |
|-------------|----------------------------------|-----------------|--------------------------------------|-----------------------------------------|-----------------------------------------------------------------|-------------------------------|------------------------------------------------|--------------------|
|             |                                  | Surface Soil    | (µg/kg)                              | (µg/kg)                                 |                                                                 |                               |                                                |                    |
|             |                                  | PFBS            | 4.9 J                                | 130,000 <sup>b</sup><br>13 <sup>c</sup> | 4/0                                                             | No                            | NI.                                            |                    |
|             |                                  | PFOA            | 21                                   | 126 <sup>d</sup>                        | 4/0                                                             | No                            | No                                             |                    |
|             | Not an existing                  | PFOS            | $3,300 J^{i}$                        | 126 <sup>d</sup>                        | 4/4                                                             | Yes                           |                                                |                    |
|             |                                  | Subsurface Soil | (µg/kg)                              | (µg/kg)                                 |                                                                 |                               |                                                |                    |
| AFFF Area 1 |                                  | PFBS            | 2.5 J                                | 130,000<br>13                           | 4/0                                                             | No                            | NI.                                            |                    |
| Current FTA | site                             | PFOA            | 4.1 J                                | 126                                     | 4/0                                                             | No                            | No                                             | Advance area to RI |
|             |                                  | PFOS            | 630                                  | 126                                     | 4/2                                                             | Yes                           |                                                |                    |
|             |                                  | Groundwater     | (µg/L)                               | (µg/L)                                  |                                                                 |                               |                                                |                    |
|             |                                  | PFBS            | 28                                   | 40e                                     | 4/0                                                             | No                            |                                                |                    |
|             |                                  | PFOA            | 15                                   | $0.07^{\rm f}$                          | 4/4                                                             | Yes                           | Yes <sup>1</sup>                               |                    |
|             |                                  | PFOS            | 82                                   | $0.07^{\rm f}$                          | 4/4                                                             | Yes                           | 1 68                                           |                    |
|             |                                  | PFOA + PFOS     | 91 <sup>h</sup>                      | $0.07^{g}$                              | 4/4                                                             | Yes                           |                                                |                    |

Table 46 Summary of PFBS, PFOA, and PFOS Detections and Screening Level Exceedances (continued)

| AFFF Area                 | Associated<br>Existing<br>IRP ID | Parameter<br>Surface Soil | Maximum Detected Concentration (µg/kg) | Screening<br>Level<br>(µg/kg) | Number of<br>Samples /<br>Number of<br>Exceedances <sup>a</sup> | Exceeds<br>Screening<br>Level | Potentially<br>Complete<br>Exposure<br>Pathway | Recommendation                               |
|---------------------------|----------------------------------|---------------------------|----------------------------------------|-------------------------------|-----------------------------------------------------------------|-------------------------------|------------------------------------------------|----------------------------------------------|
|                           |                                  | PFBS                      | ND                                     | 130,000                       | 3/0                                                             | No                            |                                                |                                              |
|                           |                                  | PFOA                      | 1.4                                    | 13<br>126                     | 3/0                                                             | No                            | No                                             |                                              |
|                           |                                  | PFOS                      | 47                                     | 126                           | 3/0                                                             | No                            |                                                |                                              |
|                           |                                  | Subsurface Soil           | (µg/kg)                                | (µg/kg)                       |                                                                 |                               |                                                |                                              |
|                           |                                  | PFBS                      | ND                                     | 130,000<br>13                 | 5/0                                                             | No                            | NI.                                            |                                              |
|                           |                                  | PFOA                      | ND                                     | 126                           | 5/0                                                             | No                            | No                                             |                                              |
|                           |                                  | PFOS                      | 27 J                                   | 126                           | 5/0                                                             | No                            |                                                | Expanded SI (Outfall #3)  Advance area to RI |
| A EEE A mag 2             |                                  | Groundwater               | (μg/L)                                 | (μg/L)                        |                                                                 |                               |                                                |                                              |
| AFFF Area 2<br>70, 80, 90 | Not an                           | PFBS                      | 0.69                                   | 40                            | 7/0                                                             | No                            | Yes <sup>1</sup>                               |                                              |
| Rows and                  | existing                         | PFOA                      | 0.78                                   | 0.07                          | 7/4                                                             | Yes                           |                                                |                                              |
| Outfall #3                | site                             | PFOS                      | 2.5 J                                  | 0.07                          | 7/7                                                             | Yes                           |                                                |                                              |
|                           |                                  | PFOA + PFOS               | 2.62 J <sup>h</sup>                    | 0.07                          | 7/7                                                             | Yes                           |                                                | (70, 80, 90 Rows)                            |
|                           |                                  | Sediment                  | (μg/kg)                                | (µg/kg)                       |                                                                 |                               |                                                | (, , , , , , , , , , , , , , , , , , ,       |
|                           |                                  | PFBS                      | ND                                     | 130,000<br>13                 | 1/0                                                             | No                            | No                                             |                                              |
|                           |                                  | PFOA                      | 9.2 J <sup>i</sup>                     | 126                           | 1/0                                                             | No                            | NO                                             |                                              |
|                           |                                  | PFOS                      | 90 J <sup>i</sup>                      | 126                           | 1/0                                                             | No                            |                                                |                                              |
|                           |                                  | Surface Water             | (µg/L)                                 | (μg/L)                        |                                                                 |                               |                                                |                                              |
|                           |                                  | PFBS                      | 0.015 J                                | 40                            | 1/0                                                             | No                            |                                                |                                              |
|                           |                                  | PFOA                      | 0.38i                                  | 0.07                          | 1/1                                                             | Yes                           | Yes <sup>1</sup>                               |                                              |
|                           |                                  | PFOS                      | 0.44                                   | 0.07                          | 1/1                                                             | Yes                           | 100                                            |                                              |
|                           |                                  | PFOA + PFOS               | $0.80^{i}$                             | 0.07                          | 1/1                                                             | Yes                           |                                                |                                              |

Table 46 Summary of PFBS, PFOA, and PFOS Detections and Screening Level Exceedances (continued)

| AFFF Area           | Associated<br>Existing<br>IRP ID | Parameter       | Maximum<br>Detected<br>Concentration | Screening<br>Level | Number of<br>Samples /<br>Number of<br>Exceedances <sup>a</sup> | Exceeds<br>Screening<br>Level | Potentially<br>Complete<br>Exposure<br>Pathway | Recommendation     |
|---------------------|----------------------------------|-----------------|--------------------------------------|--------------------|-----------------------------------------------------------------|-------------------------------|------------------------------------------------|--------------------|
|                     |                                  | Subsurface Soil | (μg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                    |
|                     |                                  | PFBS            | ND                                   | 130,000<br>13      | 4/0                                                             | No                            | No                                             |                    |
|                     | NI-4                             | PFOA            | 0.69 J                               | 126                | 4/0                                                             | No                            | NO                                             |                    |
| AFFF Area 3         | Not an existing                  | PFOS            | 110 J                                | 126                | 4/0                                                             | No                            |                                                |                    |
| Building 618        | site                             | Groundwater     | (μg/L)                               | (μg/L)             |                                                                 |                               |                                                | Advance area to RI |
|                     | Site                             | PFBS            | 0.086                                | 40                 | 3/0                                                             | No                            |                                                |                    |
|                     |                                  | PFOA            | 0.12                                 | 0.07               | 3/3                                                             | Yes                           | $Yes^1$                                        |                    |
|                     |                                  | PFOS            | 1.6                                  | 0.07               | 3/3                                                             | Yes                           | 1 03                                           |                    |
|                     |                                  | PFOA + PFOS     | 1.673 <sup>h</sup>                   | 0.07               | 3/3                                                             | Yes                           |                                                |                    |
|                     |                                  | Surface Soil    | (μg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                    |
|                     |                                  | PFBS            | 8.2 J                                | 130,000<br>13      | 3/0                                                             | No                            | No                                             |                    |
|                     |                                  | PFOA            | 62                                   | 126                | 3/0                                                             | No                            |                                                |                    |
|                     |                                  | PFOS            | 3,000                                | 126                | 3/1                                                             | Yes                           |                                                |                    |
| AFFF Area 4         |                                  | Subsurface Soil | (µg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                    |
| Former Fire Station | Not an existing                  | PFBS            | 0.62 J                               | 130,000            | 5/0                                                             | No                            | No                                             | Advance area to RI |
| (Building 7506)     | site                             | PFOA            | 2.1                                  | 126                | 5/0                                                             | No                            | NO                                             | Advance area to Ki |
| (Building 7300)     |                                  | PFOS            | 11                                   | 126                | 5/0                                                             | No                            |                                                |                    |
|                     |                                  | Groundwater     | (μg/L)                               | (µg/L)             |                                                                 |                               |                                                |                    |
|                     |                                  | PFBS            | 0.40                                 | 40                 | 3/0                                                             | No                            |                                                |                    |
|                     |                                  | PFOA            | 0.76                                 | 0.07               | 3/3                                                             | Yes                           | Yes <sup>1</sup>                               |                    |
|                     |                                  | PFOS            | 0.79                                 | 0.07               | 3/3                                                             | Yes                           | 1 03                                           |                    |
|                     |                                  | PFOA + PFOS     | 1.55                                 | 0.07               | 3/3                                                             | Yes                           |                                                |                    |

Table 46 Summary of PFBS, PFOA, and PFOS Detections and Screening Level Exceedances (continued)

| AFFF Area                          | Associated<br>Existing<br>IRP ID | Parameter       | Maximum<br>Detected<br>Concentration | Screening<br>Level | Number of<br>Samples /<br>Number of<br>Exceedances <sup>a</sup> | Exceeds<br>Screening<br>Level | Potentially<br>Complete<br>Exposure<br>Pathway | Recommendation     |
|------------------------------------|----------------------------------|-----------------|--------------------------------------|--------------------|-----------------------------------------------------------------|-------------------------------|------------------------------------------------|--------------------|
|                                    |                                  | Surface Soil    | (μg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                    |
|                                    |                                  | PFBS            | ND                                   | 130,000<br>13      | 3/0                                                             | No                            | NI.                                            |                    |
|                                    |                                  | PFOA            | 3.1                                  | 126                | 3/0                                                             | No                            | No                                             |                    |
|                                    |                                  | PFOS            | 75                                   | 126                | 3/0                                                             | No                            |                                                |                    |
|                                    |                                  | Subsurface Soil | (µg/kg)                              | (μg/kg)            |                                                                 |                               |                                                |                    |
| AFFF Area 5<br>B-52 Crash          | Not an existing                  | PFBS            | ND                                   | 130,000<br>13      | 3/0                                                             | No                            | No                                             | Advance area to RI |
| (1972)                             | site                             | PFOA            | $0.37~\mathrm{J^i}$                  | 126                | 3/0                                                             | No                            | NO                                             | Advance area to Ki |
|                                    |                                  | PFOS            | 1.4 <sup>i</sup>                     | 126                | 3/0                                                             | No                            |                                                |                    |
|                                    |                                  | Groundwater     | (μg/L)                               | (µg/L)             |                                                                 |                               |                                                |                    |
|                                    |                                  | PFBS            | 0.015 J                              | 40                 | 2/0                                                             | No                            |                                                |                    |
|                                    |                                  | PFOA            | 0.095                                | 0.07               | 2/2                                                             | Yes                           | Yes <sup>1</sup>                               |                    |
|                                    |                                  | PFOS            | 0.34                                 | 0.07               | 2/2                                                             | Yes                           | 1 CS                                           |                    |
|                                    |                                  | PFOA + PFOS     | 0.435                                | 0.07               | 2/2                                                             | Yes                           |                                                |                    |
|                                    |                                  | Surface Soil    | (µg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                    |
|                                    |                                  | PFBS            | ND                                   | 130,000<br>13      | 4/0                                                             | No                            | N                                              |                    |
|                                    |                                  | PFOA            | 1.8 J                                | 126                | 4/0                                                             | No                            | No                                             |                    |
|                                    |                                  | PFOS            | 61                                   | 126                | 4/0                                                             | No                            |                                                |                    |
|                                    |                                  | Subsurface Soil | (µg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                    |
| AFFF Area 6<br>B-1 Crash<br>(1988) | Not an existing                  | PFBS            | ND                                   | 130,000            | 4/0                                                             | No                            | No                                             | A I                |
|                                    | site                             | PFOA            | ND                                   | 126                | 4/0                                                             | No                            | NO                                             | Advance area to RI |
|                                    |                                  | PFOS            | 0.77 J                               | 126                | 4/0                                                             | No                            |                                                |                    |
|                                    |                                  | Groundwater     | (µg/L)                               | (µg/L)             |                                                                 |                               |                                                |                    |
|                                    |                                  | PFBS            | 0.022                                | 40                 | 3/0                                                             | No                            |                                                |                    |
|                                    |                                  | PFOA            | 0.19                                 | 0.07               | 3/1                                                             | Yes                           | Yes <sup>1</sup>                               |                    |
|                                    |                                  | PFOS            | 0.40                                 | 0.07               | 3/1                                                             | Yes                           | 1 68                                           |                    |
|                                    |                                  | PFOA + PFOS     | 0.59                                 | 0.07               | 3/1                                                             | Yes                           |                                                |                    |

Table 46 Summary of PFBS, PFOA, and PFOS Detections and Screening Level Exceedances (continued)

| AFFF Area                             | Associated<br>Existing<br>IRP ID | Parameter       | Maximum<br>Detected<br>Concentration | Screening<br>Level | Number of<br>Samples /<br>Number of<br>Exceedances <sup>a</sup> | Exceeds<br>Screening<br>Level | Potentially<br>Complete<br>Exposure<br>Pathway | Recommendation      |
|---------------------------------------|----------------------------------|-----------------|--------------------------------------|--------------------|-----------------------------------------------------------------|-------------------------------|------------------------------------------------|---------------------|
|                                       |                                  | Surface Soil    | (μg/kg)                              | (µg/kg)            |                                                                 |                               | •                                              |                     |
|                                       |                                  | PFBS            | ND                                   | 130,000<br>13      | 4/0                                                             | No                            | NI.                                            |                     |
|                                       |                                  | PFOA            | 2.6                                  | 126                | 4/0                                                             | No                            | No                                             |                     |
|                                       |                                  | PFOS            | 18                                   | 126                | 4/0                                                             | No                            |                                                |                     |
| AFFF Area 7                           |                                  | Subsurface Soil | (µg/kg)                              | (μg/kg)            |                                                                 |                               |                                                |                     |
| Delta Taxiway West Crash              | Not an existing                  | PFBS            | ND                                   | 130,000<br>13      | 4/0                                                             | No                            | No                                             | No further response |
| (2000)                                | site                             | PFOA            | ND                                   | 126                | 4/0                                                             | No                            | NO                                             | action planned.     |
| (2000)                                |                                  | PFOS            | 1.1                                  | 126                | 4/0                                                             | No                            |                                                |                     |
|                                       |                                  | Groundwater     | (μg/L)                               | (μg/L)             |                                                                 |                               |                                                |                     |
|                                       |                                  | PFBS            | 0.018 J                              | 40                 | 3/0                                                             | No                            |                                                |                     |
|                                       |                                  | PFOA            | 0.010 J                              | 0.07               | 3/0                                                             | No                            | No                                             |                     |
|                                       |                                  | PFOS            | 0.017 J                              | 0.07               | 3/0                                                             | No                            | NO                                             |                     |
|                                       |                                  | PFOA + PFOS     | 0.027 J                              | 0.07               | 3/0                                                             | No                            |                                                |                     |
|                                       |                                  | Surface Soil    | (µg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                     |
|                                       |                                  | PFBS            | ND                                   | 130,000            | 4/0                                                             | No                            | 2.7                                            |                     |
|                                       |                                  | PFOA            | 1.1                                  | 126                | 4/0                                                             | No                            | No                                             |                     |
|                                       |                                  | PFOS            | 13                                   | 126                | 4/0                                                             | No                            |                                                |                     |
|                                       |                                  | Subsurface Soil | (µg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                     |
| AFFF Area 8<br>Marten Crash<br>(2006) | Not an existing                  | PFBS            | ND                                   | 130,000            | 4/0                                                             | No                            | No                                             | No further response |
|                                       | site                             | PFOA            | ND                                   | 126                | 4/0                                                             | No                            | NO                                             | action planned.     |
|                                       |                                  | PFOS            | ND                                   | 126                | 4/0                                                             | No                            |                                                |                     |
|                                       |                                  | Groundwater     | (μg/L)                               | (µg/L)             |                                                                 |                               |                                                |                     |
|                                       |                                  | PFBS            | ND                                   | 40                 | 3/0                                                             | No                            |                                                |                     |
|                                       |                                  | PFOA            | ND                                   | 0.07               | 3/0                                                             | No                            | No                                             |                     |
|                                       |                                  | PFOS            | ND                                   | 0.07               | 3/0                                                             | No                            | 110                                            |                     |
|                                       |                                  | PFOA + PFOS     | ND                                   | 0.07               | 3/0                                                             | No                            |                                                |                     |

Table 46 Summary of PFBS, PFOA, and PFOS Detections and Screening Level Exceedances (continued)

| AFFF Area      | Associated<br>Existing<br>IRP ID | Parameter       | Maximum<br>Detected<br>Concentration | Screening<br>Level | Number of<br>Samples /<br>Number of<br>Exceedances <sup>a</sup> | Exceeds<br>Screening<br>Level | Potentially<br>Complete<br>Exposure<br>Pathway | Recommendation      |
|----------------|----------------------------------|-----------------|--------------------------------------|--------------------|-----------------------------------------------------------------|-------------------------------|------------------------------------------------|---------------------|
|                |                                  | Surface Soil    | (μg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                     |
|                |                                  | PFBS            | ND                                   | 130,000<br>13      | 3/0                                                             | No                            | No                                             |                     |
|                |                                  | PFOA            | 1.1 J                                | 126                | 3/0                                                             | No                            | NO                                             |                     |
|                | Not an existing                  | PFOS            | 32                                   | 126                | 3/0                                                             | No                            |                                                |                     |
|                |                                  | Subsurface Soil | (µg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                     |
| AFFF Area 9    |                                  | PFBS            | ND                                   | 130,000<br>13      | 3/0                                                             | No                            | No                                             |                     |
| Crash 4 (2001) | site                             | PFOA            | 4.5                                  | 126                | 3/0                                                             | No                            | NO                                             | Advance area to RI. |
|                |                                  | PFOS            | 2.1                                  | 126                | 3/0                                                             | No                            |                                                |                     |
|                |                                  | Groundwater     | (μg/L)                               | (μg/L)             |                                                                 |                               |                                                |                     |
|                |                                  | PFBS            | 0.017 J                              | 40                 | 2/0                                                             | No                            |                                                |                     |
|                |                                  | PFOA            | 0.065                                | 0.07               | 2/0                                                             | No                            | Yes <sup>1</sup>                               |                     |
|                |                                  | PFOS            | 0.16                                 | 0.07               | 2/1                                                             | Yes                           | 1 68                                           |                     |
|                |                                  | PFOA + PFOS     | 0.173 J <sup>h</sup>                 | 0.07               | 2/2                                                             | Yes                           |                                                |                     |

Table 46 Summary of PFBS, PFOA, and PFOS Detections and Screening Level Exceedances (continued)

| AFFF Area                               | Associated<br>Existing<br>IRP ID | Parameter       | Maximum<br>Detected<br>Concentration | Screening<br>Level | Number of<br>Samples /<br>Number of<br>Exceedances <sup>a</sup> | Exceeds<br>Screening<br>Level | Potentially<br>Complete<br>Exposure<br>Pathway | Recommendation      |
|-----------------------------------------|----------------------------------|-----------------|--------------------------------------|--------------------|-----------------------------------------------------------------|-------------------------------|------------------------------------------------|---------------------|
|                                         |                                  | Surface Soil    | (μg/kg)                              | (μg/kg)            |                                                                 |                               |                                                |                     |
|                                         |                                  | PFBS            | ND                                   | 130,000<br>13      | 3/0                                                             | No                            | No                                             |                     |
|                                         |                                  | PFOA            | 1.9                                  | 126                | 3/0                                                             | No                            | NO                                             |                     |
|                                         |                                  | PFOS            | 140                                  | 126                | 3/1                                                             | Yes                           |                                                |                     |
|                                         |                                  | Subsurface Soil | (µg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                     |
|                                         |                                  | PFBS            | ND                                   | 130,000<br>13      | 3/0                                                             | No                            | No                                             |                     |
|                                         |                                  | PFOA            | ND                                   | 126                | 3/0                                                             | No                            | No                                             |                     |
|                                         | Not an                           | PFOS            | ND                                   | 126                | 3/0                                                             | No                            |                                                |                     |
|                                         |                                  | Groundwater     | (μg/L)                               | (μg/L)             |                                                                 |                               |                                                |                     |
| AFFF Area 10                            |                                  | PFBS            | ND                                   | 40                 | 3/0                                                             | No                            | No                                             | Advance area to RI. |
| WWTP                                    | existing                         | PFOA            | 0.0065 J                             | 0.07               | 3/0                                                             | No                            |                                                |                     |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | site                             | PFOS            | 0.014 J                              | 0.07               | 3/0                                                             | No                            | 110                                            |                     |
|                                         |                                  | PFOA + PFOS     | 0.0205 J                             | 0.07               | 3/0                                                             | No                            |                                                |                     |
|                                         |                                  | Sediment        | (μg/kg)                              | (μg/kg)            |                                                                 |                               |                                                | _                   |
|                                         |                                  | PFBS            | 1.9 J                                | 130,000<br>13      | 1/0                                                             | No                            | No                                             |                     |
|                                         |                                  | PFOA            | 8.8                                  | 126                | 1/0                                                             | No                            | NO                                             |                     |
|                                         |                                  | PFOS            | 710                                  | 126                | 1/1                                                             | Yes                           |                                                |                     |
|                                         |                                  | Surface Water   | (μg/L)                               | (μg/L)             |                                                                 |                               |                                                |                     |
|                                         |                                  | PFBS            | 0.12                                 | 40                 | 1/0                                                             | No                            |                                                |                     |
|                                         |                                  | PFOA            | 0.22                                 | 0.07               | 1/1                                                             | Yes                           | Yes <sup>1</sup>                               |                     |
|                                         |                                  | PFOS            | 0.96                                 | 0.07               | 1/1                                                             | Yes                           | 1 25                                           |                     |
|                                         |                                  | PFOA + PFOS     | 1.18                                 | 0.07               | 1/1                                                             | Yes                           |                                                |                     |

Table 46 Summary of PFBS, PFOA, and PFOS Detections and Screening Level Exceedances (continued)

| AFFF Area    | Associated<br>Existing<br>IRP ID | Parameter       | Maximum<br>Detected<br>Concentration | Screening<br>Level | Number of<br>Samples /<br>Number of<br>Exceedances <sup>a</sup> | Exceeds<br>Screening<br>Level | Potentially<br>Complete<br>Exposure<br>Pathway | Recommendation      |
|--------------|----------------------------------|-----------------|--------------------------------------|--------------------|-----------------------------------------------------------------|-------------------------------|------------------------------------------------|---------------------|
|              |                                  | Surface Soil    | (µg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                     |
|              |                                  | PFBS            | ND                                   | 130,000<br>13      | 5/0                                                             | No                            | No                                             |                     |
|              |                                  | PFOA            | 1.1                                  | 126                | 5/0                                                             | No                            | INO                                            |                     |
|              |                                  | PFOS            | 15                                   | 126                | 5/0                                                             | No                            |                                                |                     |
|              |                                  | Subsurface Soil | (µg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                     |
|              |                                  | PFBS            | ND                                   | 130,000<br>13      | 5/0                                                             | No                            | NI.                                            |                     |
|              |                                  | PFOA            | 0.42 J                               | 126                | 5/0                                                             | No                            | No                                             |                     |
|              |                                  | PFOS            | 1.0                                  | 126                | 5/0                                                             | No                            |                                                |                     |
|              |                                  | Groundwater     | (μg/L)                               | (μg/L)             |                                                                 |                               |                                                |                     |
| AFFF Area 11 | Not an                           | PFBS            | 0.077                                | 40                 | 3/0                                                             | No                            | Yes <sup>1</sup>                               | Advance area to RI. |
| Spray Nozzle | existing                         | PFOA            | 0.25                                 | 0.07               | 3/3                                                             | Yes                           |                                                |                     |
| Test Area    | site                             | PFOS            | 0.34                                 | 0.07               | 3/3                                                             | Yes                           | 1 03                                           |                     |
|              |                                  | PFOA + PFOS     | 0.50 <sup>h</sup>                    | 0.07               | 3/3                                                             | Yes                           |                                                |                     |
|              |                                  | Sediment        | (μg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                     |
|              |                                  | PFBS            | ND                                   | 130,000<br>13      | 1/0                                                             | No                            | No                                             |                     |
|              |                                  | PFOA            | 1.9 J                                | 126                | 1/0                                                             | No                            | NO                                             |                     |
|              |                                  | PFOS            | 81                                   | 126                | 1/0                                                             | No                            |                                                |                     |
|              |                                  | Surface Water   | (μg/L)                               | (μg/L)             |                                                                 |                               |                                                |                     |
|              |                                  | PFBS            | 0.011 J                              | 40                 | 1/0                                                             | No                            |                                                |                     |
|              |                                  | PFOA            | 0.057                                | 0.07               | 1/0                                                             | No                            | Yes <sup>1</sup>                               |                     |
|              |                                  | PFOS            | 0.43                                 | 0.07               | 1/1                                                             | Yes                           | 100                                            |                     |
|              |                                  | PFOA + PFOS     | 0.487                                | 0.07               | 1/1                                                             | Yes                           |                                                | 1                   |

Table 46 Summary of PFBS, PFOA, and PFOS Detections and Screening Level Exceedances (continued)

| AFFF Area      | Associated<br>Existing<br>IRP ID | Parameter       | Maximum<br>Detected<br>Concentration | Screening<br>Level | Number of<br>Samples /<br>Number of<br>Exceedances <sup>a</sup> | Exceeds<br>Screening<br>Level | Potentially<br>Complete<br>Exposure<br>Pathway | Recommendation                 |
|----------------|----------------------------------|-----------------|--------------------------------------|--------------------|-----------------------------------------------------------------|-------------------------------|------------------------------------------------|--------------------------------|
|                |                                  | Surface Soil    | (µg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                                |
|                |                                  | PFBS            | 1.1 J                                | 130,000<br>13      | 3/0                                                             | No                            | No                                             |                                |
|                |                                  | PFOA            | 9.7 J                                | 126                | 3/0                                                             | No                            | NO                                             |                                |
|                |                                  | PFOS            | 390 J                                | 126                | 3/3                                                             | Yes                           |                                                |                                |
|                |                                  | Subsurface Soil | (µg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                                |
|                |                                  | PFBS            | 1.1 J                                | 130,000<br>13      | 3/0                                                             | No                            | NI.                                            |                                |
|                |                                  | PFOA            | 1.7                                  | 126                | 3/0                                                             | No                            | No                                             |                                |
|                | Not an                           | PFOS            | 88                                   | 126                | 3/0                                                             | No                            |                                                |                                |
|                |                                  | Groundwater     | (µg/L)                               | (µg/L)             |                                                                 |                               |                                                |                                |
| AFFF Area 12   |                                  | PFBS            | 2.8                                  | 40                 | 3/0                                                             | No                            | Yes <sup>1</sup>                               | Advance area to RI.            |
| Building 88240 | existing                         | PFOA            | 0.11                                 | 0.07               | 3/1                                                             | Yes                           |                                                |                                |
| Dunding 88240  | site                             | PFOS            | 1.1                                  | 0.07               | 3/2                                                             | Yes                           | 1 65                                           |                                |
|                |                                  | PFOA + PFOS     | 1.21                                 | 0.07               | 3/2                                                             | Yes                           |                                                |                                |
|                |                                  | Sediment        | (µg/kg)                              | (µg/kg)            |                                                                 |                               |                                                |                                |
|                |                                  | PFBS            | 1.9                                  | 130,000<br>13      | 1/0                                                             | No                            | NI.                                            |                                |
|                |                                  | PFOA            | 1.5                                  | 126                | 1/0                                                             | No                            | No                                             |                                |
|                |                                  | PFOS            | 59                                   | 126                | 1/0                                                             | No                            |                                                |                                |
|                |                                  | Surface Water   | (μg/L)                               | (μg/L)             |                                                                 |                               |                                                |                                |
|                |                                  | PFBS            | 2.9                                  | 40                 | 1/0                                                             | No                            |                                                |                                |
|                |                                  | PFOA            | 0.82                                 | 0.07               | 1/1                                                             | Yes                           | Yes <sup>1</sup>                               |                                |
|                |                                  | PFOS            | 3.8                                  | 0.07               | 1/1                                                             | Yes                           | 103                                            |                                |
|                |                                  | PFOA + PFOS     | 4.62                                 | 0.07               | 1/1                                                             | Yes                           |                                                | of groundwater (November 2018) |

a Includes only primary samples unless an exceedance only occurred in a duplicate sample. In those instances, only the duplicate is included. PEPA Regional Screening Levels for soil protective of groundwater (November 2018) (https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdf). EPA Regional Screening Levels for residential soil (November 2018) (https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/ bin/chemicals/csl search). EPA Regional Screening Levels for tapwater (November 2018) (https://semspub.epa.gov/work/HQ/197416.pdfhttps://semspub.epa.gov/work/HQ/197416.pdfh. Screening Level listed in Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA) (EPA, May 2016b) and Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS) (EPA, May 2016a). The EPA Health Advisory value for drinking water of 0.07 µg/L applies to the combined detected concentrations of PFOS and PFOA. Maximum PFOA + PFOS concentration shown is the highest combined PFOA and PFOS concentration detected in a specific groundwater or surface water sample and in this instance is not the sum of the individual maximum PFOA and PFOS concentrations listed as they occurred in two separate samples. Duplicate result.

<sup>1</sup>Sampling of private domestic wells and investigation of groundwater downgradient of the Base has been completed by others.

**Bold** values exceed screening levels.

μg/kg = micrograms per kilogram ID = identification

PFOA = perfluorooctanoic acid

 $\mu g/L = micrograms per liter$ IRP = Installation Restoration Program PFOS = perfluorooctane sulfonate

AFFF = aqueous film forming foam

RI = remedial investigation

J = the reported concentration is an estimated value. ND = not detected SI = site inspection FTA = fire training area PFBS = perfluorobutane sulfonate WWTP = wastewater treatment plant

#### 9.0 REFERENCES

Aerostar SES LLC (ASL), March 2016. Final Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP) for Site Inspections of Fire Fighting Foam Usage at Various Air Force Bases in the United States.

ASL, November 2017. Final Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP) for Site Inspections of Aqueous Film Forming Foam Areas, Multiple Sites, United States Air Force Installations, Addendum 3 Field Sampling Plan for Ellsworth Air Force Base, Meade and Pennington Counties, South Dakota, Revision 3.

Administrative Rules of South Dakota (ARSD) Title 74 DENR, Chapter 74:54:01, "Groundwater Quality Standards." (http://www.sdlegislature.gov/Rules/DisplayRule.aspx?Rule=74:54:01).

Aptim Federal Services, LLC, July 2018. Final Phase I-Field Sampling Report, Perfluorinated Compound Sampling, Ellsworth Air Force Base, South Dakota – Farrar Ranch.

Ayuda Partners Joint Venture, December 2015. Final Work Plan Perfluorinated Compound Delineation at Area of Concern Perfluorinated Compound-1 Ellsworth Air Force Base, South Dakota.

Ayuda Partners Joint Venture, June 2017. Final Technical Memorandum Residential Well Survey, Perfluorinated Compound Delineation at Area of Concern Perfluorinated Compound-1, Ellsworth Air Force Base, South Dakota.

Ayuda Partners Joint Venture, November 2017. Final Technical Memorandum Proposed Groundwater Monitoring Well Locations Perfluorinated Compound Delineation, Area of Concern Perfluorinated Compound-1, Ellsworth Air Force Base, South Dakota.

CB&I Federal Services LLC, August 2017. Final Water Line Tie-In Construction Completion Report, Public Water Hookup Corrective Action Ellsworth Air Force Base, South Dakota – Farrar Ranch.

CH2M Hill, May 2015. Final Preliminary Assessment Report for Perfluorinated Compounds at Ellsworth Air Force Base, South Dakota.

EA Engineering, Science, and Technology, Inc. [EA], May 1994. Work Plan for Soil Vapor Extraction/Enhanced Soil Vapor Extraction and Bioventing Pilot Studies for Ellsworth Air Force Base (Operable Units 1, 2, and 4), Rapid City, South Dakota.

EA, May 1995. Final Remedial Investigation Report, Operable Unit 07 at Ellsworth Air Force Base, South Dakota.

Ellsworth Air Force Base, February 2015. "Ellsworth Spills." Database.

Ellsworth Air Force Base, February 2012. "Final Record of Decision Amendment Operable Unit 11/Basewide Groundwater."

Ellsworth Air Force Base, November 2012. "Limited Preliminary Assessment Summarizing Aqueous Film Forming Foam Use, Releases, and Disposal at Ellsworth AFB, South Dakota."

Ellsworth Air Force Base, 2017. "Integrated Natural Resources Management Plan."

Engineering-Science, September 1985. "Installation Restoration Program Phase I: Records Search, Ellsworth AFB, South Dakota."

Environmental Protection Agency (EPA), March 2012. Uniform Federal Policy for Quality Assurance Project Plans Workbook.

EPA, May 2016a. "Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)."

EPA, May 2016b. "Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)."

EPA, November 2018. Regional Screening Levels https://semspub.epa.gov/work/HQ/197416.pdf.

EPA RSL calculator. https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl search.

Krebs, Rita (AEGISS), email to Jeffrey Albert (ASL), August 2018.

Rapid City Water Division, 2017. Annual Drinking Water Quality Report January 1, 2017 – December 31, 2017.

SES Construction and Fuel Services LLC, January 2015. Final Site Investigation Report for Site Investigations of Fire Fighting Foam Usage at Various Air Force Bases in the United States for Ellsworth Air Force Base, Meade and Pennington Counties, South Dakota.

South Dakota Department of Environment and Natural Resources (SD DENR), 2000. *Spill Database*. http://denr.sd.gov/spillimages/2000/2000.243.PDF.

SD DENR, 2006. Spill Database. http://denr.sd.gov/spillimages/2006/2006.123.PDF.

SD DENR, June 2018. http://denr.sd.gov/des/dw/PDF/pwshandbook/0224hbk.pdf. Accessed June 29, 2018.

SD DENR, July 2018. https://denr.sd.gov/wrimage/WellCompletionReports/images75k/00061408.pdf. Accessed July 3, 2018.

SD DENR, August 2018a. https://denr.sd.gov/des/dw/PDF/SysInfo/sysinfo0259.pdf.

SD DENR, August 2018b. http://denr.sd.gov/des/dw/PDF/SysInfo/sysinfo2094.pdf.

U.S. Army Corps of Engineers (USACE), June 2013. Geology Supplement to the Scope of Services.

USACE, Omaha District, July 2015. Performance Work Statement for Site Inspection of Aqueous Film Forming Areas, Multiple Sites, United States Air Force Installations.

United States Geological Survey, 2008. *Maps Showing Geology, Structure, and Geophysics of the Central Black Hills, by Jack A. Redden and Ed DeWitt.* https://pubs.er.usgs.gov/publication/sim2777.

U.S. Geological Survey, 2017a. Box Elder Quadrangle, South Dakota – Pennington County [map]. 1:24,000. 7.5 Minute Series. United States Department of the Interior.

U.S. Geological Survey, 2017b. Bend Quadrangle, South Dakota [map]. 1:24,000. 7.5 Minute Series. United States Department of the Interior.

# Appendix A Figures

# Appendix B RSL Calculation

# **Default Resident Equation Inputs for Soil**

| TR (target risk) unitless  LT (lifetime) years  70  ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------|
| TR (target risk) unitless  LT (lifetime) years  70  ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Variable                                                               | Value |
| LT (lifetime) years  ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | THQ (target hazard quotient) unitless                                  | 0.1   |
| ETe (exposure time) hours/day 24 ETe (child exposure time) hours/day 24 ETe (child exposure time) hours/day 24 ETe (adult exposure time) hours/day 24 ETe (mutagenic exposure time) hours/day 24 EDe (exposure duration) years 26 EDe (exposure duration) years 20 EDe (mutagenic exposure duration) years 20 EDe (mutagenic exposure duration) years 20 EDe (mutagenic exposure duration) years 4 EDe (mutagenic exposure duration) years 10 EDe (mutagenic exposure duration) years 10 EWe (body weight - child) kg 80 BWe (body weight - adult) kg 80 BWe (mutagenic body weight) kg 80 SAe (mutagenic body weight) kg 80 SAe (skin surface area - child) cm ²/day 2373 SAe (skin surface area - adult) cm ²/day 2373 SAe (mutagenic skin surface area) cm ²/day 2373 SAe (exposure frequency) days/year 350 EFee (exposure frequency) days/year 350 EFee (exposure frequency - child) days/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TR (target risk) unitless                                              | 1E-06 |
| ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LT (lifetime) years                                                    | 70    |
| ET Commutagenic exposure time) hours/day  ED Commutagenic exposure duration) years  ED Commutagenic exposure duration - adult) years  ED Commutagenic exposure duration) years  ED Commutagenic body weight) kg  ED Commutagenic skin surface area - child) cm 2/day  ED Commutagenic skin surface area - child) cm 2/day  ED Commutagenic skin surface area cm 2/day  ED Commutagenic skin surface ar                                                                                                                                                                                                                                                                                                                                                | ET <sub>res</sub> (exposure time) hours/day                            | 24    |
| ET <sub>n,2</sub> (mutagenic exposure time) hours/day 24 ET <sub>n,6</sub> (mutagenic exposure time) hours/day 24 ET <sub>n,6</sub> (mutagenic exposure time) hours/day 24 ET <sub>n,6</sub> (mutagenic exposure time) hours/day 24 ED <sub>n,6</sub> (mutagenic exposure time) hours/day 24 ED <sub>n,6</sub> (exposure duration) years 26 ED <sub>n,6</sub> (exposure duration - child) years 20 ED <sub>n,6</sub> (mutagenic exposure duration) years 21 ED <sub>n,6</sub> (mutagenic exposure duration) years 22 ED <sub>n,6</sub> (mutagenic exposure duration) years 31 ED <sub>n,6,16</sub> (mutagenic exposure duration) years 4 ED <sub>n,6,16</sub> (mutagenic exposure duration) years 4 ED <sub>n,6,16</sub> (mutagenic exposure duration) years 10 ED <sub>n,6,16</sub> (mutagenic exposure duration) years 10 ED <sub>n,6,16</sub> (mutagenic exposure duration) years 11 ED <sub>n,6,16</sub> (mutagenic exposure duration) years 11 ED <sub>n,6,16</sub> (mutagenic body weight) kg 12 ED <sub>n,6,16</sub> (mutagenic body weight) kg 13 ED <sub>n,6,16</sub> (mutagenic body weight) kg 14 ED <sub>n,6,16</sub> (mutagenic body weight) kg 15 ED <sub>n,6,16</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day 2373 SA <sub>n,6,16</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day 2373 SA <sub>n,6,16</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day 2373 SA <sub>n,6,16</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day 2373 EF <sub>n,66</sub> (exposure frequency) days/year 350 EF <sub>n,66</sub> (exposure frequency - child) days/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ET (child exposure time) hours/day                                     | 24    |
| ET <sub>3.6</sub> (mutagenic exposure time) hours/day  24  ET <sub>4.6</sub> (mutagenic exposure time) hours/day  24  ET <sub>4.6,6</sub> (mutagenic exposure time) hours/day  24  ED <sub>3.6</sub> (exposure duration) years  26  ED <sub>3.6</sub> (exposure duration - child) years  20  ED <sub>3.6</sub> (exposure duration - adult) years  20  ED <sub>3.6</sub> (mutagenic exposure duration) years  21  ED <sub>3.6</sub> (mutagenic exposure duration) years  22  ED <sub>3.6</sub> (mutagenic exposure duration) years  43  ED <sub>4.16</sub> (mutagenic exposure duration) years  10  ED <sub>4.16</sub> (mutagenic exposure duration) years  10  EW <sub>4.16</sub> (body weight - child) kg  80  EW <sub>3.6</sub> (body weight - adult) kg  80  EW <sub>4.16</sub> (mutagenic body weight) kg  80  EV <sub>4.16</sub> (mutagenic body weight) kg  80  EV <sub>4.16</sub> (mutagenic body weight) kg  80  EV <sub>4.16</sub> (mutagenic skin surface area - adult) cm ²/day  2373  SA <sub>6.16</sub> (skin surface area - adult) cm ²/day  2373  SA <sub>6.16</sub> (mutagenic skin surface area) cm ²/day  2373  SA <sub>6.16</sub> (mutagenic skin surface area) cm ²/day  6032  EV <sub>4.16</sub> (mutagenic skin surface area) cm ²/day  6032  EV <sub>4.16</sub> (mutagenic skin surface area) cm ²/day  6032  EV <sub>4.16</sub> (mutagenic skin surface area) cm ²/day  6032  EV <sub>4.16</sub> (mutagenic skin surface area) cm ²/day  6032  EV <sub>4.16</sub> (mutagenic skin surface area) cm ²/day  6032  EV <sub>4.16</sub> (mutagenic skin surface area) cm ²/day  6032  EV <sub>4.16</sub> (exposure frequency) days/year  350  EV <sub>4.16</sub> (exposure frequency - child) days/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ET (adult exposure time) hours/day                                     | 24    |
| ET <sub>6.16</sub> (mutagenic exposure time) hours/day  24  ET <sub>16.26</sub> (mutagenic exposure time) hours/day  24  ED <sub>16.26</sub> (exposure duration) years  26  ED <sub>16.26</sub> (exposure duration - child) years  20  ED <sub>16.26</sub> (exposure duration - adult) years  20  ED <sub>16.26</sub> (mutagenic exposure duration) years  21  ED <sub>16.26</sub> (mutagenic exposure duration) years  22  ED <sub>16.26</sub> (mutagenic exposure duration) years  31  ED <sub>16.26</sub> (mutagenic exposure duration) years  32  ED <sub>16.26</sub> (mutagenic exposure duration) years  33  ED <sub>16.26</sub> (mutagenic exposure duration) years  34  ED <sub>16.26</sub> (mutagenic exposure duration) years  35  BW <sub>16.26</sub> (body weight - child) kg  36  BW <sub>16.26</sub> (body weight - adult) kg  37  BW <sub>16.26</sub> (mutagenic body weight) kg  38  BW <sub>16.26</sub> (mutagenic body weight) kg  39  SA <sub>16.26</sub> (mutagenic body weight) kg  SA <sub>16.26</sub> (skin surface area - adult) cm ²/day  37  SA <sub>26</sub> (mutagenic skin surface area) cm ²/day  37  SA <sub>26</sub> (mutagenic skin surface area) cm ²/day  37  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day  37  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day  37  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day  37  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day  37  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day  37  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day  37  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day  37  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day  37  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day  37  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day  37  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day  37  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day  37  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day  37  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day                                                                                                                                                                                                                                                                                                                                                   | ET <sub>n.2</sub> (mutagenic exposure time) hours/day                  | 24    |
| ET16,26 (mutagenic exposure time) hours/day  ED_me (exposure duration) years  ED_me (exposure duration - child) years  ED_me (exposure duration - adult) years  ED_me (mutagenic exposure duration) years  ED_me (body weight - child) kg  ED_me (body weight - adult) kg  ED_me (body weight - adult) kg  ED_me (mutagenic body weight) kg  ED_me (mutagenic skin surface area) cm 2/day  ED_me (mutagenic skin surface are                                                                                                                                                                                                                                                                                                                                                | ET <sub>2.6</sub> (mutagenic exposure time) hours/day                  | 24    |
| ED (exposure duration) years  ED (exposure duration - child) years  ED (exposure duration - adult) years  ED (exposure duration - adult) years  ED (exposure duration - adult) years  ED (exposure duration) years  ED (mutagenic exposure duration) years  ED (mutagenic body weight - child) kg  ED (mutagenic body weight) kg  ED (mutagenic skin surface area) cm 2/day  ED (mutagenic skin surface area) cm 2                                                                                                                                                                                                                                                                                                                                                | ET <sub>6.16</sub> (mutagenic exposure time) hours/day                 | 24    |
| ED <sub>res.</sub> (exposure duration - child) years  ED <sub>res.</sub> (exposure duration - adult) years  ED <sub>res.</sub> (exposure duration - adult) years  ED <sub>res.</sub> (mutagenic exposure duration) years  ED <sub>res.</sub> (body weight - child) kg  ED <sub>res.</sub> (body weight - adult) kg  ED <sub>res.</sub> (body weight - adult) kg  ED <sub>res.</sub> (mutagenic body weight) kg  ED <sub>res.</sub> (skin surface area - child) cm ²/day  ED <sub>res.</sub> (skin surface area - adult) cm ²/day  ED <sub>res.</sub> (mutagenic skin surface area) cm ²/day  ED <sub>res.</sub> (exposure frequency) days/year  ED <sub>res.</sub> (exposure frequency - child) days/year  ED <sub>res.</sub> (exposure frequency - child) days/year  ED <sub>res.</sub> (exposure frequency - child) days/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ET <sub>16.26</sub> (mutagenic exposure time) hours/day                | 24    |
| ED <sub>mean</sub> (exposure duration - adult) years  ED <sub>mean</sub> (mutagenic exposure duration) years  ED <sub>mean</sub> (mutagenic exposure duration) years  4  ED <sub>mean</sub> (mutagenic exposure duration) years  10  ED <sub>mean</sub> (mutagenic exposure duration) years  10  BW <sub>mean</sub> (body weight - child) kg  BW <sub>mean</sub> (body weight - adult) kg  BW <sub>mean</sub> (body weight - adult) kg  BW <sub>mean</sub> (mutagenic body weight) kg  SA <sub>mean</sub> (skin surface area - child) cm <sup>-2</sup> /day  SA <sub>mean</sub> (skin surface area - adult) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>mean</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day | ED <sub>rec</sub> (exposure duration) years                            | 26    |
| ED <sub>0.2</sub> (mutagenic exposure duration) years  ED <sub>0.6</sub> (mutagenic exposure duration) years  ED <sub>0.6</sub> (mutagenic exposure duration) years  10  ED <sub>16.26</sub> (mutagenic exposure duration) years  10  BW <sub>16.26</sub> (mutagenic exposure duration) years  10  BW <sub>16.26</sub> (body weight - child) kg  15  BW <sub>16.26</sub> (body weight - adult) kg  80  BW <sub>16.26</sub> (mutagenic body weight) kg  15  BW <sub>16.26</sub> (mutagenic body weight) kg  80  BW <sub>16.26</sub> (mutagenic body weight) kg  80  SA <sub>165.26</sub> (mutagenic body weight) kg  SA <sub>165.26</sub> (skin surface area - child) cm ²/day  SA <sub>165.26</sub> (mutagenic skin surface area) cm ²/day  SA <sub>2.6</sub> (mutagenic skin surface area) cm ²/day  SA <sub>6.16</sub> (mutagenic skin surface area) cm ²/day  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day                                                                                                                                                                                                                                                                                                                                                               | ED <sub>rec.r.</sub> (exposure duration - child) years                 | 6     |
| ED <sub>2.6</sub> (mutagenic exposure duration) years  ED <sub>6.16</sub> (mutagenic exposure duration) years  10  ED <sub>16.26</sub> (mutagenic exposure duration) years  10  BW <sub>766.26</sub> (body weight - child) kg  BW <sub>766.26</sub> (body weight - adult) kg  80  BW <sub>766.26</sub> (mutagenic body weight) kg  15  BW <sub>7.6</sub> (mutagenic body weight) kg  80  BW <sub>16.26</sub> (mutagenic body weight) kg  80  BW <sub>16.26</sub> (mutagenic body weight) kg  80  SA <sub>766.26</sub> (skin surface area - child) cm ²/day  SA <sub>766.26</sub> (skin surface area - adult) cm ²/day  SA <sub>766.26</sub> (mutagenic skin surface area) cm ²/day  SA <sub>6.16</sub> (mutagenic skin surface area) cm ²/day  SA <sub>6.16</sub> (mutagenic skin surface area) cm ²/day  SA <sub>6.16</sub> (mutagenic skin surface area) cm ²/day  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ED <sub>rec.a</sub> (exposure duration - adult) years                  | 20    |
| ED <sub>6.16</sub> (mutagenic exposure duration) years  ED <sub>16.26</sub> (mutagenic exposure duration) years  10  BW <sub>16.26</sub> (body weight - child) kg  BW <sub>16.26</sub> (body weight - adult) kg  BW <sub>16.26</sub> (mutagenic body weight) kg  BW <sub>16.26</sub> (skin surface area - child) cm ²/day  SA <sub>16.26</sub> (skin surface area - adult) cm ²/day  SA <sub>2.6</sub> (mutagenic skin surface area) cm ²/day  SA <sub>2.6</sub> (mutagenic skin surface area) cm ²/day  SA <sub>6.16</sub> (mutagenic skin surface area) cm ²/day  SA <sub>16.26</sub> (mutagenic skin surface area) cm ²/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ED <sub>0.2</sub> (mutagenic exposure duration) years                  |       |
| ED <sub>16-26</sub> (mutagenic exposure duration) years  BW <sub>rec2</sub> (body weight - child) kg  BW <sub>rec3</sub> (body weight - adult) kg  BW <sub>0.2</sub> (mutagenic body weight) kg  BW <sub>0.2</sub> (mutagenic body weight) kg  BW <sub>0.4</sub> (mutagenic body weight) kg  BW <sub>0.46</sub> (mutagenic body weight) kg  BW <sub>16-26</sub> (mutagenic body weight) kg  BO  SA <sub>res-2</sub> (skin surface area - child) cm <sup>-2</sup> /day  SA <sub>res-3</sub> (skin surface area - adult) cm <sup>-2</sup> /day  SA <sub>0.2</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>2.6</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>6-16</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SO <sub>16-26</sub> (exposure frequency) days/year  SO <sub>16-26</sub> (exposure frequency - child) days/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ED <sub>2.6</sub> (mutagenic exposure duration) years                  | 4     |
| BW <sub>res_2</sub> (body weight - child) kg  BW <sub>res_2</sub> (body weight - adult) kg  BW <sub>res_2</sub> (body weight - adult) kg  BW <sub>res_2</sub> (mutagenic body weight) kg  BW <sub>res_3</sub> (mutagenic body weight) kg  BW <sub>res_4</sub> (mutagenic body weight) kg  BW <sub>res_6</sub> (mutagenic body weight) kg  BW <sub>res_6</sub> (mutagenic body weight) kg  SA <sub>res_6</sub> (skin surface area - child) cm ²/day  SA <sub>res_9</sub> (skin surface area - adult) cm ²/day  SA <sub>res_9</sub> (mutagenic skin surface area) cm ²/day  SA <sub>res_6</sub> (mutagenic skin surface area) cm ²/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ED <sub>6.16</sub> (mutagenic exposure duration) years                 | 10    |
| BW, (body weight - adult) kg  BW, (mutagenic body weight) kg  BO, SA, (skin surface area - child) cm ²/day  SA, (skin surface area - adult) cm ²/day  SA, (skin surface area - adult) cm ²/day  SA, (mutagenic skin surface area) cm ²/day  SA, (skin surface area) cm ²/day                                                                                                                                                                                                                                                                                                                                                                                                                                              | ED <sub>16.26</sub> (mutagenic exposure duration) years                | 10    |
| BW <sub>0.2</sub> (mutagenic body weight) kg  BW <sub>0.6</sub> (mutagenic body weight) kg  BW <sub>16.26</sub> (mutagenic body weight) kg  BW <sub>16.26</sub> (mutagenic body weight) kg  BW <sub>16.26</sub> (mutagenic body weight) kg  SA <sub>res-c</sub> (skin surface area - child) cm <sup>-2</sup> /day  SA <sub>res-a</sub> (skin surface area - adult) cm <sup>-2</sup> /day  SA <sub>0.2</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>2.6</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>6-16</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day                                                                                                                 | BW <sub>rec.</sub> (body weight - child) kg                            |       |
| BW <sub>2.6</sub> (mutagenic body weight) kg  BW <sub>6.16</sub> (mutagenic body weight) kg  BW <sub>16.26</sub> (mutagenic body weight) kg  BW <sub>16.26</sub> (mutagenic body weight) kg  SA <sub>res-c</sub> (skin surface area - child) cm <sup>-2</sup> /day  SA <sub>res-a</sub> (skin surface area - adult) cm <sup>-2</sup> /day  SA <sub>0.2</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>2.6</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>6-16</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>6-16</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day                                                                                                                                                                                                                                          |                                                                        |       |
| BW <sub>6-16</sub> (mutagenic body weight) kg  BW <sub>16-36</sub> (mutagenic body weight) kg  SA <sub>res-c</sub> (skin surface area - child) cm <sup>-2</sup> /day  SA <sub>res-a</sub> (skin surface area - adult) cm <sup>-2</sup> /day  SA <sub>0-2</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>2-6</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>6-16</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  6032  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  6032  EF <sub>res-c</sub> (exposure frequency) days/year  350  EF <sub>res-c</sub> (exposure frequency - child) days/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-1                                                                    |       |
| BW <sub>16.26</sub> (mutagenic body weight) kg  SA <sub>res-c</sub> (skin surface area - child) cm ²/day  2373  SA <sub>res-a</sub> (skin surface area - adult) cm ²/day  6032  SA <sub>0-2</sub> (mutagenic skin surface area) cm ²/day  2373  SA <sub>2-6</sub> (mutagenic skin surface area) cm ²/day  2373  SA <sub>6-16</sub> (mutagenic skin surface area) cm ²/day  6032  SA <sub>16-26</sub> (mutagenic skin surface area) cm ²/day  6032  SA <sub>16-26</sub> (mutagenic skin surface area) cm ²/day  6032  EF <sub>rec</sub> (exposure frequency) days/year  350  EF <sub>rec</sub> (exposure frequency - child) days/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        |       |
| SA <sub>res-c</sub> (skin surface area - child) cm <sup>2</sup> /day 2373  SA <sub>res-a</sub> (skin surface area - adult) cm <sup>2</sup> /day 6032  SA <sub>0-2</sub> (mutagenic skin surface area) cm <sup>2</sup> /day 2373  SA <sub>2-6</sub> (mutagenic skin surface area) cm <sup>2</sup> /day 2373  SA <sub>6-16</sub> (mutagenic skin surface area) cm <sup>2</sup> /day 6032  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>2</sup> /day 6032  EF <sub>rec</sub> (exposure frequency) days/year 350  EF <sub>rec</sub> (exposure frequency - child) days/year 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BW <sub>6.16</sub> (mutagenic body weight) kg                          | 80    |
| SA <sub>res-a</sub> (skin surface area - adult) cm <sup>2</sup> /day  SA <sub>0-2</sub> (mutagenic skin surface area) cm <sup>2</sup> /day  2373  SA <sub>2-6</sub> (mutagenic skin surface area) cm <sup>2</sup> /day  2373  SA <sub>6-16</sub> (mutagenic skin surface area) cm <sup>2</sup> /day  6032  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>2</sup> /day  6032  EF <sub>rec</sub> (exposure frequency) days/year  350  EF <sub>rec</sub> (exposure frequency - child) days/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |       |
| SA <sub>0.2</sub> (mutagenic skin surface area) cm <sup>2</sup> /day  2373  SA <sub>2.6</sub> (mutagenic skin surface area) cm <sup>2</sup> /day  2373  SA <sub>6-16</sub> (mutagenic skin surface area) cm <sup>2</sup> /day  6032  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>2</sup> /day  6032  EF <sub>rec</sub> (exposure frequency) days/year  350  EF <sub>rec</sub> (exposure frequency - child) days/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SA <sub>res-c</sub> (skin surface area - child) cm <sup>2</sup> /day   | 2373  |
| SA <sub>2.6</sub> (mutagenic skin surface area) cm <sup>2</sup> /day  SA <sub>6.16</sub> (mutagenic skin surface area) cm <sup>2</sup> /day  SA <sub>6.16</sub> (mutagenic skin surface area) cm <sup>2</sup> /day  6032  SA <sub>16.26</sub> (mutagenic skin surface area) cm <sup>2</sup> /day  6032  EF <sub>xec</sub> (exposure frequency) days/year  350  EF <sub>xec</sub> (exposure frequency - child) days/year  350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SA <sub>res-a</sub> (skin surface area - adult) cm ²/day               | 6032  |
| SA <sub>6-16</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day  6032  EF <sub>resc</sub> (exposure frequency) days/year  350  EF <sub>resc</sub> (exposure frequency - child) days/year  350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SA <sub>0-2</sub> (mutagenic skin surface area) cm <sup>2</sup> /day   | 2373  |
| SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>2</sup> /day  6032  EF <sub>rec</sub> (exposure frequency) days/year  350  EF <sub>rec</sub> (exposure frequency - child) days/year  350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SA <sub>2-6</sub> (mutagenic skin surface area) cm <sup>2</sup> /day   | 2373  |
| EF_rec (exposure frequency) days/year350EF_rec (exposure frequency - child) days/year350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SA <sub>6-16</sub> (mutagenic skin surface area) cm <sup>-2</sup> /day | 6032  |
| EF <sub>resc</sub> (exposure frequency - child) days/year 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SA <sub>16-26</sub> (mutagenic skin surface area) cm <sup>2</sup> /day | 6032  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EF <sub>rec</sub> (exposure frequency) days/year                       | 350   |
| EF <sub>res-a</sub> (exposure frequency - adult) days/year 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EF <sub>rec.r.</sub> (exposure frequency - child) days/year            | 350   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EF <sub>res-a</sub> (exposure frequency - adult) days/year             | 350   |

M2027.0003 B-1 3/22/18

| Variable                                                                  | Value      |
|---------------------------------------------------------------------------|------------|
| EF <sub>a.2</sub> (mutagenic exposure frequency) days/year                | 350        |
| EF <sub>2.6</sub> (mutagenic exposure frequency) days/year                | 350        |
| EF <sub>6.16</sub> (mutagenic exposure frequency) days/year               | 350        |
| EF <sub>16.26</sub> (mutagenic exposure frequency) days/year              | 350        |
| raciani , 3                                                               | 36750      |
| recard , 3 3 ,                                                            | 166833.3   |
| , 3                                                                       | 200        |
| , 5                                                                       | 100        |
| , 3                                                                       | 200        |
| 7-5                                                                       | 200        |
| , 3                                                                       | 100        |
| 10-20                                                                     | 100        |
| res-a · , J                                                               | 0.07       |
| AF <sub>res-c</sub> (skin adherence factor - child) mg/cm <sup>2</sup>    | 0.2        |
| AF <sub>0-2</sub> (mutagenic skin adherence factor) mg/cm <sup>2</sup>    | 0.2        |
| AF <sub>2-6</sub> (mutagenic skin adherence factor) mg/cm <sup>-2</sup>   | 0.2        |
| AF <sub>6-16</sub> (mutagenic skin adherence factor) mg/cm <sup>2</sup>   | 0.07       |
| AF <sub>16-26</sub> (mutagenic skin adherence factor) mg/cm <sup>2</sup>  | 0.07       |
| DFS <sub>rec-arti</sub> (age-adjusted soil dermal factor) mg/kg           | 103390     |
| DFSM <sub>rac.adi</sub> (mutagenic age-adjusted soil dermal factor) mg/kg | 428260     |
| AT <sub>ree</sub> (averaging time - resident carcinogenic)                | 365        |
| City <sub>pee</sub> (Climate Zone) Selection                              | Default    |
| A <sub>c</sub> (PEF acres)                                                | 0.5        |
| Q/C <sub>wind</sub> (g/m²-s per kg/m³)                                    | 93.77      |
| PEF (particulate emission factor) m <sup>3</sup> /kg                      | 1359344438 |
| A (PEF Dispersion Constant)                                               | 16.2302    |
| B (PEF Dispersion Constant)                                               | 18.7762    |
| C (PEF Dispersion Constant)                                               | 216.108    |
| V (fraction of vegetative cover) unitless                                 | 0.5        |
| m ·                                                                       | 4.69       |
| ,                                                                         | 11.32      |
| $F(x)$ (function dependent on $U_{m}/U_{t}$ ) unitless                    | 0.194      |

Default
Resident Equation Inputs for Soil

| Variable                                                               | Value     |
|------------------------------------------------------------------------|-----------|
| City <sub>ve</sub> (Climate Zone) Selection                            | Default   |
| A (VF acres)                                                           | 0.5       |
| $Q/C_{vol}$ (g/m <sup>2</sup> -s per kg/m <sup>3</sup> )               | 68.18     |
| foc (fraction organic carbon in soil) g/g                              | 0.006     |
| p <sub>b</sub> (dry soil bulk density) g/cm <sup>3</sup>               | 1.5       |
| p <sub>s</sub> (soil particle density) g/cm <sup>-3</sup>              | 2.65      |
| n (total soil porosity) L/L/L                                          | 0.43396   |
| Theta (air-filled soil porosity) L (Air/L soil                         | 0.28396   |
| Theta (water-filled soil porosity) L (water-filled soil porosity) L    | 0.15      |
| T (exposure interval) s                                                | 819936000 |
| A (VF Dispersion Constant)                                             | 11.911    |
| B (VF Dispersion Constant)                                             | 18.4385   |
| C (VF Dispersion Constant)                                             | 209.7845  |
| City <sub>VE macc-loading</sub> (Climate Zone) Selection               | Default   |
| VF <sub>ml</sub> (volitization factor - mass-limit) m <sup>3</sup> /kg |           |
| $Q/C_{vol}$ (g/m <sup>2</sup> -s per kg/m <sup>3</sup> )               | 68.18     |
| A <sub>c</sub> (VF mass-limit acres)                                   | 0.5       |
| T (exposure interval) yr                                               | 26        |
| d¸ (depth of source) m                                                 |           |
| p <sub>b</sub> (dry soil bulk density) g/cm <sup>3</sup>               | 1.5       |
| A (VF Dispersion Constant - Mass Limit)                                | 11.911    |
| B (VF Dispersion Constant - Mass Limit)                                | 18.4385   |
| C (VF Dispersion Constant - Mass Limit)                                | 209.7845  |
| T <sub>w</sub> (groundwater temperature) Celsius                       | 25        |

M2027.0003 B-3 3/22/18

# Default Resident Risk-Based Screening Levels (RSL) for Soil

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #29); H = HEAST; F = See FAQ; E = see user guide Section 2.3.5; W = see user guide Section 2.3.6; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; \* = where: n SL < 100X c SL; \*\* = where n SL < 10X c SL; SSL values are based on DAF=1; m = Concentration may exceed ceiling limit (See User Guide); S = Concentration may exceed Csat (See User Guide); U = User-provided

| Chemical                             | CAS<br>Number | Mutagen? | VOC? | Ingestion<br>SF<br>(mg/kg-day) -1 | SFO<br>Ref | Inhalation<br>Unit<br>Risk<br>(ug/m³) <sup>-1</sup> | IUR | RfD<br>(mg/kg-day) | RfD<br>Ref |   | RfC<br>Ref |   | ABS |   | Soil<br>Saturation<br>Concentration<br>(mg/kg) | S<br>(mg/L) |  |
|--------------------------------------|---------------|----------|------|-----------------------------------|------------|-----------------------------------------------------|-----|--------------------|------------|---|------------|---|-----|---|------------------------------------------------|-------------|--|
| Perfluorooctane sulfonic acid (PFOS) | 1763-23-1     | No       | No   | -                                 |            | -                                                   |     | 2.00E-05           | D          | - |            | 1 | 0.1 | 1 | -                                              | 6.80E+02    |  |
| Perfluorooctanoic acid<br>(PFOA)     | 335-67-1      | No       | No   | 7.00E-02                          | D          | -                                                   |     | 2.00E-05           | D          | - |            | 1 | 0.1 | 1 | -                                              | 9.50E+03    |  |

| K<br>(cm3/g) | K <sub>d</sub><br>(cm <sup>3</sup> /g) | HLC<br>(atm-m³/mole) | Henry's<br>Law<br>Constant<br>(unitless) | T <sub>boil</sub> |          | Critical<br>Temperature<br>T <sub>crit</sub><br>(K) | T <sub>crit</sub><br>Ref | D <sub>ia</sub><br>(cm²/s) | D <sub>iw</sub><br>(cm²/s) | D <sub>A</sub><br>(cm <sup>2</sup> /s) | Particulate<br>Emission<br>Factor<br>(m³/kg) | Volatilization<br>Factor<br>(m³/kg) |
|--------------|----------------------------------------|----------------------|------------------------------------------|-------------------|----------|-----------------------------------------------------|--------------------------|----------------------------|----------------------------|----------------------------------------|----------------------------------------------|-------------------------------------|
| 3.72E+02     | -                                      | -                    | -                                        | 532.15            | PHYSPROP | -                                                   |                          | 2.07E-02                   | 5.25E-06                   | -                                      | 1.36E+09                                     | -                                   |
| 1.15E+02     | -                                      | -                    | -                                        | 465.55            | PHYSPROP | -                                                   |                          | 2.26E-02                   | 5.79E-06                   | -                                      | 1.36E+09                                     | -                                   |

| Ingestion<br>SL<br>TR=1E-06<br>(mg/kg) | SL       | Inhalation<br>SL<br>TR=1E-06<br>(mg/kg) | Carcinogenic<br>SL<br>TR=1E-06<br>(mg/kg) | Child    | Dermal<br>SL<br>Child<br>THQ=0.1<br>(mg/kg) | SL<br>Child | Noncarcinogenic<br>SL<br>Child<br>THI=0.1<br>(mg/kg) | Ingestion<br>SL<br>Adult<br>THQ=0.1<br>(mg/kg) | SL<br>Adult | SL<br>Adult | Noncarcinogenic<br>SL<br>Adult<br>THI=0.1<br>(mg/kg) | Screening<br>Level<br>(mg/kg) |
|----------------------------------------|----------|-----------------------------------------|-------------------------------------------|----------|---------------------------------------------|-------------|------------------------------------------------------|------------------------------------------------|-------------|-------------|------------------------------------------------------|-------------------------------|
| -                                      | -        | -                                       | -                                         | 1.56E-01 | 6.59E-01                                    | -           | 1.26E-01                                             | 1.67E+00                                       | 3.95E+00    | -           | 1.17E+00                                             | 1.26E-01                      |
| 9.93E+00                               | 3 53F+01 | _                                       | 7.75E+00                                  | 1.56E-01 | 6.59E-01                                    | _           | 1.26E-01                                             | 1 67F+00                                       | 3.95E+00    | _           | 1.17E+00                                             | nc<br>1.26E-01                |
| 3.332.00                               | 3.332.01 |                                         | 7.732.00                                  | 1.552 01 | 0.55E 01                                    |             | 1.232 01                                             | 1.0, 2.00                                      | 3.332.00    |             | 1.172.00                                             | nc                            |

M2027.0003 B-4 3/22/18

| Chemical                             |           | Inhalation Unit<br>Risk<br>(µg/m <sup>3</sup> ) <sup>-1</sup> | <b>Toxicity</b> | EPA Cancer<br>Classification | Unit Risk<br>Tumor | Inhalation<br>Unit Risk<br>Target<br>Organ | Inhalation<br>Unit Risk | <b>Unit Risk</b> | Unit Risk<br>Treatment | Inhalation<br>Unit Risk<br>Study<br>Reference | <b>Unit Risk</b> |
|--------------------------------------|-----------|---------------------------------------------------------------|-----------------|------------------------------|--------------------|--------------------------------------------|-------------------------|------------------|------------------------|-----------------------------------------------|------------------|
| Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 |                                                               |                 |                              |                    |                                            |                         |                  |                        |                                               |                  |
| Perfluorooctanoic acid (PFOA)        | 335-67-1  |                                                               |                 |                              |                    |                                            |                         |                  |                        |                                               |                  |

**Inhalation Unit Risk Toxicity Metadata** 

B-5 3/22/18

# Oral Slope Factor Toxicity Metadata

| Chemical                             | CASNUM    | Oral Slope<br>Factor<br>(mg/kg-day) <sup>-1</sup> | _     | EPA Cancer<br>Classification | Factor<br>Tumor | <b>Target</b> | Slope<br>Factor |    | Factor | Treatment | _  | Oral<br>Slope<br>Factor<br>Notes |
|--------------------------------------|-----------|---------------------------------------------------|-------|------------------------------|-----------------|---------------|-----------------|----|--------|-----------|----|----------------------------------|
| Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 |                                                   |       |                              |                 |               |                 |    |        |           |    |                                  |
| Perfluorooctanoic acid (PFOA)        | 335-67-1  | 7.00E-02                                          | DWSHA | NA                           | NA              | NA            | NA              | NA | NA     | NA        | NA | NA                               |

M2027.0003 B-6 3/22/18

| Chemical                             | CASNIIM   | Chronic<br>Oral<br>Reference<br>Dose<br>(mg/kg-day) | Toxicity | Oral<br>Chronic<br>Reference<br>Dose<br>Basis | Oral<br>Chronic<br>Reference<br>Dose<br>Confidence<br>Level | Oral<br>Chronic<br>Reference<br>Dose<br>Critical<br>Effect |
|--------------------------------------|-----------|-----------------------------------------------------|----------|-----------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|
| CHEIIICAI                            | CASIVUIVI | (IIIg/kg-uay)                                       | Source   | Dasis                                         | Level                                                       | Ellect                                                     |
| Perfluorooctane sulfonic acid (PFOS) | 1763-23-1 | 2.00E-05                                            | DWSHA    | NA                                            | NA                                                          | NA                                                         |
| Perfluorooctanoic acid (PFOA)        | 335-67-1  | 2.00E-05                                            | DWSHA    | NA                                            | NA                                                          | NA                                                         |

| Oral<br>Chronic<br>Reference<br>Dose<br>Target<br>Organ | Dose | Oral<br>Chronic<br>Reference<br>Dose<br>Uncertainty<br>Factor | Oral<br>Chronic<br>Reference<br>Dose<br>Species | Oral<br>Chronic<br>Reference<br>Dose<br>Route | Oral<br>Chronic<br>Reference<br>Dose<br>Study<br>Duration | Oral<br>Chronic<br>Reference<br>Dose<br>Study<br>Reference | Oral<br>Chronic<br>Reference<br>Dose<br>Notes |
|---------------------------------------------------------|------|---------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|
| NA                                                      | NA   | NA                                                            | NA                                              | NA                                            | NA                                                        | NA                                                         | NA                                            |
| NA                                                      | NA   | NA                                                            | NA                                              | NA                                            | NA                                                        | NA                                                         | NA                                            |

M2027.0003 B-7 3/22/18

B-8

| Chemical                                                           | CASNUM                | Chronic<br>Inhalation<br>Reference<br>Concentration<br>(mg/m³) | Toxicity<br>Source | Inhalation<br>Chronic<br>Reference<br>Concentration<br>Basis | Inhalation<br>Chronic<br>Reference<br>Concentration<br>Confidence<br>Level | Inhalation<br>Chronic<br>Reference<br>Concentration<br>Critical Effect |  |
|--------------------------------------------------------------------|-----------------------|----------------------------------------------------------------|--------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|--|
| Perfluorooctane sulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) | 1763-23-1<br>335-67-1 | -<br>-                                                         |                    |                                                              |                                                                            |                                                                        |  |

| Inhalation    | Inhalation    |               |               | Inhalation    | Inhalation    |               |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Chronic       | Chronic       | Inhalation    | Inhalation    | Chronic       | Chronic       | Inhalation    |
| Reference     | Reference     | Chronic       | Chronic       | Reference     | Reference     | Chronic       |
| Concentration | Concentration | Reference     | Reference     | Concentration | Concentration | Reference     |
| Modifying     | Uncertainty   | Concentration | Concentration | Study         | Study         | Concentration |
| Factor        | Factor        | Species       | Route         | Duration      | Reference     | Notes         |
|               |               | _             |               |               |               |               |
|               |               |               |               |               |               |               |

# **Appendix C**

**Readiness Review Forms, Field Forms, and Boring Logs** 

**Employee Name:** Arek Turolski

**Job Number:** M2027.0003

**Job Location:** Ellsworth AFB

#### Job Tasks:

Surface water sampling, groundwater sampling, soil sampling – surface soil and subsurface soil, soil boring logging, surface water and sediment sampling, mob/demob tasks

#### **Equipment Needed:**

Soil boring: Munsell Charts, tape measure, pens, soil boring forms, USCS table

GW Sampling: YSI, peristaltic pump, multiRAE, sample containers etc.

Sediment Sampling: Sample containers, spoons

SW Sampling: Sample containers, SW collection device

Proper PPE for all above tasks is a minimum Level D, plus nitrile gloves

#### **Documents Needed:**

Field forms: Boring log, GW sampling log, sample log, log book, calibration sheets

#### **Meeting Notes:**

We'll have one mini sonic rig working this installation with Justin as the geologist and Arek serving as back up. The rotation schedule is

April 17–26 – Travel out on April 16, return on April 27 – Ash, Justin, Miles, Arek May 1–May 10 – Travel out on April 30, return on May 11 – Ash, Justin, Matt B., Arek

May 15–24 – Travel out on May 14, return on May 25 – Ash, Justin, Miles, Arek

If a fourth shift is required, it will start after Memorial Day by traveling out on the 29<sup>th</sup>.

Justin has PTO scheduled for Friday May 4 through Sunday May 6 and Arek will be on the rig these days.

There are 12 different areas at this installation (called sites in the QAPP as this is one of the early work plans) and we have 38 wells to install. Groundwater is estimated to be 60 feet or less below surface throughout the installation. During our first rotation there is a major exercise scheduled so we will not be working on the airfield. Areas available for work off of the airfield during the first rotation are: Site 1, Outfall #3 wells (part of site 2 which has wells on the airfield as well), Site 3, Site 8, Site 10, and Site 17. This gives you 18 wells available for installation during the first rotation which should be more than enough to keep you guys busy.

We have only one existing well to be redeveloped/sampled at Site 1 and four SW/SD samples (three of which are off airfield).

#### Airfield work

Dig permits have been subcontracted and work will be started on April 5<sup>th</sup> for those. The subcontractor will have all non-airfield locations cleared by April 16<sup>th</sup> and all airfield locations cleared by May 1. We also have several locations that are soil borings only in which wells will not be installed.

#### Hotels/Storage Unit/Vehicles

The hotel for this work will be the Residence Inn at 581 Watiki Way, Box Elder South Dakota 57719. MAKE SURE YOU DO NOT USE GOVERNMENT RATE. Once you've read through this go ahead and book your rooms so you have them. Government rate is nearly twice as expensive as the standard rate for the first rotation. That may change during following rotations but ensure you're getting the cheapest rate available. Jenny – Please have the sample bottles shipped to this location for delivery no later than Monday the 16<sup>th</sup>. We'll need 20 gallons of PFC-free water to start with. They should be addressed to Ash Willis.

For vehicles – Justin is driving an Aerostar vehicle in from Hill AFB and I have arranged for two commercial truck pickups to be waiting for us at the airport on Monday the 16<sup>th</sup>. They'll be delivered there on Friday the 13<sup>th</sup> and have Ash and Arek's name attached to them. You guys will rent as normal from the airport counter but will be on the same monthly rate that was negotiated for Hill AFB which was 1050/month plus tax with 2500 miles of driving. Make sure your rental agreements have the rate/mileage listed before you sign for the trucks. Miles and Matt, get with Arek and Ash to coordinate your flights as you guys will be riding.

Ash will be organizing the storage unit and equipment the week of April 9<sup>th</sup> and he'll be coordinating with Justin on the storage unit, etc. If/when you guys have questions regarding equipment or a storage unit just let me know.

#### **IDW**

We will be following the new IDW guidance at Ellsworth as we have at Hill AFB and I've attached a spreadsheet showing which areas will be containerized and which will not. Note that areas may be containerized because of known plumes, not their surficial conditions.

#### Equipment Packed for travel on: April 14

#### **Travel Dates:**

April 17–26 – Travel out on April 16, return on April 27 – Ash, Justin, Miles, Arek May 1–May 10 – Travel out on April 30, return on May 11 – Ash, Justin, Matt B., Arek May 15–24 – Travel out on May 14, return on May 25 – Ash, Justin, Miles, Arek

#### **Site Supervisor Signature**

(perglation

**Employee Name:** Ash Willis

**Job Number:** M2027.0003

**Job Location:** Ellsworth AFB

#### Job Tasks:

Surface water sampling, groundwater sampling, soil sampling – surface soil and subsurface soil, soil boring logging, surface water and sediment sampling, mob/demob tasks

#### **Equipment Needed:**

Soil boring: Munsell Charts, tape measure, pens, soil boring forms, USCS table

GW Sampling: YSI, peristaltic pump, multiRAE, sample containers etc.

Sediment Sampling: Sample containers, spoons

SW Sampling: Sample containers, SW collection device

Proper PPE for all above tasks is a minimum Level D, plus nitrile gloves

#### **Documents Needed:**

Field forms: Boring log, GW sampling log, sample log, log book, calibration sheets

#### **Meeting Notes:**

We'll have one mini sonic rig working this installation with Justin as the geologist and Arek serving as back up. The rotation schedule is

April 17–26 – Travel out on April 16, return on April 27 – Ash, Justin, Miles, Arek

May 1-May 10 - Travel out on April 30, return on May 11 - Ash, Justin, Matt B., Arek

May 15–24 – Travel out on May 14, return on May 25 – Ash, Justin, Miles, Arek

If a fourth shift is required, it will start after Memorial Day by traveling out on the 29<sup>th</sup>.

Justin has PTO scheduled for Friday May 4 through Sunday May 6 and Arek will be on the rig these days.

There are 12 different areas at this installation (called sites in the QAPP as this is one of the early work plans) and we have 38 wells to install. Groundwater is estimated to be 60 feet or less below surface throughout the installation. During our first rotation there is a major exercise scheduled so we will not be working on the airfield. Areas available for work off of the airfield during the first rotation are: Site 1, Outfall #3 wells (part of site 2 which has wells on the airfield as well), Site 3, Site 8, Site 10, and Site 17. This gives you 18 wells available for installation during the first rotation which should be more than enough to keep you guys busy.

We have only one existing well to be redeveloped/sampled at Site 1 and four SW/SD samples (three of which are off airfield).

#### Airfield work

Dig permits have been subcontracted and work will be started on April 5<sup>th</sup> for those. The subcontractor will have all non-airfield locations cleared by April 16<sup>th</sup> and all airfield locations cleared by May 1. We also have several locations that are soil borings only in which wells will not be installed.

#### Hotels/Storage Unit/Vehicles

The hotel for this work will be the Residence Inn at 581 Watiki Way, Box Elder South Dakota 57719. MAKE SURE YOU DO NOT USE GOVERNMENT RATE. Once you've read through this go ahead and book your rooms so you have them. Government rate is nearly twice as expensive as the standard rate for the first rotation. That may change during following rotations but ensure you're getting the cheapest rate available. Jenny – Please have the sample bottles shipped to this location for delivery no later than Monday the 16<sup>th</sup>. We'll need 20 gallons of PFC-free water to start with. They should be addressed to Ash Willis.

For vehicles – Justin is driving an Aerostar vehicle in from Hill AFB and I have arranged for two commercial truck pickups to be waiting for us at the airport on Monday the 16<sup>th</sup>. They'll be delivered there on Friday the 13<sup>th</sup> and have Ash and Arek's name attached to them. You guys will rent as normal from the airport counter but will be on the same monthly rate that was negotiated for Hill AFB which was 1050/month plus tax with 2500 miles of driving. Make sure your rental agreements have the rate/mileage listed before you sign for the trucks. Miles and Matt, get with Arek and Ash to coordinate your flights as you guys will be riding.

Ash will be organizing the storage unit and equipment the week of April 9<sup>th</sup> and he'll be coordinating with Justin on the storage unit, etc. If/when you guys have questions regarding equipment or a storage unit just let me know.

#### **IDW**

We will be following the new IDW guidance at Ellsworth as we have at Hill AFB and I've attached a spreadsheet showing which areas will be containerized and which will not. Note that areas may be containerized because of known plumes, not their surficial conditions.

#### Equipment Packed for travel on: April 14

#### **Travel Dates:**

April 17–26 – Travel out on April 16, return on April 27 – Ash, Justin, Miles, Arek May 1–May 10 – Travel out on April 30, return on May 11 – Ash, Justin, Matt B., Arek May 15–24 – Travel out on May 14, return on May 25 – Ash, Justin, Miles, Arek

#### **Site Supervisor Signature**

(post alian

**Employee Name:** Justin Vojak

**Job Number:** M2027.0003

**Job Location:** Ellsworth AFB

#### Job Tasks:

Surface water sampling, groundwater sampling, soil sampling – surface soil and subsurface soil, soil boring logging, surface water and sediment sampling, mob/demob tasks

#### **Equipment Needed:**

Soil boring: Munsell Charts, tape measure, pens, soil boring forms, USCS table

GW Sampling: YSI, peristaltic pump, multiRAE, sample containers etc.

Sediment Sampling: Sample containers, spoons

SW Sampling: Sample containers, SW collection device

Proper PPE for all above tasks is a minimum Level D, plus nitrile gloves

#### **Documents Needed:**

Field forms: Boring log, GW sampling log, sample log, log book, calibration sheets

#### **Meeting Notes:**

We'll have one mini sonic rig working this installation with Justin as the geologist and Arek serving as back up. The rotation schedule is

April 17–26 – Travel out on April 16, return on April 27 – Ash, Justin, Miles, Arek May 1–May 10 – Travel out on April 30, return on May 11 – Ash, Justin, Matt B., Arek

May 15–24 – Travel out on May 14, return on May 25 – Ash, Justin, Miles, Arek

If a fourth shift is required, it will start after Memorial Day by traveling out on the 29<sup>th</sup>.

Justin has PTO scheduled for Friday May 4 through Sunday May 6 and Arek will be on the rig these days.

There are 12 different areas at this installation (called sites in the QAPP as this is one of the early work plans) and we have 38 wells to install. Groundwater is estimated to be 60 feet or less below surface throughout the installation. During our first rotation there is a major exercise scheduled so we will not be working on the airfield. Areas available for work off of the airfield during the first rotation are: Site 1, Outfall #3 wells (part of site 2 which has wells on the airfield as well), Site 3, Site 8, Site 10, and Site 17. This gives you 18 wells available for installation during the first rotation which should be more than enough to keep you guys busy.

We have only one existing well to be redeveloped/sampled at Site 1 and four SW/SD samples (three of which are off airfield).

#### Airfield work

Dig permits have been subcontracted and work will be started on April 5<sup>th</sup> for those. The subcontractor will have all non-airfield locations cleared by April 16<sup>th</sup> and all airfield locations cleared by May 1. We also have several locations that are soil borings only in which wells will not be installed.

#### Hotels/Storage Unit/Vehicles

The hotel for this work will be the Residence Inn at 581 Watiki Way, Box Elder South Dakota 57719. MAKE SURE YOU DO NOT USE GOVERNMENT RATE. Once you've read through this go ahead and book your rooms so you have them. Government rate is nearly twice as expensive as the standard rate for the first rotation. That may change during following rotations but ensure you're getting the cheapest rate available. Jenny – Please have the sample bottles shipped to this location for delivery no later than Monday the 16<sup>th</sup>. We'll need 20 gallons of PFC-free water to start with. They should be addressed to Ash Willis.

For vehicles – Justin is driving an Aerostar vehicle in from Hill AFB and I have arranged for two commercial truck pickups to be waiting for us at the airport on Monday the 16<sup>th</sup>. They'll be delivered there on Friday the 13<sup>th</sup> and have Ash and Arek's name attached to them. You guys will rent as normal from the airport counter but will be on the same monthly rate that was negotiated for Hill AFB which was 1050/month plus tax with 2500 miles of driving. Make sure your rental agreements have the rate/mileage listed before you sign for the trucks. Miles and Matt, get with Arek and Ash to coordinate your flights as you guys will be riding.

Ash will be organizing the storage unit and equipment the week of April 9<sup>th</sup> and he'll be coordinating with Justin on the storage unit, etc. If/when you guys have questions regarding equipment or a storage unit just let me know.

### <u>IDW</u>

We will be following the new IDW guidance at Ellsworth as we have at Hill AFB and I've attached a spreadsheet showing which areas will be containerized and which will not. Note that areas may be containerized because of known plumes, not their surficial conditions.

#### Equipment Packed for travel on: April 14

#### **Travel Dates:**

April 17–26 – Travel out on April 16, return on April 27 – Ash, Justin, Miles, Arek May 1–May 10 – Travel out on April 30, return on May 11 – Ash, Justin, Matt B., Arek May 15–24 – Travel out on May 14, return on May 25 – Ash, Justin, Miles, Arek

# Site Supervisor Signature

(perglation

**Employee Name:** Matthew Butterworth

**Job Number:** M2027.0003

**Job Location:** Ellsworth AFB

#### Job Tasks:

Surface water sampling, groundwater sampling, soil sampling – surface soil and subsurface soil, soil boring logging, surface water and sediment sampling, mob/demob tasks

#### **Equipment Needed:**

Soil boring: Munsell Charts, tape measure, pens, soil boring forms, USCS table

GW Sampling: YSI, peristaltic pump, multiRAE, sample containers etc.

Sediment Sampling: Sample containers, spoons

SW Sampling: Sample containers, SW collection device

Proper PPE for all above tasks is a minimum Level D, plus nitrile gloves

#### **Documents Needed:**

Field forms: Boring log, GW sampling log, sample log, log book, calibration sheets

#### **Meeting Notes:**

We'll have one mini sonic rig working this installation with Justin as the geologist and Arek serving as back up. The rotation schedule is

April 17–26 – Travel out on April 16, return on April 27 – Ash, Justin, Miles, Arek May 1–May 10 – Travel out on April 30, return on May 11 – Ash, Justin, Matt B., Arek May 15–24 – Travel out on May 14, return on May 25 – Ash, Justin, Miles, Arek

If a fourth shift is required, it will start after Memorial Day by traveling out on the 29<sup>th</sup>.

Justin has PTO scheduled for Friday May 4 through Sunday May 6 and Arek will be on the rig these days.

There are 12 different areas at this installation (called sites in the QAPP as this is one of the early work plans) and we have 38 wells to install. Groundwater is estimated to be 60 feet or less below surface throughout the installation. During our first rotation there is a major exercise scheduled so we will not be working on the airfield. Areas available for work off of the airfield during the first rotation are: Site 1, Outfall #3 wells (part of site 2 which has wells on the airfield as well), Site 3, Site 8, Site 10, and Site 17. This gives you 18 wells available for installation during the first rotation which should be more than enough to keep you guys busy.

We have only one existing well to be redeveloped/sampled at Site 1 and four SW/SD samples (three of which are off airfield).

#### Airfield work

Dig permits have been subcontracted and work will be started on April 5<sup>th</sup> for those. The subcontractor will have all non-airfield locations cleared by April 16<sup>th</sup> and all airfield locations cleared by May 1. We also have several locations that are soil borings only in which wells will not be installed.

#### Hotels/Storage Unit/Vehicles

The hotel for this work will be the Residence Inn at 581 Watiki Way, Box Elder South Dakota 57719. MAKE SURE YOU DO NOT USE GOVERNMENT RATE. Once you've read through this go ahead and book your rooms so you have them. Government rate is nearly twice as expensive as the standard rate for the first rotation. That may change during following rotations but ensure you're getting the cheapest rate available. Jenny – Please have the sample bottles shipped to this location for delivery no later than Monday the 16<sup>th</sup>. We'll need 20 gallons of PFC-free water to start with. They should be addressed to Ash Willis.

For vehicles – Justin is driving an Aerostar vehicle in from Hill AFB and I have arranged for two commercial truck pickups to be waiting for us at the airport on Monday the 16<sup>th</sup>. They'll be delivered there on Friday the 13<sup>th</sup> and have Ash and Arek's name attached to them. You guys will rent as normal from the airport counter but will be on the same monthly rate that was negotiated for Hill AFB which was 1050/month plus tax with 2500 miles of driving. Make sure your rental agreements have the rate/mileage listed before you sign for the trucks. Miles and Matt, get with Arek and Ash to coordinate your flights as you guys will be riding.

Ash will be organizing the storage unit and equipment the week of April 9<sup>th</sup> and he'll be coordinating with Justin on the storage unit, etc. If/when you guys have questions regarding equipment or a storage unit just let me know.

#### **IDW**

We will be following the new IDW guidance at Ellsworth as we have at Hill AFB and I've attached a spreadsheet showing which areas will be containerized and which will not. Note that areas may be containerized because of known plumes, not their surficial conditions.

#### Equipment Packed for travel on: April 14

#### **Travel Dates:**

April 17–26 – Travel out on April 16, return on April 27 – Ash, Justin, Miles, Arek May 1–May 10 – Travel out on April 30, return on May 11 – Ash, Justin, Matt B., Arek May 15–24 – Travel out on May 14, return on May 25 – Ash, Justin, Miles, Arek

#### **Site Supervisor Signature**

(perglation

**Employee Name:** Miles Nielson

**Job Number:** M2027.0003

**Job Location**: Ellsworth AFB

Job Tasks:

Surface water sampling, groundwater sampling, soil sampling – surface soil and subsurface soil, soil boring logging, surface water and sediment sampling, mob/demob tasks

#### **Equipment Needed:**

Soil boring: Munsell Charts, tape measure, pens, soil boring forms, USCS table

GW Sampling: YSI, peristaltic pump, multiRAE, sample containers etc.

Sediment Sampling: Sample containers, spoons

SW Sampling: Sample containers, SW collection device

Proper PPE for all above tasks is a minimum Level D, plus nitrile gloves

#### **Documents Needed:**

Field forms: Boring log, GW sampling log, sample log, log book, calibration sheets

#### **Meeting Notes:**

We'll have one mini sonic rig working this installation with Justin as the geologist and Arek serving as back up. The rotation schedule is

April 17–26 – Travel out on April 16, return on April 27 – Ash, Justin, Miles, Arek May 1–May 10 – Travel out on April 30, return on May 11 – Ash, Justin, Matt B., Arek May 15–24 – Travel out on May 14, return on May 25 – Ash, Justin, Miles, Arek

If a fourth shift is required, it will start after Memorial Day by traveling out on the 29<sup>th</sup>.

Justin has PTO scheduled for Friday May 4 through Sunday May 6 and Arek will be on the rig these days.

There are 12 different areas at this installation (called sites in the QAPP as this is one of the early work plans) and we have 38 wells to install. Groundwater is estimated to be 60 feet or less below surface throughout the installation. During our first rotation there is a major exercise scheduled so we will not be working on the airfield. Areas available for work off of the airfield during the first rotation are: Site 1, Outfall #3 wells (part of site 2 which has wells on the airfield as well), Site 3, Site 8, Site 10, and Site 17. This gives you 18 wells available for installation during the first rotation which should be more than enough to keep you guys busy.

We have only one existing well to be redeveloped/sampled at Site 1 and four SW/SD samples (three of which are off airfield).

#### Airfield work

Dig permits have been subcontracted and work will be started on April 5<sup>th</sup> for those. The subcontractor will have all non-airfield locations cleared by April 16<sup>th</sup> and all airfield locations cleared by May 1. We also have several locations that are soil borings only in which wells will not be installed.

#### Hotels/Storage Unit/Vehicles

The hotel for this work will be the Residence Inn at 581 Watiki Way, Box Elder South Dakota 57719. MAKE SURE YOU DO NOT USE GOVERNMENT RATE. Once you've read through this go ahead and book your rooms so you have them. Government rate is nearly twice as expensive as the standard rate for the first rotation. That may change during following rotations but ensure you're getting the cheapest rate available. Jenny – Please have the sample bottles shipped to this location for delivery no later than Monday the 16<sup>th</sup>. We'll need 20 gallons of PFC-free water to start with. They should be addressed to Ash Willis.

For vehicles – Justin is driving an Aerostar vehicle in from Hill AFB and I have arranged for two commercial truck pickups to be waiting for us at the airport on Monday the 16<sup>th</sup>. They'll be delivered there on Friday the 13<sup>th</sup> and have Ash and Arek's name attached to them. You guys will rent as normal from the airport counter but will be on the same monthly rate that was negotiated for Hill AFB which was 1050/month plus tax with 2500 miles of driving. Make sure your rental agreements have the rate/mileage listed before you sign for the trucks. Miles and Matt, get with Arek and Ash to coordinate your flights as you guys will be riding.

Ash will be organizing the storage unit and equipment the week of April 9<sup>th</sup> and he'll be coordinating with Justin on the storage unit, etc. If/when you guys have questions regarding equipment or a storage unit just let me know.

#### **IDW**

We will be following the new IDW guidance at Ellsworth as we have at Hill AFB and I've attached a spreadsheet showing which areas will be containerized and which will not. Note that areas may be containerized because of known plumes, not their surficial conditions.

#### Equipment Packed for travel on: April 14

#### **Travel Dates:**

April 17–26 – Travel out on April 16, return on April 27 – Ash, Justin, Miles, Arek May 1–May 10 – Travel out on April 30, return on May 11 – Ash, Justin, Matt B., Arek May 15–24 – Travel out on May 14, return on May 25 – Ash, Justin, Miles, Arek

# Site Supervisor Signature

(post alan

































Site Name : AFFF Area 2 **BORING LOG - MW18PFC0207 Drilling Company** : Cascade Drilling Aerostar SES... **Drilling Method** : Mini Sonic Driller : Dennis Schweisthal Start Date : 05/02/18 Logged By : Justin Vojak **End Date** : 05/02/18 Borehole Diameter : 6.0 in. AFFF Areas (Omaha District) Northing : 674400.87 : 2.0 in. PVC Boring Completion AFFF Site Inspection Monitoring Well Easting : 1242462.51 Project# M2027.0003 Surface Elev. (ft)\* : 3222.41 Depth to Water (ft) : 26.0 Total Depth (ft)\*\* : 35.0 Ellsworth Air Force Base Signature Water Levels Measurements Depth to Water (DTW) USCS \ LITHOLOGY During Drilling \*North American Vertical Datum (NAVD88) feet (ft) DEPTH IN FEET RECOVERY Munsell Color \*\*Below Ground Surface Well: MW18PFC0207 (bgs) feet (ft) INTERVAL (mdd) SAMPLE Elev (TOC): 3221.96 SAMPLE ID PID ( **DESCRIPTION** % Flush Mount,12-in. diameter Manhole - 8-in. skirt 0 (0.0 - 3.0) CLAY, medium plasticity, medium SS Pad - 2ft X 2ft X 4 in ELSWH02-008-SS-001 stiff, 10YR 4/3, brown, with GRAVEL (20%), Note: Interval 0.0 - 0.5 ft well graded, fine to coarse, sub-rounded, round, slightly moist CL 100 (3.0 - 9.0) CLAY, medium plasticity, stiff, 10YR 5/3, brown, dry 5 Grout 0.5 - 15.0 ft bgs Mix Used: CL 2 Portland Cement (94 lb bag) Sodium Bentonite (~3 lbs) Water (~7 gallons) 80 0 (9.0 - 11.0) SAND, poorly graded, fine, round, loose, 10YR 4/3, brown, with GRAVEL (20%), Riser 2.0 in Sch 40 PVC well graded, fine to coarse, sub-rounded to SP 10-3 round, slightly moist (11.0 - 14.0) SILTY SAND, well graded, fine to coarse, sub-rounded to round, loose, 10YR 5/3, brown, with GRAVEL (40%) well graded, fine to coarse, sub-rounded to round, dry SM 4 (14.0 - 15.0) SILTY SAND, well graded, fine to SM coarse, sub-rounded to round, loose, 10YR 8/3, very pale brown, with GRAVEL (40%), 15 well graded, fine to coarse, sub-rounded, to round, dry (15.0 - 20.0) SILTY SAND, well graded, fine to coarse, loose, 10YR 5/3, brown, with GRAVEL 6 SM (45%), well graded, fine to coarse, sub-rounded to round, slightly moist Bentonite Seal 1/4 in Uncoated 16.0 - 21.0 ft bgs









Site Name : AFFF Area 3 BORING LOG - SB18PFC0304 **Drilling Company** : Cascade Drilling Aerostar SES... **Drilling Method** : Mini Sonic Driller : Dennis Schweisthal Start Date : 5/07/18 Borehole Diameter **End Date** : 5/07/18 Boring Completion : Abandoned w/ Grout AFFF Areas (Omaha District) Northing : 668696.14 Abandonment Date : 05/07/18 AFFF Site Inspection Easting : 1246237.63 DTW During Drilling (ft) 12.0 Project# M2027.0003 Surface Elev. (ft)\* : 3182.68 Logged by: : Justin Vojak Total Depth (ft)\*\* : 15.0 Signature: Ellsworth Air Force Base Water Levels Measurements Depth to Water (DTW) During Drilling \*North American Vertical Munsell Soil Color DEPTH IN FEET Datum (NAVD88) feet) SAMPLE TYPE RECOVERY \*\*Below Ground Surface INTERVAL PID (ppm) (bgs) feet SAMPLE ID USCS **REMARKS** DESCRIPTION 0 (0.0 - 1.0) SILT, soft, non-plastic, dry, 10 YR, SS ELSWH-03-004-SS-001 ML 4/3, brown, Note: Interval 0.0 - 1.0 ft Borehole (1.0-5.0) GRAVEL FILL 100 GW 5 0 (5.0-6.0) LEAN CLAY, low plasticity, soft, slightly moist, 10 YR, 3/3, dark brown CL (6.0-8.0) LEAN CLAY, medium plasticity, stiff, dry, 10 YR, 4/2, dark grayish brown CL 2 50 (8.0-10.0) LEAN CLAY, medium plasticity, stiff, dry, 10 YR, 4/3, brown, mottled, 10 YR, 8/1, CL 10 (10.0-11.0) SILT with GRAVEL, soft, non-plastic, ML dry, Gravel: (15%), fine to coarse, sub-round to round (11.0-12.0) CLAY with GRAVEL, medium CL ELSWH-03-004-SO-011 so plasticity, medium stiff, slightly moist, 10 YR, 5/3, Note: Interval V brown, Gravel: (15%), fine to coarse, sub-round to round 3 90 (12,0-14,0) CLAYEY GRAVEL, loose, fine to coarse, sub-round to round, well graded, dampt GC to wet, 10 Yr, 4/3, brown (14.0-15.0) CLAY with GRAVEL, medium plasticity, medium stiff, moist, 10 YR, 5/3, brown, CL Gravel: (35%), fine to coarse, sub-round to 15 Total Depth of Boring 15.0 ft BGS

Site Name : AFFF Area 4 **BORING LOG - MW18PFC0401 Drilling Company** : Cascade Drilling Aerostar SES... **Drilling Method** : Mini Sonic Driller : Dennis Schweisthal Start Date : 05/22/18 Logged By : Justin Vojak **End Date** : 05/22/18 Borehole Diameter : 6.0 in. AFFF Areas (Omaha District) Northing : 672572.76 : 2.0 in. PVC Boring Completion AFFF Site Inspection Monitoring Well Easting : 1243823.58 Project# M2027.0003 Surface Elev. (ft)\* : 3212.00 Depth to Water (ft) : 30.0 Total Depth (ft)\*\* : 35.0 Ellsworth Air Force Base Signature Water Levels Measurements Depth to Water (DTW) USCS \ LITHOLOGY During Drilling \*North American Vertical Datum (NAVD88) feet (ft) DEPTH IN FEET RECOVERY Munsell Color \*\*Below Ground Surface Well: MW18PFC0401 (bgs) feet (ft) INTERVAL PID (ppm) SAMPLE Elev (TOC): 3211.63 SAMPLE ID **DESCRIPTION** % Flush Mount,12in.diameter Manhole - 8-in. skirt 0 (0.0 - 10) CLAY, medium plasticity, stiff, 10YR Pad - 2ft X 2ft X 4 in. SS ELSWH04-001-SS-001 4/3, brown, with GRAVEL (30%), well graded, Note: Interval 0.0 - 0.5 ft fine to coarse, subangular to round, slightly moist 100 0 5. CL - Grout: 0.4 - 14.0 ft bgs Mix Used: Portland Cement (94 lb bag) Sodium Bentonite 80 O (~3 lbs) Water (~7 gallons) 10 (10.0 - 15.0) SILTY SAND, well graded, fine to coarse, sub-round to round, loose, 10YR 5/3, Riser 2.0 in. Sch 40 PVC brown, with GRAVEL (40%), well graded, fine to coarse, sub-round to round, slightly moist 2 80 SM 0 15 (15.0 - 15.5) CLAY, low plasticity, stiff, 10YR CL 3 5/3, brown, trace mottling with 10YR 4/1, dark gray, with GRAVEL (30%), well graded, fine to ML 4 medium, sub-rounded to round, dry (15.5 - 17.0) SILT, loose, 10YR 6/3, pale Bentonite Seal brown, with GRAVEL (40%), well graded, fine 1/4 in. Uncoated Pellets 14.0 - 19.0 ft bgs 5 CL to coarse, sub-rounded to round, dry 0 (17.0 - 17.5) CLAY, low plasticity, stiff, 10YR 5/3, brown, trace mottling with 10YR 4/1, dark 6 SM gray, with GRAVEL (35%), well graded, fine to medium, sub-rounded to round, slightly moist











Site Name : AFFF Area 4 BORING LOG - SB18PFC0404 **Drilling Company** : Cascade Drilling Aerostar SES... **Drilling Method** : Mini Sonic Driller : Dennis Schweisthal Start Dat : 5/18/18 Borehole Diameter : 6.0 **End Date** : 5/18/18 Boring Completion : Abandoned w/ Grout AFFF Areas (Omaha District) Northing : 672431.41 Abandonment Date : 05/18/18 AFFF Site Inspection Easting : 1243884.08 DTW During Drilling (ft) 32.0 Project# M2027.0003 Surface Elev. (ft)\* : 3212.50 Logged by: : Justin Vøjak Total Depth (ft)\*\* : 35.0 Ellsworth Air Force Base Signature: Water Levels Measurements Depth to Water (DTW) During Drilling \*North American Vertical Munsell Soil Color DEPTH IN FEET Datum (NAVD88) feet SAMPLE TYPE RECOVERY \*\*Below Ground Surface INTERVAL PID (ppm) (bgs) feet SAMPLE ID **USCS REMARKS DESCRIPTION** 0 (0.0 - 5.0) CLAY with GRAVEL, low plasticity, stiff, very slightly moist, 10 YR, 4/3, brown, Borehole Gravel: (15%), fine to medium, sub-round to round CL 100 0 5 (5.0-7.5) LEAN CLAY, low plasticity, stiff, dry, 10 YR, 5/3, brown CL 2 80 (7.5-10.0) LEAN CLAY, medium plasticity, very stiff, very slightly moist, 10 YR, 4/3, brown, mottled, 10 YR, 8/1, white CL 10 0 (10.0-12.0) FAT CLAY, high plasticity, medium stiff, very slightly moist, 10 YR, 6/3, pale brown CH (12.0-16.0) SILTY SAND with GRAVEL, loose, 3 fine to coarse, sub-round to round, well graded, dry, 10 YR, 5/3, brown, Gravel: (40%), fine to coarse, sub-round to round SM 15 0 (16.0-17.0) CLAY with GRAVEL, medium CL plasticity, medium stiff, very slightly moist, 10 YR, 6/3, pale brown, Gravel: (15%), fine to \medium, sub-round to round (17.0-22.0) SILTY SAND with GRAVEL. loose. fine to coarse, sub-round to round, well graded, dry, 10 YR, 5/3, brown, Gravel: (40%), fine to coarse, sub-round to round SM 20 0 5



Site Name : AFFF Area 4 BORING LOG - SB18PFC0405 **Drilling Company** : Cascade Drilling Aerostar SES... **Drilling Method** : Mini Sonic Driller : Dennis Schweisthal Start Date : 5/18/18 Borehole Diameter **End Date** : 5/18/18 Boring Completion : Abandoned w/ Grout AFFF Areas (Omaha District) Northing : 672528.09 Abandonment Date : 05/22/18 AFFF Site Inspection Easting : 1243722.05 DTW During Drilling (ft) 21.0 Project# M2027.0003 Surface Elev. (ft)\* : 3212.06 Logged by: : Justin Vojak Total Depth (ft)\*\* : 25.0 Ellsworth Air Force Base Signature: Water Levels Measurements Depth to Water (DTW) During Drilling \*North American Vertical Munsell Soil Color Datum (NAVD88) feet DEPTH IN FEET SAMPLE TYPE RECOVERY \*\*Below Ground Surface INTERVAL PID (ppm) (bgs) feet SAMPLE ID USCS REMARKS DESCRIPTION 0 (0.0 - 2.0) LEAN CLAY, medium plasticity. 0 CL Borehole medium stiff, slightly moist, 10 YR, 3/3, dark 100 (2.0 - 10.0) LEAN CLAY, low plasticity, very stiff, dry, 10 YR, 4/3, brown, mottled, 10 YR, 8/1. white CL 5 0 2 80 (7.5 - 10.0) LEAN CLAY, medium plasticity, very stiff, very slightly moist, 10 YR, 4/3, brown, CL mottled, 10 YR, 8/1, white 10 (10.0 - 11.5) CLAYEY SAND, loose, fine SC grained, round, poorly graded, dry, 10 YR, 5/4, yellowish brown 3 75 (11.5 - 19.0) SILTY SAND with GRAVEL, loose, fine to coarse, sub-round to round, well graded, dry, 10 YR, 6/2, light brownish gray, Gravel: (40%), fine to coarse, sub-round to round 15 0 SM 4 80 (19.0 - 19.5) SAND, fine grained, round, poorly 20 graded, dry, 10 YR, 7/8, yellow ML ELSWH-04-005-SO-020 so ▼ (19.5 - 20.0) SANDY GRAVEL, loose, fine to Note: Interval 20.0 - 21.0 ft coarse, sub-angular to sub-round, well graded. GC dry, 10 YR, 7/1, light gray (20.0 - 21.0) SILT with GRAVEL, soft. CL non-plastic, dry, 10 YR, 7/3, very pale brown, Gravel: (20%), fine to medium, sub-round to 25 (21.0 - 23.0) CLAYEY GRAVEL, loose, fine to coarse, sub-round to round, well graded, damp to wet, 10 YR, 5/3, brown (23.0 - 25.0) CLAY with GRAVEL, medium plasticity, stiff, slightly moist,, 10 YR, 5/3, brown, Gravel: (25%), fine to coarse, sub-round to 30 Total Depth of Boring 25.0 ft BGS 35





Site Name : AFFF Area 5 BORING LOG - MW18PFC0502 **Drilling Company** : Cascade Drilling Aerostar SES... **Drilling Method** : Mini Sonic Driller : Dennis Schweisthal Start Date : 05/11/18 Logged By : Justin Vojak **End Date** : 05/11/18 Borehole Diameter : 6.0 in. AFFF Areas (Omaha District) Northing : 673652.26 Boring Completion : 2.0 in. PVC AFFF Site Inspection Monitoring Well Easting : 1241543.83 Project# M2027.0003 Surface Elev. (ft)\* : 3220.85 Depth to Water (ft) . 20.5 Total Depth (ft)\*\* : 30.0 Ellsworth Air Force Base Signature Water Levels Measurements Depth to Water (DTW) USCS \ LITHOLOGY During Drilling \*North American Vertical Datum (NAVD88) feet (ft) DEPTH IN FEET RECOVERY Munsell Color \*\*Below Ground Surface Well: MW18PFC0502 (bgs) feet (ft) INTERVAL (mdd) SAMPLE Elev (TOC): 3220.51 SAMPLE ID PID ( **DESCRIPTION** % Flush Mount,12-in.diamete Manhole - 8-in. skirt 0 (0.0 - 1.0) CLAY, medium plasticity, stiff, 10YR Pad - 2ft X 2ft X 4 in. CL SS ELSWH05-002-SS-001 4/3, brown, slightly moist Note: Interval 0.0 - 0.5 ft SANDY SILT, (1.0 - 5.0) CLAY, medium plasticity, stiff, 10YR 4/2, dark grayish brown, dry 100 2 0 CL - Grout: 0.3 - 11.0 ft bgs Mix Used: Portland Cement (94 lb bag) Sodium Bentonite (~3 lbs) Water (~7 gallons) 5 (5.0 - 10.0) CLAY, hard, 10YR 5/2, grayish brown, dry CL 3 60 0 10 (10.0 - 11.0) CLAY, low plasticity, stiff, 10YR Riser 2.0 in. Sch 40 PVC CL 4/2, dark grayish brown, slightly moist (11.0 - 13.0) CLAY, medium plasticity, medium stiff, 10YR 6/2, light brownish gray, mottled with 10YR 6/6, brownish yellow, dry 5 60 CL (13.0 - 14.0) SILTY SAND, well graded, fine to Bentonite Seal 1/4 in Uncoated Pellets SM 6 coarse, loose, 10YR 4/3, brown, with GRAVEL, well graded, fine to coarse, 15.0 - 23.0 ft bgs sub-rounded to round, dry (14.0 - 16.0) SILT, loose, 10YR 7/3, very pale brown, with GRAVEL (35%), well graded, fine ML 15to coarse, sub-rounded to round, dry (16.0 - 20.0) SILTY SAND, well graded, fine to Filter Pack 20/30 Standard Sand coarse, sub-rounded to round, loose, 10YR 6/2, light brownish gray, with GRAVEL (45%), Silica Sand 16.0 - 30.0 ft bgs 8 SM well graded, fine to coarse, subangular to round, dry















Site Name : AFFF Area 7 BORING LOG - MW18PFC0701 **Drilling Company** : Cascade Drilling Aerostar SES... **Drilling Method** : Mini-Sonic Driller : Dennis Schweisthal Start Date : 05/08/18 Logged By : Justin Vojak **End Date** : 05/08/18 Borehole Diameter : 6.0 in. AFFF Areas (Omaha District) Northing : 670650.17 Boring Completion : 2.0 in. PVC AFFF Site Inspection Monitoring Well Easting : 1241295.38 Project# M2027.0003 Surface Elev (ft)\* : 3204.18 Depth to Water (ft) : 30.5 Total Depth (ft)\*\* : 40.0 Ellsworth Air Force Base Signature Water Levels Measurements (DTW) USCS / LITHOLOGY During Drilling \*North American Vertical FEET Datum (NAVD88) feet Depth to Water RECOVERY Munsell Color \*\*Below Ground Surface Well: MW18PFC0701 (bgs) feet DEPTH IN INTERVAL PID (ppm) SAMPLE Elev (TOC): 3203.91 SAMPLE ID DESCRIPTION % Flush Mount,12-in diameter Manhole - 8-in. skirt 0 (0.0-2.0) LEAN CLAY, medium plasticity. Pad - 2ft X 2ft X 4 in. SS 0 ELSWH 07-001-SS-001 medium stiff, slighty moist, 10 YR, 3/3, dark CL Note: Interval (2.0-3.0) LEAN CLAY, medium plasticity, stiff, CL 100 slightly moist, 10 YR, 4/3, brown (3.0-5.0) LEAN CLAY, low plasticity, very stiff, dry, 10 YR, 5/3, brown CL 5 0 (5.0-10.0) SILTY SAND with GRAVEL, loose, fine to coarse, sub-round to round, well graded, dry, 10 YR, 5/3, brown, Gravel: (35%), fine to coarse, sub-round to round 2 75 SM 10 0 Grout Mix Used: 0.0 - 19.0 ft bgs Portland Cement (10.0-12.0) SILT, soft, non-plastic, dry, 10 YR, 6/3, pale brown 94 lb bags Sodium Bentonite Ιмι Water (7 gallons) (12.0-14.0) CLAY with GRAVEL, high 3 55 plasticity, soft, very slightly moist, 10 YR, 5/3, CH brown, Gravel: (30%), fine to coarse, sub-round to round (14.0-15.0) GRAVELLY SAND, loose, fine to Riser 2.0 in. Sch 40 PVC coarse, sub-round to round, well graded, 15 0 very slightly moist, 10 YR, 5/3, brown, Gravel: (30%), fine to coarse, sub-round to SM round (15.0-16.5) SILTY SAND with GRAVEL, loose, fine to coarse, sub-round to round, well graded, dry, 10 YR, 5/3, brown, Gravel: 40 (30%), fine to coarse, sub-round to round (16.5-20.0) LEAN CLAY, low plasticity, stiff, CL dry, 10 YR, 4/1, dark gray, mottled, 10 YR, 6/6 brownish yellow 20 0 (20.0-26.0) LEAN CLAY, low plasticity, very Bentonite Seal 1/4 in. Uncoated Pellets stiff, dry, 10 YR, 4/1, dark gray, mottled, 10 YR, 6/6 brownish yellow 19.0 - 24.0 ft bgs 5 CL









Site Name : AFFF Site 7 BORING LOG - SB18PFC0704 **Drilling Company** : Cascade Drilling Aerostar SES... **Drilling Method** : Mini Sonic Driller : Dennis Schweisthal Start Date : 05/08/18 Borehole Diameter : 6.0 **End Date** : 05/08/18 Boring Completion : Abandoned w/ Grout AFFF Areas (Omaha District) Northing : 670541.55 Abandonment Date : 05/07/18 AFFF Site Inspection Easting : 1241262.06 DTW During Drilling (ft) 14.5 Project# M2027.0003 Surface Elev. (ft)\* : 3204.11 Logged by: : Justin Vojak Total Depth (ft)\*\* : 20.0 Ellsworth Air Force Base Signature: Water Levels Measurements Depth to Water (DTW) During Drilling \*North American Vertical Munsell Soil Color DEPTH IN FEET Datum (NAVD88) feet SAMPLE TYPE RECOVERY \*\*Below Ground Surface INTERVAL PID (ppm) (bgs) feet SAMPLE ID USCS **REMARKS** DESCRIPTION 0 (0.0 - 4.0) CLAY, medium plasticity, stiff, 10YR 0 SS ELSWH-07-004-SS-001 4/3, brown, slightly moist Note: Interval 0.0 - 1.0 ft Borehole CL 100 0 (4.0 - 7.0) CLAY, low plasticity, very stiff, 10YR 5/3, brown, mottled with 10YR 8/1, white, dry 5 CL (7.0 - 9.0) SILTY SAND, poorly graded, fine, round, loose, 10YR 6/3, pale brown, dry SM (9.0 - 10.0) SAND, well graded, fine to coarse, lsw sub-rounded to round, loose, 10YR 4/3, brown, 10-2 with GRAVEL (20%), well graded, fine to medium, sub-rounded to round, dry SM (10.0 - 12.0) SILTY SAND, well graded, fine to coarse, sub-rounded to round, loose, 10YR 5/3, brown, with GRAVEL (40%), well graded, fine to coarse, sub-rounded to round, dry (12.0 - 14.5) SILTY SAND, well graded, fine to SM coarse, sub-rounded to round, loose, 10YR 5/3. so ELSWH-07-004-SO-013 brown, with GRAVEL (40%), well graded, fine Note: Interval to coarse, sub-rounded to round, moist SC 15 (14.5 - 15.0) CLAYEY SAND, well graded, fine to coarse, sub-rounded to round, loose, 10YR CL 5/3, brown, with GRAVEL, well graded, fine to coarse, sub-rounded to round, wet (15.0 - 16.5) CLAY, low plasticity, soft, 10YR 3 5/3, brown, with GRAVEL (30%), well graded, 0 fine to coarse, sub-rounded to round, wet CL (16.5 - 20.0) CLAY, low plasticity, stiff, 10YR 4/1, dark gray, mottled with 10YR 6/6, brownish yellow, dry 20 End of borehole 20.0 ft bgs 25









Site Name : AFFF Site 8 BORING LOG - SB18PFC0804 **Drilling Company** : Cascade Drilling Aerostar SES... **Drilling Method** : Mini Sonic Driller : Dennis Schweisthal Start Date : 04/22/18 Borehole Diameter **End Date** : 04/22/18 Boring Completion : Abandoned w/ Grout AFFF Areas (Omaha District) Northing : 662378.08 Abandonment Date : 04/23/18 AFFF Site Inspection Easting : 1247474.96 DTW During Drilling (ft) 52.0 Project# M2027.0003 Surface Elev. (ft)\* : 3075.08 Logged by: : Justin Vojak Total Depth (ft)\*\* : 55.0 Ellsworth Air Force Base Signature: Water Levels Measurements Depth to Water (DTW) During Drilling \*North American Vertical Munsell Soil Color Datum (NAVD88) feet (ft) DEPTH IN FEET TYPE RECOVERY \*\*Below Ground Surface INTERVAL PID (ppm) SAMPLE (bgs) feet (ft) SAMPLE ID USCS REMARKS DESCRIPTION % 0 (0.0 - 1.0) CLAY, medium plasticity, medium stiff, CL SS ELSWH-08-004-SS-001 10YR 3/3, dark brown, slightly moist Note: Interval 0.0 - 1.0 ft Borehole (1.0 - 3.0) CLAY, medium plasticity, stiff, 10YR CL 4/2, dark grayish brown, with GRAVEL (20%), 100 (3.0 - 5.0) CLAY, low plasticity, very stiff, 10YR 6/2, light brownish gray, mottled with 10YR 4/1, CL dark gray and 10YR, 6/6, brownish yellow, dry 5 (5.0 - 10.0) CLAY, hard, 10YR 4/1, dark gray, mottled with 10YR 6/6, brownish yellow, dry CL 100 0 10 2 CL (10.0 - 10.5) CLAY, medium plasticity, medium stiff, 10YR 4/1, dark gray, mottled with 10YR 6/6, brownish yellow, with GRAVEL, moist (10.5 - 15.0) CLAY, hard, 10YR 4/1, dark gray. mottled with 10YR 6/6, brownish yellow, dry CL 0 15 (15.0 - 25.0) CLAY, hard, 10YR 4/1, dark gray, mottled with 10YR 6/2, light brownish gray and 10YR 6/6, brownish yellow, dry 3 80 0 20 CL 100 0 25 (25.0 - 26.0) CLAY, medium plasticity, very stiff, CL 10YR 5/2, grayish brown, slightly moist (26.0 - 30.0) CLAY, hard, 10YR 3/1, very dark gray, mottled with 10YR 6/6, brownish yellow, dry 5 100 0 CL 30





Aerostar SES BORING LOG - MW18PFC0902A Site Name : AFFF Area 9 **Drilling Company** : Cascade Drilling **Drilling Method** : Mini-Sonic Driller : Dennis Schweisthal Start Date : 05/23/18 Logged By : Justin Vojak **End Date** : 05/23/18 Borehole Diameter : 6.0 in. AFFF Areas (Omaha District) : 2.0 in. PVC Northing : 676165.17 Boring Completion AFFF Site Inspection Monitoring Well Easting : 1240136.36 Project# M2027.0003 Surface Elev (ft)\* : 3248.57 Depth to Water (ft) : 28 Total Depth (ft)\*\* : 35.0 Ellsworth Air Force Base Signature Water Levels Measurements (DTW) USCS / LITHOLOGY During Drilling \*North American Vertical DEPTH IN FEET Datum (NAVD88) feet Depth to Water RECOVERY Munsell Color \*\*Below Ground Surface Well: MW18PFC0902A INTERVAL (bgs) feet PID (ppm) SAMPLE Elev (TOC): 3248.22 SAMPLE ID **DESCRIPTION** % Flush Mount,12-in.diameter Manhole - 8-in. skirt 0 (0.0-5.0) CLAY with GRAVEL, medium Pad - 2ft X 2ft X 4 in. plasticity, very stiff, very slightly moist, 10 0 YR, 5/3, brown, Gravel: (40%), fine to coarse, sub-round to round CL 100 5 0 (5.0-15.0) LEAN CLAY, medium plasticity, very stiff, dry, 10 YR, 6/3, pale brown 2 80 - Grout Mix Used: 0.0 - 15.0 ft bgs Portland Cement 94 lb bags Sodium Bentonite (3lbs) Water (7 gallons) CL 10 0 2.0 in. Sch 40 PVC 3 80 0 15 (15.0-20.0) LEAN CLAY, medium plasticity, very stiff, very slighlt moist, 10 YR, 6/3, pale brown 70 CL Bentonite Seal 1/4 in. Uncoated Pellets 15.0 - 20.0 ft bgs 20





Site Name : AFFF Area 9 BORING LOG - SB18PFC0902 Aerostar SES... **Drilling Company** : Cascade Drilling **Drilling Method** : Mini Sonic Driller : Dennis Schweisthal Start Date : 5/21/18 Borehole Diameter **End Date** : 5/21/18 Boring Completion : Abandoned w/ Grout AFFF Areas (Omaha District) Northing : 676177.76 Abandonment Date : 05/24/18 AFFF Site Inspection Easting : 1240125.83 DTW During Drilling (ft) 6.0 Project# M2027.0003 Surface Elev. (ft)\* : 3245.89 Logged by: : Justin Vojak Total Depth (ft)\*\* : 20.0 Signature: Ellsworth Air Force Base Water Levels Measurements Depth to Water (DTW) During Drilling \*North American Vertical Munsell Soil Color DEPTH IN FEET Datum (NAVD88) feet (ft) TYPE RECOVERY \*\*Below Ground Surface INTERVAL PID (ppm) SAMPLE (bgs) feet (ft) SAMPLE ID USCS **REMARKS DESCRIPTION** % 0 (0.0 - 2.0) CLAY with GRAVEL, medium ELSWH-09-002-SS-001 Note: Interval 0.0 - 1.0 ft. 0 plasticity, very stiff, moist, 10 YR, 6/3, pale CL Borehole brown, Gravel: (20%), fine to medium, sub-round to round (2.0-5.0) LEAN CLAY, medium plasticity, very 100 stiff, dry, 10 YR, 6/3, pale brown CL 5 (5.0-15.0) LEAN CLAY, medium plasticity, very so ELSWH-09-002-SO-005 0 stiff, wet, 10 YR, 6/3, pale brown Note: Interval 5.0 - 6.0 ft 2 80 CL 10 0 3 80 15 0 (15.0-19.0) FAT CLAY, high plasticity, medium stiff, moist, 10 YR, 6/3, pale brown, CH 90 (19.0-20.0) SILTY SAND with GRAVEL, loose, SM fine to coarse, sub-round to round, well graded, 20 dry, 10 YR, 6/3, pale brown, Gravel: (40%), fine ∖to coarse, sub-round to round Total Depth of Boring 20.0 ft BGS

Site Name : AFFF Site 9 BORING LOG - SB18PFC0903 **Drilling Company** : Cascade Drilling Aerostar SES... **Drilling Method** : Mini Sonic Driller : Dennis Schweisthal Start Date : 5/04/18 Borehole Diameter : 6.0 **End Date** : 5/04/18 Boring Completion : Abandoned w/ Grout AFFF Areas (Omaha District) Northing : 676213.00 Abandonment Date : 05/04/18 AFFF Site Inspection Easting : 1239882.39 DTW During Drilling (ft) 29.0 Project# M2027.0003 Surface Elev. (ft)\* : 3248.44 Logged by: : Justin Vojak Total Depth (ft)\*\* : 35.0 Signature: Ellsworth Air Force Base Water Levels Measurements Depth to Water (DTW) During Drilling \*North American Vertical Munsell Soil Color DEPTH IN FEET Datum (NAVD88) feet (ft) SAMPLE TYPE RECOVERY \*\*Below Ground Surface INTERVAL PID (ppm) (bgs) feet (ft) SAMPLE ID USCS **REMARKS DESCRIPTION** 0 (0.0 - 1.0) CLAY with GRAVEL, medium SS CL ELSWH09-003-SS-001 plasticity, medium stiff, slightly moist, 10 YR, 3/3, Note: Interval 0.0-0.5 ft Borehole dark brown, Gravel: fine to coarse, sub-round to round (1.0-4.5) CLAYEY GRAVEL, loose, fine to coarse, sub-round to round, well graded, slightly 100 moist, 10 YR, 4/3, brown GC (4.5-10.0) LEAN CLAY, medium plasticity, very 5 0 stiff, dry, 10 YR, 6/3, pale brown CL 2 100 10 0 (10.0-15.0) FAT CLAY, medium to high plasticity. stiff, dry, 10 YR, 6/3, pale brown 3 100 CH 0 15 (15.0-16.0) FAT CLAY, high plasticity, stiff, CH moist, 10 YR, 6/3, pale brown (16.0-20.0) GRAVELLY SAND, loose, fine to coarse, sub-round to round, well graded, dry, 10 YR, 5/3, brown, Gravel: (40%), fine to coarse, sub-round to round lsw 20 0 (20.0-23.0) SILTY SAND with GRAVEL, loose, fine to coarse, sub-round to round, well graded, 5 100 SM dry, 10 YR, 7/3, very pale brown, Gravel: (40%), fine to coarse, sub-round to round























Site Name : AFFF Site 11 BORING LOG - SB18PFC1105 **Drilling Company** : Cascade Drilling Aerostar SES... **Drilling Method** : Mini Sonic Driller : Dennis Schweisthal Start Date : 5/09/18 Borehole Diameter **End Date** : 5/09/18 Boring Completion : Abandoned w/ Grout AFFF Areas (Omaha District) Northing : 670706.37 Abandonment Date : 05/09/18 AFFF Site Inspection Easting : 1243946.96 DTW During Drilling (ft) 14.0 Project# M2027.0003 Surface Elev. (ft)\* : 3194.94 Logged by: : Justin Vojak Total Depth (ft)\*\* : 15.0 Ellsworth Air Force Base Signature: Water Levels Measurements Depth to Water (DTW) During Drilling \*North American Vertical Munsell Soil Color FEET Datum (NAVD88) feet (ft) TYPE RECOVERY \*\*Below Ground Surface DEPTH IN INTERVAL PID (ppm) SAMPLE (bgs) feet (ft) SAMPLE ID USCS **REMARKS** DESCRIPTION % 0 (0.0 - 2.0) LEAN CLAY, medium plasticity, stiff, SS ELSWH-11-005-SS-001 slightly moist, 10 YR, 5/3, brown, Note: Interval 0.0 - 1.0 ft. CL Borehole (2.0-4.5) SANDY CLAY with GRAVEL, medium 100 plasticity, medium stiff, slightly moist, 10 YR, 5/3, brown, Gravel: (30%), fine to coarse, sub-round to round CL (4.5-6.0) SILTY SAND with GRAVEL, loose, fine 5 to coarse, sub-round to round, well graded, dry, SM 10 YR, 6/3, pale brown, Gravel: (40%), fine to coarse, sub-round to round (6.0-9.0) GRAVELLY SAND, loose, fine to coarse, sub-round to round, well graded, slightly moist, 10 YR, 4/3, brown, Gravel. (30%), fine to coarse, sub-round to round 2 80 sw (9.0-10.0) CLAYEY SAND with GRAVEL, loose, SC fine to coarse, sub-round to round, well graded, slightly moist, 10 YR, 4/3, brown, Gravel: (40%), 10 fine to coarse, sun-round to round ML (10.0-11.0) SILT with GRAVEL, soft, non-plastic, drv. 10 YR, 6/3, pale brown, Gravel: (15%), fine to medium, sub-angular to round (11.0-14.0) CLAYEY SAND with GRAVEL, loose, fine to coarse, sub-round to round, well graded, moist, 10 YR, 4/3, brown, Gravel: SC 3 80 (40%), fine to coarse, sub-round to round ELSWH-11-005-SO-013 SO Note: Interval 13.0 - 14.0 ft (14.0-15.0) CLAYEY SAND with GRAVEL, loose, fine to coarse, sub-round to round, well SC graded, wet, 10 YR, 4/3, brown, Gravel: (40%), 15 fine to coarse, sub-round to round Total Depth of Boring 15.0 ft BGS













|              | ame:                | SI AFFF MUL   | TIPLE SITES       | 3                                                |         |                                         |               |            |                     |                   |
|--------------|---------------------|---------------|-------------------|--------------------------------------------------|---------|-----------------------------------------|---------------|------------|---------------------|-------------------|
| ASL Proje    | ct No:              | M2027.0003    |                   | <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del> |         |                                         |               |            |                     |                   |
| Installation | n:                  | Ellsworth AF  | В                 |                                                  |         |                                         |               |            |                     |                   |
| Site:        |                     | 1 (curr       | and FT            | A                                                |         |                                         |               |            |                     |                   |
| Date:        | 5/17/               | 18-5/181      | 18 m -            |                                                  |         |                                         |               |            |                     |                   |
| Sample To    | echnician:          |               | molsky,           |                                                  | Nei     | Ison                                    |               |            |                     |                   |
| Well ID N    | o.:                 | MW18          | PFCOL             | Oί                                               |         |                                         |               |            |                     |                   |
|              |                     |               | _                 |                                                  |         |                                         |               |            |                     |                   |
|              | 9.70                | 25            |                   | itial Mea                                        |         | ients<br>5.5 <i>5</i>                   |               |            |                     |                   |
| Well Total   |                     | 35            | ft BTOC           | Water Le                                         |         |                                         |               | # BTOC     | ) MATERY            | X WELL CAPACIT    |
|              | ut if applicable)   | =             | ( 20.35           |                                                  |         |                                         |               |            | Gal                 | A WELL CAPACIT    |
|              | i Well Volume:      | 0.8           | Gallons           | 1 1 10,93                                        | 10 /    | Weil Dia                                |               | <u>s</u> 2 |                     | inches            |
|              |                     |               |                   | 1                                                |         |                                         |               |            |                     |                   |
| C            | alculations:        | 1" diameter = | 0.041 gal/ft      |                                                  | 2" diam | eter = 0,                               | 163 gal/ft    |            | 4" diamete          | er = 0.653 gal/ft |
|              |                     |               | We                | il Purgi                                         | na Act  | ivites                                  |               | _          |                     |                   |
| Donalis M    | ethod (pump type):  | Parl (        |                   | ii i uigi                                        |         |                                         | incl. units): | <i>'</i> , | 5/8                 | 3                 |
| ruiging w    | etrios (pump type). | - ne con      | h. V <sub>1</sub> |                                                  |         | IUW FALCE (                             | aici. usins). |            | <u> </u>            | Mr [WIU           |
|              |                     |               |                   | Wi                                               | D)      | Depth                                   |               |            |                     |                   |
| Time         | Flow Rate           | Turbidity     | Temp              | Cond.                                            | - pH    | to<br>water                             | DO<br>(ma/l)  | ORP        | Total Gal<br>Pumped | Comments          |
|              | (ml/min)            | (NTUs)        | (°C)              | US CM                                            |         | (BTOC                                   | (mg/l)        |            | 1 umpeu             |                   |
| 1530         | - (MA               | ,             |                   |                                                  |         | 16,55                                   | ,             | <u> </u>   | 0.0                 | Begin Develop     |
| 535          | 5681,100            | OR            | 17.5              | 828                                              | 7,30    | -4                                      | 7.13          | -1.0       | 1.5                 | 100 1 4 C 10 (1)  |
| 1540         | <u>378</u>          | OR            | 12.1              | 8411                                             | 7.3     | ¥                                       | 6.67          | -0.7       | 2.0                 |                   |
| 1545         | 378                 | OB,           | 119               |                                                  | 7.36    | ·*                                      | 6.06          | -1,4       | 2.5                 | (MAN)             |
| 550          | 318                 | 015           | 11.8              | 1461                                             | 7.36    | -×                                      | 5.9b          | -0.3       |                     | Ent Pauxe for     |
| 1430         | 378                 | oR            | 11 6              | 841                                              | 7.17    | 15.50                                   | 5.98          |            | 3.0                 | Resume Devdol     |
| 1440         | 378                 | OR            | 11.0              | 840                                              | 7.13    | -\ <del>\</del>                         | 5.82          | -28.6      | D.J.                |                   |
| 1445         | 318                 | OR            | 11.0              | 845                                              | 7.15    | <del></del> -X-                         | 5.44          | -335       | 4.5                 | Find Pole opm     |
| 1118         |                     |               |                   |                                                  | / /     |                                         | _ , , ,       |            | 1000                | -1-1-151          |
|              |                     |               |                   |                                                  |         |                                         |               |            |                     |                   |
|              |                     |               | NOL               | ates                                             |         | $\supset$                               |               |            |                     |                   |
|              |                     |               |                   | /                                                | MA      | <del>y</del>                            | 19/16         | <b>)</b>   |                     |                   |
|              |                     |               |                   |                                                  |         | シ                                       |               |            |                     |                   |
|              |                     |               |                   |                                                  |         |                                         |               |            |                     | i I               |
|              |                     |               |                   |                                                  |         |                                         |               |            |                     |                   |
|              |                     |               |                   | 846                                              |         | *************************************** |               |            |                     |                   |

P 05/19/1



| Project Name:      | SI AFFF MULTIPLE SITES                      |
|--------------------|---------------------------------------------|
| ASL Project No:    | M2027.0003                                  |
| Installation:      | Ellsworth AFB                               |
| Site:              | ALW + & PFCO + OZ AT 5/18/18 ( Current FTA) |
| Date:              | 5/18/18                                     |
| Sample Technician: | Arell Turolski / Miles Neilson              |
| Well ID No.:       | MW18 PFCG102 (ELSWHO1-003)                  |

#### **Initial Measurements**

| Well Total Depth:             | 40.39         | ft BTOC        | Water Level:     | 22,97                | ft BTOC |             |                |      |
|-------------------------------|---------------|----------------|------------------|----------------------|---------|-------------|----------------|------|
| WELL VOLUME PURGE:            | 1 WELL VOLUM  | ,              |                  |                      |         |             | X WELL CAP     | ACIT |
| (only fill out if applicable) | =             | (40.39         | . Ft - 22.42t) > | 0.163  gal/ft =      | 2,85    | Gal         |                |      |
| Calculated Well Volume:       | 2.85          | Gallons        |                  | Well Diameter:       | 2       | j           | nches          |      |
| Calculations:                 | 1" diameter = | : 0.041 gal/ft | 2" di            | ameter = 0,163 gal/f | t       | 4" diametei | = 0.653 gal/ft |      |

#### **Well Purging Activites**

| Purging Method (pump type): Reclaimer | Flow rate (incl. units): | 845 mL/mm |
|---------------------------------------|--------------------------|-----------|
|---------------------------------------|--------------------------|-----------|

| Tìme    | Flow Rate<br>(ml/min) | Turbidity<br>(NTUs) | Temp<br>(°C) | Cond.<br>(ms/cm) | рН   | Depth<br>to<br>water<br>(BTOC<br>) | DO<br>(mg/l) | ORP    | Total Gal<br>Pumped | Comments |
|---------|-----------------------|---------------------|--------------|------------------|------|------------------------------------|--------------|--------|---------------------|----------|
| 1530    | 570                   | OR                  | 12.5         | 922              | 7,02 | 24,63                              | 1.04         | -53,4  | 1.5                 |          |
| 1530    | 380                   | OR                  | 12.4         | 1641             | 6.07 | 25,15                              | 1.27         | -81.7  | 2.5                 |          |
| 1550    | 380<br>570            | OR                  | 12,5         | 2473             | 5,50 | 25,15                              | 0.87         | -100,3 | 4.0                 |          |
| 1600    | 945                   | 6 R                 | 12,2         | 2613             |      | 26,05                              |              | -97.5  | 6.5                 |          |
| 1610    | 1135                  | OR                  | 12,3         | 2779             | 5.21 | 27.15                              | 1.17         | -97,1  | 9.5                 |          |
| 1620    | 1325                  | OR                  | 12.2         | 2848             | 5.16 | 26.70                              | 1.11         | -90,9  | 13,0                |          |
| 1625    | 1135                  | OR                  | 12.2         | 3002             | 5.02 | 26,75                              | 0,83         | -86.9  | 14,5                | ·        |
|         | <u> </u>              |                     |              |                  |      |                                    |              |        |                     |          |
|         |                       |                     |              | 3670             | ·    |                                    |              |        |                     |          |
|         |                       |                     |              |                  |      |                                    |              |        |                     |          |
|         |                       |                     |              |                  |      | أ                                  |              |        |                     |          |
|         |                       |                     |              |                  |      |                                    |              |        |                     |          |
|         |                       |                     |              |                  |      |                                    |              |        |                     |          |
|         |                       | A'C                 | 118/18       |                  |      |                                    |              |        |                     |          |
|         |                       | 5                   | (18110       |                  |      |                                    |              |        |                     |          |
|         |                       |                     |              |                  |      |                                    |              |        |                     |          |
|         |                       |                     |              |                  |      |                                    |              |        |                     |          |
| Results | At End Of Purging:    | OR                  | 12.2         | 3002             | 5.02 | 26,7                               | 6.83         | -86.9  | 14.5                |          |

COMMENTS: Well pad not complete, Stickup: 2.33 ags

Begin purging @ 1520

OR = ond of rouge

3785 ml = 1gal

5 well volumes = 14,25 gal

O 65/19



|      | Project Na   | ame:                     | SI AFFF MULT    | TIPLE SITE   | S                |                                       |                |               |             |            |                                                |               |
|------|--------------|--------------------------|-----------------|--------------|------------------|---------------------------------------|----------------|---------------|-------------|------------|------------------------------------------------|---------------|
|      | ASL Proje    | ect No:                  | M2027,0003      |              |                  |                                       |                |               |             |            |                                                | •             |
|      | Installatio  | n:                       | Elisworth AFI   | 3            |                  |                                       |                |               |             |            |                                                | •             |
|      | Site:        |                          | 1 ( cwc         | tut FT       | A)               |                                       |                |               |             |            | •••                                            | •             |
|      | Date:        |                          | 5/17/           | 18           | ` ,              |                                       |                |               |             |            |                                                | •             |
|      | Sample T     | echnician:               | Arek To         | wolski       | Mile             | s Ne                                  | ilson          | ^             |             |            |                                                | •             |
|      | Well ID N    | o.:                      | MWLBPF          |              |                  |                                       |                | -             |             |            |                                                |               |
|      |              |                          | ·               | <u>Ini</u>   | itial Mea        | asuren                                | nents          |               |             |            |                                                |               |
|      | Well Tota    | Depth: 20                | .36             | ft BTOC      | Water Le         | vei:                                  | 13.0           | 2             | ft BTÖC     |            |                                                |               |
|      | WELL VO      | LUME PURGE: 1            | WELL VOLUME     |              |                  | РТН ВТ                                | OC - 9         | STATIC D      | EPTH TO     | WATER)     | X WELL CAPACIT                                 |               |
|      | (only fill o | ut if applicable)        | =               | (20,36       | Ft - 13.0        | )} <sub>t) × (</sub>                  | 2(63           | gal/ft =      | 1.2         | Gal        |                                                |               |
|      | Calculated   | d Well Volume:           | 1.2             | Gallons      |                  | · · · · · · · · · · · · · · · · · · · | Well Dia       | ameter:       | 2           | 1          | inches                                         |               |
|      | C            | alculations:             | 1" diameter = 0 | 0.041 gal/ft |                  | 2" diam                               | eter = 0.1     | 163 gal/ft    |             | 4" diamete | er = 0.653 gal/ft                              |               |
|      |              |                          |                 |              |                  | _                                     |                |               |             |            |                                                |               |
|      |              |                          | 0 1             |              | II Purgi         | _                                     |                |               |             | 75-        | 7 100 1                                        |               |
|      | Purging M    | lethod (pump type):      | Keclad          | nly          |                  | _ F                                   | low rate (     | incl. units): |             | (2         | ( Mr MW                                        |               |
|      |              |                          |                 |              | (A)              |                                       | Depth          |               |             |            |                                                |               |
|      | Time o       | Flow Rate                | Turbidity       | Temp         | Cond.            | 1                                     | to             | DO            | ORP         | Total Gal  | Comments                                       |               |
|      | Time         | (ml/min)                 | (NTUs)          | (°C)         | (m8/Cm)<br>V5)cm | pH                                    | water<br>(BTOC | (mg/l)        | UKP         | Pumped     | Continents                                     |               |
|      | 1410         | _                        |                 |              |                  | _                                     | 13.02          |               |             | 6.0        | Bogn Dovelor                                   | mont          |
|      | 1420         | 757 mil                  | CWO R           | 10.0         | 681              | 7.2.7                                 | 1627           | <u>ч 47</u>   | -33.6       | 0.0<br>2.0 | 1-59.11 Kenelal                                | MAGNI         |
|      | 1430         | 757                      | NR              | 10.5         | 923              | 7.27                                  | 17.15          | 6.07          | 4114        | 40         |                                                |               |
|      | 1435         | AN 757                   | OR              | 10.9         | 995              | 7.37                                  | 17.15          | 7,88          | -34.4       | 5.0        | Well Romied Dry                                | at 1435       |
| 1500 | 1440         |                          |                 |              |                  |                                       | 13.62          |               |             |            | Resume Deve                                    | lopment       |
|      | 1505         | 757                      | OK              | 8,8          | 1627             | 7.57                                  | 17.15          | (0.53         | -4 <b>9</b> | 7.0        | 2.0.15                                         | - <del></del> |
|      | 15lo         | 75 <b>7</b>              | OI              | 8.9          | 1014             | 7.55                                  | 17.15          | 10.57         | -3,9        | 9.0        | Lug To Solo We                                 | ₩1 (m)        |
|      |              |                          |                 |              |                  | /                                     |                |               |             |            | 1510 Pump                                      | 3 171 8       |
|      |              |                          |                 |              |                  |                                       |                | - 11          | 1           |            |                                                |               |
|      |              |                          |                 |              |                  |                                       |                | 5117          | 12          |            |                                                |               |
|      |              |                          |                 |              | / (              | MA                                    | U)             |               |             |            |                                                |               |
|      |              |                          |                 |              |                  |                                       |                |               |             |            |                                                |               |
|      |              |                          |                 |              |                  |                                       |                |               |             |            | WILLOW THE |               |
|      |              |                          |                 | /            | <u> </u>         |                                       |                |               |             |            |                                                |               |
|      |              |                          |                 |              |                  |                                       |                | wew week      |             | ,,         |                                                |               |
|      | Results      | At End Of Purging:       | OR/             | 8,9          | 04               | 7.56                                  | 1715           | 10.5          | -3.9        | 0ء0        |                                                |               |
|      |              |                          |                 | <u> </u>     |                  | •                                     |                |               |             |            | •                                              |               |
|      | COMME        | NTS:                     |                 | , A.         |                  | 1                                     |                | 1 [ `         |             |            |                                                |               |
|      |              | well                     | pad not c       | complete     | , 541C           | wy                                    | : <i>O.</i>    | 17            | 1 د         | ₫`)        |                                                |               |
|      | Ble          | in purging is me = 1 gal | @ 1410          | tr           | 9/4/             | 1610/                                 | 116            | 111 (a        | 121         | 0          | ا ا                                            |               |
|      | 378          | 55 ML = 1 gal            |                 |              |                  | 9                                     | P 0.           | a 1 lox       | rs i        | NAG        | d                                              |               |
|      | I            | out of a                 |                 |              |                  | •                                     | O              | •             |             | )          |                                                |               |
|      | 1            | ell volumes              |                 |              |                  |                                       |                |               |             |            |                                                |               |
|      | 1 2 m        | on volumes               | - 6 gar         |              |                  |                                       |                |               |             |            |                                                |               |



| ASL Proje            | me;                                      | SI AFFF MULT    |               |                |          |                |              |                                        |                     |                                                       | -             |
|----------------------|------------------------------------------|-----------------|---------------|----------------|----------|----------------|--------------|----------------------------------------|---------------------|-------------------------------------------------------|---------------|
| -                    | ct No:                                   | M2027.0003      |               | <del>., </del> |          |                |              |                                        |                     |                                                       |               |
| Installation         | n:                                       | Ellsworth AFI   |               |                |          |                |              | <b>}</b>                               |                     |                                                       |               |
| Site:                |                                          | Current         | Fia Tr        | <u>icining</u> | Aren     | 1(24           | -e I )/      | (AFF                                   | f Ave               | H1)                                                   |               |
| Date:                |                                          | 7 7 6-1         | ₹             |                |          | _              |              |                                        |                     |                                                       |               |
| Sample Te            |                                          | A.Willis        |               | 1son           |          |                |              |                                        |                     |                                                       |               |
| Well ID No           | D.;                                      | MN930           | 0107          |                |          |                |              |                                        |                     |                                                       |               |
|                      |                                          |                 | ln            | itial Mea      | suren    | nents          |              |                                        |                     |                                                       |               |
| Well Total           | Depth: 34,7                              | 8               | fl BTOC       | Water Le       | vel:     | 31.79          | 1            | ft BTOC                                |                     |                                                       |               |
| WELL VO              | LUME PURGE: 11                           | WELL VOLUME     |               |                |          |                |              |                                        |                     | X WELL CAPACIT                                        | I             |
| (only fill ou        | it if applicable)                        | =               | (37.23        | Ft - 31-7      | Ft) x    | 1.143          | gal/ft =     |                                        | Gal                 |                                                       |               |
| Calculated           | Well Volume: 0                           | 1.39            | Gallons       | <u>l</u>       | T        | Well Dia       | meter:       | 2.0                                    | Ţ                   | inches                                                |               |
| C                    | alculations:                             | 1" diameter = ( | 0.041 gal/ft  |                | 2" diame | eter = 0.1     | 63 gal/ft    |                                        | 4" diamete          | er = 0,653 gal/ft                                     |               |
|                      |                                          |                 |               |                |          |                |              |                                        |                     |                                                       |               |
|                      |                                          |                 | We            | ll Purgi       | ng Act   | ivites         | ,            |                                        |                     |                                                       |               |
| Purging M            | ethod (pump type):                       | Munsu           | 01            |                | F        | low rate (i    | ncl. units): | : 150                                  | OML/M               | ìn                                                    |               |
|                      |                                          |                 |               |                |          | y              |              | ······································ |                     |                                                       | 1             |
|                      |                                          |                 |               |                | 1        | Depth<br>to    |              |                                        |                     |                                                       |               |
| Time                 | Flow Rate                                | Turbidity       | Temp          | Gond.          | pΗ       | water          | DO DO        | ORP                                    | Total Gal<br>Pumped | Comments                                              |               |
|                      | (ml/min)                                 | (NTUs)          | (°C) (        | (mS/Cm)        | ) ·      | (BTOC          | (mg/l)       |                                        | Pumpeu              |                                                       |               |
| 056                  | 1500                                     |                 |               |                |          | 31.95          |              |                                        |                     | Development in                                        | inted         |
| 1100                 | (500                                     | 472             | 11.4          | 3.34           | 2.24     | 31.90          | 2.46         | 360.7                                  | 1.60                |                                                       |               |
| 1105                 | 1500                                     | 503             | 11,4          | 3.30           | 7.21     |                | 1.60         | 334.19                                 | 21.933              | Sarged@ 1100<br>Surged@1114 -                         | <b>V</b>      |
| 1110                 | 1500                                     | 509             | 11.4          | 3.09           | 7.23     | 31.91          |              | 234.7                                  | 5.56                | Jurgente 1114 -                                       | - 5<-211 0014 |
| 1117                 | 1500                                     | 125             | 11/7          | 3.29           | 7.26     |                | 1.35         | 7/11.2                                 | 8.31                |                                                       |               |
| 1126                 | 1500                                     | DV(4 14792      | 11.5          | 3.31           | 7.28     | 31.70          |              | 266.                                   | 11.9                | Surged @ 1125<br>Surged @ 113                         | 1150          |
| 1133                 | 1500                                     | 417             | 11.5          | 3.29           |          | 81.90          | 0.89         | -                                      |                     | Surgul & 113                                          | 7             |
| 11.40                | 500                                      | 992             | (), 4<br>(),4 | 3.28           | 7.28     |                | 0.82<br>0.85 |                                        |                     | a                                                     |               |
| 1143                 | <u> </u>                                 | 107<br>59.4     | 11.3          | 3.27           |          | 31.90          |              | 255.1                                  |                     | A P 004-00-0011111117111-7-11-7-11-11-11-11-11-11-11- |               |
| 1147.                | VIII-III-III-II-II-II-II-II-II-II-II-II- | 29.4            |               |                |          | 31.90          |              | 253. 8                                 |                     |                                                       |               |
| 1146<br>1150         | ICDD                                     | 1019            | 1 1 1 1 5     | 3 L X          | 1.11     |                |              |                                        |                     |                                                       |               |
| ([50                 | 1500<br>1500                             |                 | 11.5          | 3.28           |          |                |              |                                        |                     |                                                       |               |
| (150<br>[153         | 1500                                     | 11.2            | 11,5          | 3.29           | 7.30     | 31.90          | 0.81         | 2539                                   | 12,51               | Develope 1                                            |               |
| ([50                 |                                          |                 | 11,5          |                | 7.30     | 31.90          | 0.81         | 2539                                   | 12,51               | Developed                                             |               |
| (150<br>[153         | 1500                                     | 11.2            | 11,5          | 3.29           | 7.30     | 31.90          | 0.81         | 2539                                   | 12,51               | Developed                                             |               |
| (150<br>[153         | 1500                                     | 11.2            | 11,5          | 3.29           | 7.30     | 31.90          | 0.81         | 2539                                   | 12,51               | Develope L                                            |               |
| ( 50<br> 153<br> 155 | 1500                                     | 11.2            | 11,5          | 3.29           | 7.31     | 31.50<br>31.50 | 0.81         | 253.9<br>25.3.4                        | 12,51               | Develope L                                            |               |



| ASL Project                                                                                                                          | t No:                                                                          | M2027.0003                                    |                                                                                              |                                                                                                                                                          |                                                                                              |                                                                                                                                                                     |                                                                                            |                                                                                                                                   |                                                                                           |                   |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------|
| Installation:                                                                                                                        |                                                                                | Ellsworth AFE                                 | 3                                                                                            |                                                                                                                                                          |                                                                                              |                                                                                                                                                                     |                                                                                            |                                                                                                                                   |                                                                                           |                   |
| Site:                                                                                                                                |                                                                                | Area ?                                        | (pund                                                                                        | 3)                                                                                                                                                       |                                                                                              |                                                                                                                                                                     |                                                                                            |                                                                                                                                   |                                                                                           |                   |
| Date:                                                                                                                                |                                                                                | 5/3/18                                        | ~ h > 1 · · · ·                                                                              | - J                                                                                                                                                      |                                                                                              |                                                                                                                                                                     |                                                                                            |                                                                                                                                   |                                                                                           |                   |
| ample Ted                                                                                                                            | chnician:                                                                      | Arek T                                        | `milska)                                                                                     | / Multh                                                                                                                                                  | en R                                                                                         | State S                                                                                                                                                             | Swart                                                                                      | 1.                                                                                                                                |                                                                                           |                   |
| Veil ID No.                                                                                                                          | :                                                                              | MWISPFI                                       | C0201                                                                                        | 4 3/23 1                                                                                                                                                 | 7                                                                                            |                                                                                                                                                                     |                                                                                            |                                                                                                                                   |                                                                                           |                   |
|                                                                                                                                      |                                                                                |                                               | lni                                                                                          | tial Mea                                                                                                                                                 | surem                                                                                        | nents                                                                                                                                                               |                                                                                            |                                                                                                                                   |                                                                                           |                   |
| Well Total (                                                                                                                         |                                                                                |                                               | ft BTOC                                                                                      | Water Lev                                                                                                                                                |                                                                                              | 15.4                                                                                                                                                                |                                                                                            | ff BTOC                                                                                                                           |                                                                                           |                   |
|                                                                                                                                      |                                                                                |                                               |                                                                                              |                                                                                                                                                          |                                                                                              |                                                                                                                                                                     |                                                                                            |                                                                                                                                   |                                                                                           | X WELL CAPAC      |
| <u>, , , , , , , , , , , , , , , , , , , </u>                                                                                        | if applicable)                                                                 |                                               | (40,3x                                                                                       | Ft - [ 5,4]                                                                                                                                              | <b>)</b> Ft) x (?                                                                            | ***************************************                                                                                                                             |                                                                                            | 1,1                                                                                                                               | Gal<br>*9                                                                                 | t                 |
| Calculated                                                                                                                           | Well Volume:                                                                   | 4,1                                           | Gallons                                                                                      | <u></u>                                                                                                                                                  |                                                                                              | Well Dia                                                                                                                                                            | ımeter:                                                                                    |                                                                                                                                   | <u>2</u>                                                                                  | inches            |
| Ca                                                                                                                                   | Iculations:                                                                    | 1" diameter = 0                               | ).041 gal/ft                                                                                 |                                                                                                                                                          | 2" diame                                                                                     | eter = 0.1                                                                                                                                                          | 63 gal/ft                                                                                  |                                                                                                                                   | 4" diamete                                                                                | er = 0.653 gal/ft |
|                                                                                                                                      |                                                                                |                                               | 187-                                                                                         | ll Purgi                                                                                                                                                 | na A 64                                                                                      | livitaa                                                                                                                                                             |                                                                                            |                                                                                                                                   |                                                                                           |                   |
|                                                                                                                                      |                                                                                | 0.1                                           |                                                                                              | ıı Purgi                                                                                                                                                 | _                                                                                            |                                                                                                                                                                     |                                                                                            |                                                                                                                                   | C 1 01                                                                                    |                   |
| Purging Me                                                                                                                           | thod (pump type):                                                              | gleum                                         | he/                                                                                          |                                                                                                                                                          | . F                                                                                          | low rate (i                                                                                                                                                         | incl. units):                                                                              |                                                                                                                                   | <u> </u>                                                                                  | n1/mn.            |
|                                                                                                                                      |                                                                                |                                               |                                                                                              |                                                                                                                                                          |                                                                                              | Depth                                                                                                                                                               |                                                                                            |                                                                                                                                   |                                                                                           |                   |
|                                                                                                                                      |                                                                                |                                               | Tame                                                                                         |                                                                                                                                                          |                                                                                              | to                                                                                                                                                                  | DO                                                                                         |                                                                                                                                   | Total Cal                                                                                 |                   |
|                                                                                                                                      | Flow Rate                                                                      | l urbidity                                    | Temp                                                                                         | Cond.                                                                                                                                                    | 1                                                                                            |                                                                                                                                                                     | 00                                                                                         |                                                                                                                                   | Total Gal                                                                                 | Commonte          |
| Time                                                                                                                                 | Flow Rate<br>(ml/min)                                                          | Turbidity<br>(NTUs)                           | (°C)                                                                                         | (mS/Cm)                                                                                                                                                  | pН                                                                                           | water<br>(BTOC                                                                                                                                                      | (mg/l)                                                                                     | ORP                                                                                                                               | Pumped                                                                                    | Comments          |
|                                                                                                                                      | (ml/min)                                                                       | •                                             | (°C)                                                                                         | MS/Cm)                                                                                                                                                   |                                                                                              | (BTOC                                                                                                                                                               | (mg/l)                                                                                     |                                                                                                                                   | Pumped                                                                                    | Comments          |
| o855                                                                                                                                 | (ml/min)                                                                       | (NTUs)                                        | (°C)                                                                                         | (ms/cm)<br>M5/cm<br>1498                                                                                                                                 | 7.60                                                                                         | (BTOC<br>)<br>17.81                                                                                                                                                 | (mg/l)                                                                                     | 157.0                                                                                                                             | Pumped                                                                                    | Comments          |
| 0855<br>0900                                                                                                                         | (ml/min)<br>374<br>757                                                         | (NTUs)                                        | (°C)<br>12,2                                                                                 | (ms/cm)<br>MS/cw<br>1498<br>1622                                                                                                                         | 7.60                                                                                         | (BTOC<br>)<br>17.81<br>18.76                                                                                                                                        | (mg/l)<br>4,01<br>2,38                                                                     | 157.0<br>158.4                                                                                                                    | 0.5                                                                                       | Comments          |
| 0855<br>2900<br>0410                                                                                                                 | (ml/min)<br>379<br>757<br>379                                                  | (NTUs)                                        | (°C)<br>12.0<br>12.1                                                                         | (ms/cm)<br>M5/cm<br>1498<br>1622<br>2836                                                                                                                 | 7.60<br>7.27<br>7.35                                                                         | (BTOC<br>)<br>17.81<br>18.76<br>21.55                                                                                                                               | (mg/l)<br>4.01<br>2.38<br>1.02                                                             | 157.0<br>158.4<br>156.6                                                                                                           | 0.5<br>1.5<br>2.5                                                                         | Comments          |
| 0855<br>0900<br>0910<br>0920                                                                                                         | (ml/min)  379  757  379  568                                                   | (NTUs) OR OR OR                               | (°C)<br>12,2                                                                                 | (ms/cm)<br>M5/cw<br>1498<br>1622<br>2836<br>3404                                                                                                         | 7.60<br>7.21<br>7.35<br>7.46                                                                 | (BTOC<br>)<br>17.81<br>18.76<br>21.55<br>22.02                                                                                                                      | (mg/l) 4.01 2.38 1.02 2.85                                                                 | 157.0<br>158.4<br>156.6<br>147.8                                                                                                  | 0.5<br>1.5<br>2.5<br>4.0                                                                  | Comments          |
| 0855<br>0900<br>0910<br>0910                                                                                                         | (ml/min)  379  757  379  568 379                                               | OR<br>OR<br>OR<br>OR<br>OR                    | (°C)<br>12.0<br>12.1                                                                         | (ms/cm)<br>Ms/cw<br>1498<br>1622<br>2836<br>3404<br>3450                                                                                                 | 7.60<br>7.27<br>7.35<br>7.46<br>7.55                                                         | (BTOC<br>)<br>17.81<br>18.76<br>21.55<br>22,02<br>24,24                                                                                                             | (mg/l) 4.01 2.38 1.02 2.85 2.70                                                            | 157.0<br>158.4<br>156.6<br>147.8<br>137.9                                                                                         | 0.5<br>1.5<br>2.5<br>4.0<br>5.0                                                           | Comments          |
| 0855<br>0900<br>0910<br>0910<br>0930                                                                                                 | (ml/min)  379  757  379  568  379  568                                         | OR<br>OR<br>OR<br>OR<br>OR<br>OR              | (°C)<br>12.0<br>12.1                                                                         | (ms/cm)<br>/45/cw<br>1498<br>1622<br>2836<br>3404<br>3450<br>3740                                                                                        | 7.60<br>7.27<br>7.35<br>7.46<br>7.55<br>7.57                                                 | (BTOC<br>)<br>17.8 t<br>18.76<br>21.55<br>22.02<br>24.24<br>25.81                                                                                                   | (mg/l) 4.01 2.38 1.02 2.70 1.26                                                            | 157.0<br>158.4<br>156.6<br>147.8<br>137.9                                                                                         | 0.5<br>1.5<br>2.5<br>4.0<br>5.0<br>6.5                                                    | Comments          |
| 2855<br>2900<br>2910<br>2910<br>2910<br>2910<br>2910                                                                                 | (ml/min)  379  757  379  568 379                                               | OR<br>OR<br>OR<br>OR<br>OR                    | (°C)<br>12.0<br>12.1                                                                         | (ms/cm)<br>/h5/cm<br>/h5/cm<br>1498<br>1622<br>2836<br>3404<br>3450<br>3740<br>4106                                                                      | 7.60<br>7.27<br>7.35<br>7.46<br>7.55<br>7.57<br>7.62                                         | (BTOC<br>)<br>17.81<br>18.76<br>21.55<br>22.02<br>24,24<br>25.81<br>25.81                                                                                           | (mg/l) 4.01 2.38 1.02 0.85 2.70 1.26 1.00                                                  | 157.0<br>158.4<br>156.6<br>147.8<br>137.9<br>131.3                                                                                | 0.5<br>1.5<br>2.5<br>4.0<br>5.0<br>6.5                                                    | Comments          |
| 0855<br>0400<br>0410<br>0420<br>0430<br>0440<br>0450                                                                                 | (ml/min)  379  757  379  568  379  568  757                                    | (NTUs) OR OR OR OR OR OR OR                   | (°C)<br>12.0<br>12.1                                                                         | (ms/cm)<br>/45/cw<br>1498<br>1622<br>2836<br>3404<br>3450<br>3740                                                                                        | 7.60<br>7.27<br>7.35<br>7.46<br>7.55<br>7.57<br>7,62                                         | (BTOC<br>)<br>17.81<br>18.76<br>21.55<br>22.02<br>24.24<br>25.81<br>25.81<br>26.01                                                                                  | (mg/l) 4.01 2.38 1.02 2.70 1.26                                                            | 157,0<br>158,4<br>156,6<br>147,8<br>137,4<br>131,3<br>111,2                                                                       | 0.5<br>1.5<br>2.5<br>4.0<br>5.0<br>6.5<br>8.5                                             | Comments          |
| 0855<br>0400<br>0410<br>0410<br>0430<br>0440<br>0450<br>1600                                                                         | (ml/min)  379  757  379  568  379  568  757                                    | (NTUs) OR OR OR OR OR OR OR OR                | (°C)<br>12.2<br>12.0<br>12.1<br>12.3<br>11.6<br>11.7<br>11.7                                 | (ms/cm)<br>/h5/cm<br>1498<br>1622<br>2836<br>3404<br>3450<br>3740<br>4106<br>4248<br>4109<br>4300                                                        | 7.60<br>7.27<br>7.35<br>7.46<br>7.55<br>7.57<br>7.62<br>7.62<br>7.64                         | (BTOC<br>)<br>17.81<br>18.76<br>21.55<br>22.02<br>24.24<br>25.81<br>25.96<br>26.01<br>25.76                                                                         | (mg/l)  4.01  2.38  1.02  2.70  1.26  1.00  1.42  0.47                                     | 157.0<br>158,4<br>156.6<br>147,8<br>137,9<br>131,3<br>111,2<br>96.0<br>81,3<br>66.6                                               | Pumped  0.5  1.5  2.5  4.0  5.0  6.5  8.5  10.5  11.5  13.0                               | Comments          |
| 0855<br>0900<br>0910<br>0910<br>0930<br>0940<br>0950<br>1000<br>1010                                                                 | (ml/min)  379  757  379  568  379  568  757  379  568  379                     | (NTUs) OR OR OR OR OR OR OR OR                | (°C)<br>12.2<br>12.0<br>12.1<br>12.3<br>11.6<br>11.7<br>11.7<br>11.8<br>12.0<br>12.0<br>12.1 | (ms/cm)<br>/h5/cm<br>1498<br>1622<br>2836<br>3404<br>3450<br>4106<br>4248<br>4109<br>4300<br>4276                                                        | 7.60<br>7.27<br>7.35<br>7.46<br>7.55<br>7.57<br>7.62<br>7.62<br>7.64<br>7.64                 | (BTOC<br>)<br>17.81<br>18.76<br>21.55<br>22.02<br>24.24<br>25.81<br>25.86<br>26.01<br>25.76<br>25.56<br>25.86                                                       | (mg/l)  4.01  2.38  1.02  2.70  1.26  1.00  1.42  0.47  0.47                               | 157.0<br>158,4<br>156.6<br>147,8<br>137,9<br>131,3<br>111,2<br>96.0<br>81,3<br>66.0                                               | Pumped  0.5  1.5  2.5  4.0  5.0  6.5  8.5  10.5  11.5  13.0  14.0                         | Comments          |
| 0855<br>0900<br>0910<br>0910<br>0930<br>0940<br>0950<br>1000<br>1010                                                                 | (ml/min)  379  757  379  568  379  517  757  379  568  379  568                | (NTUs)  OR  OR  OR  OR  OR  OR  OR  OR  OR  O | (°C)  12.7  12.1  12.3  11.6  11.7  11.8  12.0  12.0  12.1                                   | (ms/cm)<br>/h5/cm<br>/h5/cm<br>1418<br>1622<br>2836<br>3404<br>3450<br>4106<br>4248<br>4109<br>4300<br>4276                                              | 7.60<br>7.27<br>7.35<br>7.46<br>7.55<br>7.57<br>7.66<br>7.62<br>7.64<br>7.63                 | (BTOC<br>)<br>17.81<br>18.76<br>21.55<br>22.02<br>24.24<br>25.81<br>25.46<br>26.01<br>25.76<br>25.56<br>25.86                                                       | (mg/l)  4.01  2.38  1.02  2.70  1.26  1.00  1.42  0.47  0.47                               | 157.0<br>158,4<br>156.6<br>147,8<br>137,9<br>131,3<br>111,2<br>96.0<br>81,3<br>66.0<br>54.2                                       | Pumped  0.5  1.5  2.5  4.0  5.0  6.5  8.5  10.5  11.5  13.0  14.0  15.5                   | Comments          |
| 2855<br>2900<br>2910<br>2910<br>2930<br>0940<br>0950<br>1000<br>1010<br>1030                                                         | (ml/min)  379  757  379  568  379  568  757  379  568  379  568                | (NTUs)  OR  OR  OR  OR  OR  OR  OR  OR  OR  O | (°C)  12.2  12.0  12.1  12.3  11.6  11.7  11.7  11.8  12.0  12.1  12.1                       | (ms/cm)<br>/m5/cm<br>/m5/cm<br>1418<br>1622<br>2836<br>3404<br>3450<br>3740<br>4106<br>4248<br>4109<br>4209<br>4276<br>4326                              | 7.60<br>7.27<br>7.35<br>7.46<br>7.55<br>7.62<br>7.62<br>7.64<br>7.63<br>7.63                 | (BTOC<br>)<br>17.81<br>18.76<br>21.55<br>22.02<br>24.24<br>25.81<br>25.46<br>25.76<br>25.56<br>25.86<br>24.45<br>24.75                                              | (mg/l) 4.01 2.38 1.02 0.85 2.70 1.26 1.00 1.42 0.47 0.47 0.47 0.47                         | 157.0<br>158.4<br>156.6<br>147.8<br>137.9<br>131.3<br>111.2<br>96.0<br>87.3<br>66.6<br>54.2<br>40.4<br>29.8                       | Pumped  0.5 1.5 2.5 4.0 5.0 6.5 8.5 10.5 11.5 13.0 14.0 15.5 17.0                         | Comments          |
| 0855<br>0400<br>0410<br>0430<br>0440<br>0450<br>1000<br>1010<br>1020<br>1040<br>040                                                  | (ml/min)  379  757  379  568  379  518  757  379  568  568  568                | (NTUS)  OR  OR  OR  OR  OR  OR  OR  OR  OR  O | (°C)  12.2  12.0  12.1  12.3  11.6  11.7  11.8  12.0  12.1  12.0  11.1                       | (ms/cm)<br>/M5/cw<br>1498<br>1622<br>2836<br>3404<br>3450<br>3740<br>4106<br>4248<br>4109<br>4276<br>4376<br>4376                                        | 7.60<br>7.27<br>7.35<br>7.46<br>7.55<br>7.67<br>7.62<br>7.64<br>7.63<br>7.63<br>7.63         | (BTOC<br>)<br>17.81<br>18.76<br>21.55<br>22.02<br>25.81<br>25.82<br>25.56<br>25.56<br>25.56<br>24.45<br>24.45<br>25.19                                              | (mg/l)  4.01  2.38  1.02  0.85  2.70  1.26  1.00  1.42  0.97  0.97  0.97  0.97             | 157.0<br>158.4<br>156.6<br>147.8<br>137.9<br>131.3<br>111.2<br>96.0<br>81.3<br>66.0<br>54.2<br>40.4<br>29.8<br>17.5               | Pumped  0.5 1.5 2.5 4.0 5.0 6.5 8.5 10.5 11.5 13.0 14.0 15.5 17.0 18.5                    | Comments          |
| 0855<br>090<br>0910<br>0910<br>0910<br>0910<br>0910<br>0910<br>090<br>09                                                             | (ml/min)  379  757  379  568  379  577  379  568  379  568  568  568  568      | (NTUs)  OR  OR  OR  OR  OR  OR  OR  OR  OR  O | (°C)  12.7  12.3  11.6  11.7  11.8  12.0  12.1  12.0  11.1  12.0  11.9  12.5                 | (ms/cm)<br>/M5/cw<br>1498<br>1622<br>2836<br>3404<br>3450<br>4106<br>4248<br>4109<br>4276<br>4376<br>4376                                                | 7.60<br>7.27<br>7.35<br>7.46<br>7.55<br>7.67<br>7.62<br>7.62<br>7.63<br>7.63<br>7.63<br>7.63 | (BTOC) 17.81 18.76 21.55 22.02 24.24 25.81 25.86 25.56 25.56 25.56 25.81 25.19 25.19                                                                                | (mg/l)  4.01  2.38  1.02  0.85  2.70  1.26  1.00  1.42  0.99  0.99  0.99  0.99  0.99       | 157.0<br>158.4<br>156.6<br>147.8<br>137.9<br>131.3<br>111.2<br>96.0<br>87.3<br>66.6<br>54.2<br>40.4<br>29.8<br>17.5               | Pumped  0.5  1.5  2.5  4.0  5.0  6.5  8.5  10.5  11.5  13.0  14.0  15.5  17.0  18.5  14.5 |                   |
| 0855<br>0900<br>0910<br>0910<br>0910<br>0910<br>0910<br>090<br>100<br>10                                                             | (ml/min)  379  757  379  568  379  568  379  568  379  568  568  568  579  190 | (NTUs)  OR  OR  OR  OR  OR  OR  OR  OR  OR  O | (°C)  12.0  12.1  12.3  11.6  11.7  11.8  12.0  12.1  12.0  12.1  12.0  11.9  12.5  13.9     | (ms/cm)<br>/M5/cw<br>1418<br>1622<br>2836<br>3404<br>3450<br>4106<br>4248<br>4109<br>4300<br>4276<br>4326<br>4357<br>4441                                | 7.60<br>7.27<br>7.35<br>7.46<br>7.55<br>7.62<br>7.62<br>7.64<br>7.63<br>7.63<br>7.63<br>7.63 | (BTOC<br>)<br>17.81<br>18.76<br>21.55<br>22.02<br>24.24<br>25.81<br>25.86<br>25.76<br>25.76<br>25.86<br>24.45<br>24.45<br>24.45<br>25.19<br>22.19<br>22.19<br>22.30 | (mg/l)  4.01  2.38  1.02  2.70  1.26  1.00  1.42  0.99  0.99  0.99  0.99  0.99  0.99  0.99 | 157.0<br>158,4<br>156.6<br>147,8<br>137.9<br>131,3<br>111,2<br>96.0<br>81,3<br>66.6<br>54.2<br>40.4<br>29,8<br>17.5<br>4,1        | Pumped  0.5 1.5 2.5 4.0 5.0 6.5 8.5 10.5 11.5 13.0 14.0 15.5 17.0 18.5 19.5 20.0          |                   |
| 0855<br>0900                                                                                                                         | (ml/min)  379  757  379  568  379  577  379  568  379  568  568  568  568      | (NTUs)  OR  OR  OR  OR  OR  OR  OR  OR  OR  O | (°C)  12.2  12.0  12.1  12.3  11.6  11.7  11.8  12.0  12.1  12.0  11.9  12.5  13.9  11.1     | (ms/cm) / M5/cm / M5/cm / M5/cm / M5/cm / M6/cm   1418   1622   2836   3404   3404   3406   4216   4300   4216   4300   4216   4357   4441   3603   3493 | 7.60<br>7.27<br>7.35<br>7.46<br>7.55<br>7.62<br>7.64<br>7.63<br>7.63<br>7.63<br>7.63<br>7.63 | (BTOC) 17.81 18.76 21.55 22.02 24.24 25.81 25.86 25.86 25.86 25.86 24.46 24.75 25.19 22.30 21.32                                                                    | (mg/l) 4.01 2.38 1.02 2.70 1.26 1.00 1.42 0.47 0.47 0.47 0.47 0.67 5.63                    | 157.0<br>158,4<br>156.6<br>147.8<br>137.9<br>131.3<br>111.2<br>96.0<br>87.3<br>66.0<br>54.2<br>40.4<br>29.8<br>17.5<br>4,1<br>7.2 | Pumped  0.5 1.5 2.5 4.0 5.0 6.5 8.5 10.5 11.5 13.0 14.0 15.5 17.0 18.5 20.0 24.0          | Chipment m        |
| 0855<br>0900<br>0910<br>0910<br>0910<br>0910<br>0910<br>0910<br>1010<br>1010<br>1010<br>1010<br>1050<br>1110<br>1110<br>1110<br>1130 | (ml/min)  379  757  379  568  379  568  379  568  379  568  568  568  579  190 | (NTUs)  OR  OR  OR  OR  OR  OR  OR  OR  OR  O | (°C)  12.0  12.1  12.3  11.6  11.7  11.8  12.0  12.1  12.0  12.1  12.0  11.9  12.5  13.9     | (ms/cm) / M5/cm / M5/cm / M5/cm / M5/cm / M6/cm   1418   1622   2836   3404   3404   3406   4216   4300   4216   4300   4216   4357   4441   3603   3493 | 7.60<br>7.27<br>7.35<br>7.46<br>7.55<br>7.62<br>7.64<br>7.63<br>7.63<br>7.63<br>7.63<br>7.63 | (BTOC) 17.81 18.76 21.55 22.02 24.24 25.81 25.86 25.86 25.86 25.86 24.46 24.75 25.19 22.30 21.32                                                                    | (mg/l)  4.01  2.38  1.02  2.70  1.26  1.00  1.42  0.99  0.99  0.99  0.99  0.99  0.99  0.99 | 157.0<br>158,4<br>156.6<br>147.8<br>137.9<br>131.3<br>111.2<br>96.0<br>87.3<br>66.0<br>54.2<br>40.4<br>29.8<br>17.5<br>4,1<br>7.2 | Pumped  0.5 1.5 2.5 4.0 5.0 6.5 8.5 10.5 11.5 13.0 14.0 15.5 17.0 18.5 19.5 20.0          |                   |

5 mell volumes: 220.5 gal

OR = out of range

3785 mL=1 gal

C-91 05/07



# AerostarSES... WELL DEVELOPMENT LOG

| Drainat Nr   |                     | SI AFFF MULT      | IDI E OITEG        | ,            | •       |                |              |                 |            |                   |                |
|--------------|---------------------|-------------------|--------------------|--------------|---------|----------------|--------------|-----------------|------------|-------------------|----------------|
| Project Na   |                     |                   | IFLE SHE           |              |         |                |              |                 |            |                   | _              |
| ASL Proje    |                     | M2027.0003        |                    |              |         |                |              |                 |            |                   | AAAM           |
| Installation | ר:                  | Ellsworth AFE     |                    | <b>T</b>     |         |                |              |                 |            |                   | _              |
| Site:        |                     | Z (por            |                    |              |         |                |              | -               |            |                   |                |
| Date:        | 1. 1. 1             | 5/1/2             |                    | 12/18        | 5       |                |              |                 |            |                   |                |
| •            | echnician;          |                   | Turolst            |              |         |                |              |                 |            |                   |                |
| Well ID N    | 0,:                 | <u> Mwl8</u>      | PFC 67             | 202          |         |                |              |                 |            |                   |                |
|              |                     |                   | lni                | tial Mea     | suren   |                |              |                 |            |                   | <del>-</del> 7 |
| Well Total   |                     | 1111              | ft BTOC            | Water Lev    |         | 16.4           |              | ff BTOC         |            |                   |                |
| WELL VO      | LUME PURGE: 1       | WELL VOLUME       |                    |              |         |                |              |                 |            | X WELL CAPACI     | IT<br>I        |
| (only fill o | ut if applicable)   | =                 | <u>( 41.88</u>     | Ft -[6,4     | Ft) x ( | 2,163          | gal/ft =     |                 | Gal        |                   |                |
| Calculated   | d Well Volume:      | 4,15              | Gallons            |              | f       | Well Dia       | meter:       | 2               |            | inches            |                |
| 0            | alculations:        | 1" diameter = 0   | .041 gal/ft        |              | 2" diam | eter = 0.1     | 63 gal/ft    |                 | 4" diamete | er = 0.653 gal/ft |                |
|              |                     |                   |                    |              |         |                |              |                 |            |                   |                |
|              |                     |                   | We                 | ll Purgi     | ng Act  | tivites        |              |                 |            |                   |                |
| Purging M    | lethod (pump type): | Redu              | mer                |              | . F     | low rate (i    | nct. units): | 6               | 66         | m L/m/h           | <del></del>    |
|              |                     |                   |                    |              |         | Depth          |              | <u> </u>        |            |                   |                |
| -            | Flow Rate           | Turbidity         | Temp               | Cond.        | -all    | to             | DO           | ORP             | Total Gat  | Comments          |                |
| Time         | (ml/mɨn)            | (NTUs)            | (°C)               | MS/Cm        |         | water<br>(BTOC | (mg/l)       | OKE             | Pumped     | Comments          |                |
|              |                     |                   |                    | /            |         | `)             |              |                 |            |                   |                |
| 1585         | 1514                | ok                | 11.1               | 5906         |         |                |              | 24.6            | 2.0        |                   |                |
| 1660         | 1135                | OR                | <u>  [[.[</u>      | 6271         | 7.66    |                |              | 19.2            | 3.5        |                   |                |
| 1616         | 757                 | OR                | <u> 11.1</u>       | 6383         | 7.60    |                | 0.83         | 2,6             | 5, 5.      |                   |                |
| 1620         | 568<br>946          | OR                | <u>u.z</u><br>11.4 | 7527<br>8401 | 7.47    | 34,40<br>35,85 |              | 6.4<br>U,O      | 9.5        |                   |                |
| (630         |                     | OR                | 11.5               | 7207         |         |                | 2.36         | 254             | 10,5       | D'IW Conter on 1  | word clame     |
| 1640         | 378<br>568          | OR                | 11.8               | 7950         |         |                | 3.37         | 28.4            |            | 14011 day 60 10   | 651 on 5/1/18  |
| 1510         | 757                 | OR                | 12.3               | 11009        |         | 18.97          |              | 14.1            | (3.0       | 5/2/18            |                |
| 1520         | 378                 | OR                | 11.4               | 11516        | L       | 21.93          |              |                 | 14.0       | 3,0,0             | _              |
| (530         | 378                 | OR                | 11.3               | 10540        |         | 25.16          |              |                 |            |                   |                |
| 1540         | 378                 | OR                | 11,2               | 10581        |         |                |              |                 |            |                   |                |
| 1550         | 378                 | 416               | 11.2               | 10616        | 7.68    | 27.46          | 2.93         | 8.2             | 17.0       |                   |                |
| 1600         | 378                 | 234               | 11.1               | 10557        | 7,10    | 29,96          | 2,71         | -6.1            | 0,81       |                   | on and         |
| 1610         | 1514                | OR                | il.,               | 10738        | 7.05    | 39.24          | 4.49         | ~3.             | 22.0       |                   |                |
|              |                     |                   |                    |              |         |                |              |                 |            |                   |                |
| A            | 5/2/18              |                   |                    |              |         |                |              |                 |            |                   |                |
|              |                     |                   | 11 .               | . NG 20      | _ ^ _   | 2000           | 11.7.8       | 7 1             | 20 1       |                   |                |
| Results      | At End Of Purging:  | OR                | 11.1               | 10 138       | 7.02    | 39.29          | 4.49         | <u>  ~ 3, 1</u> | 22.0       |                   |                |
|              |                     |                   |                    |              |         |                |              |                 |            |                   |                |
| COMM         | ENTS: Rein          | 21400- 0          | 1557               | 5/1/         | (8 VA/  | ين لله         | لام م لمير   | · ( 454-        | لمعاما     | TOC=2.4'          | 905            |
|              | 0-5                 | المراجعة المراجعة | 6 12 2c            | ) ON 0.11    |         |                |              |                 | ici ca.    | 2,11              | 433            |
| OR           | = out of row        | ye                |                    |              | 5/2/    | 18 -D.         | 1: W         | 7.47            |            | , .               |                |
|              | ell volumes?        | -                 | jal,               |              | Beg     | m pu           | ngMy         | 0 15            | 505 on     | 5/2/18            |                |
| 378          | 5 mL =1 g           | al.               |                    |              |         |                |              |                 |            |                   |                |

C-92 05/07



| Project Na    | ame:                | SI AFFF MULT    | TIPLE SITES   | S         |              |                |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|---------------|---------------------|-----------------|---------------|-----------|--------------|----------------|---------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| ASL Proje     | ct No:              | M2027.0003      |               |           |              |                |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Installation  | n:                  | Ellsworth AF    | 3             |           |              |                |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Site:         |                     | Area Cs         | iite) 2       | <b>-</b>  |              |                |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Date:         |                     | 4/25/           | (8            |           |              |                |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Sample To     | echnician:          | Arele           | Tuolsk        | ~}        |              |                |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Well ID No    | o.:                 | MW181           |               |           |              |                |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|               |                     |                 |               | itial Mea | suren        | nents          |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Well Total    | Depth:              |                 | ft BTOC       | Water Le  | vel:         |                |                                                   | ft BTOC        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|               |                     | WELL VOLUME     | E = (TOTAL    |           |              | OC - :         | STATIC D                                          | EPTH TO        | ) WATER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X WELL CAPACIT                         |
| (only fill oເ | ıt if applicable)   | =               | (18.2         | Ft - 4,6! | ;<br>Ft) x ( | 3,163          | gal/ft =                                          | 2,20           | Gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| Calculated    | Well Volume:        | 2.20            | Gailons       |           |              | Well Dia       |                                                   | 7              | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inches                                 |
| C             | alculations:        | 1" diameter = ( | 0.041 gal/ft  |           | 2" diam      | eter = 0.1     | 163 gal/ft                                        |                | 4" diamete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | er = 0.653 gal/ft                      |
| <u> </u>      | incajawono.         | T diameter (    | J. O FT GUINE |           | L GILIT      |                | .co gastt                                         |                | 1 31311131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , , , , , , , , , , , , , , , , , , ,  |
|               |                     |                 | We            | ell Purgi | na Aci       | tivites        |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Purging M     | ethod (pump type):  | Mega M          |               | _         | _            |                | incl. units):                                     |                | 1385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mL/mm                                  |
|               |                     |                 |               |           |              | Depth          |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|               | Flow Rate           | Turbidity       | Temp          | Cond.     |              | to             | DO                                                |                | Total Gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| Time          | (ml/min)            | (NTUs)          | (°C)          | (mS/Cm)   | pН           | water<br>(BTOC | (mg/l)                                            | ORP            | Pumped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Comments                               |
|               |                     |                 |               |           |              | )              |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 1345          | 1514                | DR              | 7.7           | 4,64      | 7.15         | 4.87           | 1,34                                              | -673           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| 1350          | 1136                | 326             | 7.2           | 4.78      | 7,13         | 4.81           | 1.49                                              | -79,1          | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110                                    |
| 1355          | 757                 | 8R              | 7.4           | 4.85      | 7.16         | 4,60           | <del>                                      </del> | <u>~73,9</u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 125                                  |
| 1400          | 1136                | OR              | 7.0           | 4,63      | 7,18         | 4,92           | 1,40                                              | -79,4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , N                                    |
| 1405          | <u>1843</u><br>1893 | OR<br>OR        | 69            | 4.63      | 1,15         | 4.95           | 0,41                                              | -803           | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| 1410          | 1136                | 59              | 6.5           | 4.70      | 7,11         | 4.99           | 0.39                                              | -80.7<br>-96.7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stopped Surgery wel                    |
| 1418          | 757                 | 24.8            | 6,5           | 4.70      |              | 5.03           |                                                   | -100.3         | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 210/per surging we                     |
| 1421          | 1136                | 9,61            | 6,3           | 4,69      | 7.23         |                | 0,44                                              | -104.9         | 15,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
| 1 - ~ 1       | (1)                 | 170             |               | (10 1     | رورا         | 3,00           |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|               |                     |                 |               |           |              |                |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|               |                     |                 |               |           |              |                |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/                                     |
|               |                     | IMPACT .        |               |           |              |                |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  |
|               |                     | سيسند           |               |           |              |                |                                                   |                | Marine Ma | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
|               |                     | 4725/18         |               |           |              |                |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
|               |                     |                 |               |           |              |                |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Danis         | 14 F- 4 Of D        | 9,61            | 6.3           | 14 / 9    | 7 23         | 5 68           | 0,44                                              | _1/24 9        | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /<br>                                  |
| Results       | At End Of Purging:  | 1,01            | 612           | 1 4,00    | 1167         | 7,00           | 0744                                              | 10 111         | 1710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                                      |
|               |                     |                 |               |           |              |                |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| COMME         | ints: well ,        | not sout        | ed. To        | oe is     | 2.1          | 5 1 æ          | los AT                                            | ags            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|               | ell volumes         | - اا م          | 1             |           |              |                |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| l             |                     | =               | ٦.            | Be        | &M           | pur            | gilliq                                            | @              | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
|               | out of n            | •               |               |           | J            | N              | ・ノ                                                | <del>-</del> . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| 378           | '5 mL=1 ga          | ત               |               |           |              |                |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |

C-93 OS/10



|         | Project Na   | ıme:                               | SI AF           | F Mu                | 1 Hole               | <11e     | 7                   |              |               |             |                                            |                                         |  |
|---------|--------------|------------------------------------|-----------------|---------------------|----------------------|----------|---------------------|--------------|---------------|-------------|--------------------------------------------|-----------------------------------------|--|
|         | ASL Proje    | ct No:                             |                 | 2027.0003           |                      |          |                     |              |               |             |                                            |                                         |  |
|         | Installation | ո:                                 | Ellswore        |                     | <br>}                |          |                     |              |               |             |                                            | _                                       |  |
|         | Site:        |                                    | 2 ( row         |                     |                      |          | -                   |              |               |             |                                            |                                         |  |
|         | Date:        |                                    | 5/18/18         |                     |                      |          |                     |              |               |             |                                            |                                         |  |
|         | Sample Te    | echnician:                         | Arek Ti         |                     |                      | Nei      | /san                |              |               |             |                                            |                                         |  |
|         | Well ID No   | o.:                                | MWLBP           |                     |                      |          | 37 -00              | 5)           |               |             |                                            | _                                       |  |
|         |              |                                    |                 |                     |                      |          |                     |              |               |             |                                            |                                         |  |
| ı       |              | 115                                | 0.7             |                     | itial Mea            |          |                     | 7            |               |             |                                            | 7                                       |  |
|         | Well Total   |                                    |                 | ft BTOC             | Water Lev            |          | 34.6                |              | ft BTOC       | MATER)      | V WELL CARACI                              | _}<br>                                  |  |
|         |              | LUME PURGE: 1<br>ut if applicable) | WELL VOLUME     | == (101AL<br>(45,26 |                      |          |                     |              |               | Gal Gal     | X WELL CAPACI                              | <u> </u>                                |  |
|         |              | Well Volume:                       | 1,74            | Gallons             |                      |          | Well Dia            |              | 2             |             | inches                                     |                                         |  |
|         |              |                                    | 1" diameter = ( | 0.041 gal/ft        |                      | 2" diam  | eter = 0 1          | 63 gal/ft    |               | 4" diamete  | er = 0.653 gal/ft                          |                                         |  |
|         | <u></u>      | alculations:                       | I diameter = t  | 7.04 i gaint        |                      | Z GIGITI | 5(C) - 0. i         | oo gama      |               | T GIGITION  |                                            |                                         |  |
|         |              |                                    |                 | We                  | ll Purgi             | ng Ac    | tivites             |              |               |             |                                            |                                         |  |
|         | Purging M    | ethod (pump type):                 | Redain          | مار                 |                      | FI       | ow rate (i          | ncl. units): |               | <u> 515</u> | ml/min                                     | _                                       |  |
|         | <u> </u>     |                                    |                 |                     |                      |          | Depth               |              |               |             |                                            | 1                                       |  |
|         |              | Flow Rate                          | Turbidity       | Temp                | Cond.                |          | to                  | DO           | ORP           | Total Gal   | Comments                                   |                                         |  |
|         | Time         | (ml/min)                           | (NTUs)          | (°C)                | (m <del>8/Cm</del> ) | pН       | water<br>(BTOC<br>) | (mg/l)       | ORP           | Pumped      | Confinients                                | *************************************** |  |
| 5/18/18 | 1320         | 379                                | OR              | 13.5                | 581                  |          | 37,66               |              | -148.8        | 0.5         |                                            |                                         |  |
|         | 1325         | 758 % Slist                        | x OR            | 13.3                | 409                  |          |                     | 1,47         | -127.2        | <u>1.5</u>  |                                            | 4                                       |  |
|         | 1330         | 758'                               | OR              | 14.2                | 400.3                |          | 40,96               | 0.86         | -156,0        |             |                                            | -                                       |  |
|         | 1335         | 379                                | OR              | 15.1                | 404.8                | 7.16     |                     | 0,64         | -2028         |             | who an top of                              | punp                                    |  |
|         | 1340         | 379                                | OR              | 14.3                | 456.4                | 7,16     |                     | 1,06         | -222,5        |             | 011 1 O 1213                               | _                                       |  |
| P 1     | 1345         | 379                                | OR              | 14,3                | 578                  | 7,16     | 37,38               | 5.14         | 92,6          |             | resume lev. @                              | 0900                                    |  |
| 5/22/18 |              | <u>758</u><br>379                  | OR              | 13,4                | 444,7                |          |                     |              |               | 5.5         | resume acric                               | _0 100                                  |  |
|         | 0915         | <u> </u>                           | 08              | 13.2                | 386.4                |          |                     | 5,60         |               | 6,5         |                                            | _                                       |  |
|         | 0920         | 379                                | OR              | 13.5                | 407.3                | 7.36     | -11,01              | 5.46         |               | 7.0         | WLM on top of                              | lume                                    |  |
|         | 0925         | 379                                | OR              | 14.0                | 461.8                | 7.34     | _                   |              | 89.9          | 7,5         | well dry @ 00                              |                                         |  |
|         | 0.000        |                                    |                 |                     |                      |          |                     |              |               |             |                                            | _                                       |  |
|         |              |                                    |                 |                     |                      |          |                     |              |               |             |                                            | -                                       |  |
|         |              |                                    | 1               |                     |                      |          |                     |              |               |             |                                            | -                                       |  |
|         |              |                                    | AT CET          | 12/18               |                      |          |                     |              |               |             |                                            | -                                       |  |
|         |              |                                    | 9.              | -                   |                      |          |                     |              |               |             |                                            | -                                       |  |
|         | Danilla      | At End Of Duraina:                 | OR              | 14.0                | 461.8                | 7,34     |                     | 6,20         | ક૧.૧          | 7,5         |                                            | _                                       |  |
|         | Results      | At End Of Purging:                 | L               |                     | 1 40.5               | 1.0      |                     |              | <u> </u>      |             | 1                                          |                                         |  |
|         |              |                                    |                 |                     | *****                |          |                     |              |               |             |                                            | 7                                       |  |
|         | COMME        | ENTS: Well p                       | , don bu,       | emplete             | both,                | hup:     | 1,0                 | ags          |               |             |                                            |                                         |  |
|         |              | n purging e                        |                 |                     |                      |          |                     |              | بمحامم        | alt ~       | 5/22/18                                    |                                         |  |
|         |              |                                    |                 | . 0.00              |                      |          | () ·                | -v~          | vereki        | A OVER 1    | to dev. 13 \$5,0                           | 08,7 po                                 |  |
|         | 378          | 5 ml = 1 ga                        | l               |                     |                      |          | ں س                 | 100          | שונן,         | prior       | 10 0000 13 200                             |                                         |  |
|         | 00=          | out of ron                         | ye .            |                     | . 4 1 . 7            | ۵. م.    | سعب<br>اسوو         | ما وا        | CHEC.         | an 3/2      | 7/18,<br>1.3 well volum<br>5 of well s/te. |                                         |  |
|         | 5,           | U volumes:                         | 8.7 ad          | <i>o</i>            | www.                 | , where  | محمدها.             | الماليات     | ting pu       | المواسي ا   | 1.5 well volum                             | ~66                                     |  |
|         | ع س          | /O. VOICE#1-57 .                   | V · · · J       | ملاء                | AL TO SE             | m Le     | more                | د لا رح      | i · i · CH-CO | درد دی      | 1712 mm 70                                 |                                         |  |

6 5/24 C-94



| Project Na    | ame:                | SI AFFF MULT    | TIPLE SITES                            | 6                            |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------|---------------------|-----------------|----------------------------------------|------------------------------|--------------------------|------------------|---------------|---------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASL Proje     | ect No:             | M2027,0003      |                                        |                              |                          | **************** |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Installation  | n:                  | Elisworth AF    | 3                                      |                              |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Site:         |                     | Area            | 2                                      |                              |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Date:         |                     | 05/02           | 118                                    |                              |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample Te     | echnician:          | Arek T          |                                        | / Mut                        | then                     | Bul              | ters          |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Well ID No    | o.:                 | MWIS            |                                        |                              | 1                        |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                     |                 | (                                      | <b>A</b> >                   |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| [             |                     |                 | lni                                    | tial Mea                     | suren                    |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Weil Total    |                     |                 | ft BTOC                                | Water Lev                    |                          | 25.              |               | ft BTOC |            | V 14511 04540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |                     |                 |                                        |                              |                          |                  |               |         |            | X WELL CAPACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | ut if applicable)   | =<br>[,6        | (35,35                                 | Ft -25.53                    | PH) X                    |                  |               | 2       | Gal        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Calculated    | d Welf Volume:      |                 | Gallons                                | I                            |                          | Well Dia         | ameter:       |         |            | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| С             | alculations:        | 1" diameter ≃ ( | ).041 gal/ft                           |                              | 2º diam                  | eter = 0.1       | 63 gal/ft     |         | 4" diamete | er = 0.653 gai/ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                     |                 | We                                     | li Purgii                    | na Act                   | tivites          |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Puraina M     | lethod (pump type): | Redai           |                                        | ii i uigii                   | -                        |                  | incl. units): | Х       | (25 m      | nt/mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 4191119 111 | (panip ()po).       | 174000          | 762-1                                  |                              | `                        | , , , , , ,      |               |         |            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               |                     |                 |                                        |                              |                          | Depth            |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Time          | Flow Rate           | Turbidity       | Temp                                   | Cond.                        | рН                       | to<br>water      | DO            | ORP     | Total Gal  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | (ml/min)            | (NTUs)          | (°C)                                   | ( <del>mS/Gm)</del><br>MS/cw | ,                        | (BTOC            | (mg/i)        |         | Pumped     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1300          | 379                 | OR              | 13,1                                   | 8010                         |                          | 25.58            | 4.58          | ~318    | 0.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1310          | 568                 | OR              | 12,3                                   | 7994                         |                          |                  | 4.84          |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1320          | 7.57                | OR              | 12.2                                   | 7849                         |                          |                  | 5,17          | -20,4   |            | a A a A A A A B A B A B A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1325          | 1135                | OL              | 11.9                                   | 7789                         | 7.11                     | 25.55            |               | -19,0   | 5.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1336          | 1135                | OR              | 11.8                                   | 7788                         | 7.17                     | 25,50            | 5,21          | -17,7   | 7.0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1335          | 1135                | OR              | 11.7                                   | 7749                         | 7,17                     | 25,56            | 5.25          | -17,7   | 8,5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                     |                 |                                        |                              |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                     |                 | >===================================== |                              |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                     |                 |                                        |                              | P0_0/4/1111111/2/00/2000 |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                     |                 |                                        |                              |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                     |                 |                                        |                              |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                     |                 |                                        |                              |                          |                  |               |         |            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               |                     |                 |                                        |                              |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | ATTI                |                 |                                        |                              |                          |                  | ***           |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | 5/2/18              |                 |                                        |                              |                          |                  |               |         |            | ### Control   The Control   Control |
|               |                     |                 |                                        |                              |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Results /     | At End Of Purging:  | 6 L             | <u> ሀ.</u> ٦                           | 7749                         | 7,17                     | 25,56            | 5.25          | -17.7   | 8.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                     |                 |                                        |                              |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| COMME         | NTS:                | a. 9 . 4        |                                        | <b>₹</b> ~~ .                |                          | ^\               |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | well                | pud nut         | implete                                | . 100                        | = 1.1                    | ,9 a             | <i>ځ۶</i> ،   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5 we          | u volumes           | = 8 gal         |                                        |                              |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | n punging @         |                 |                                        |                              |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                     |                 |                                        |                              |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2 187         | imL=lgal            |                 |                                        |                              |                          |                  |               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

C-95 05/07



| Project Na               | ame:                                          | SI AFFF MULT            | IPLE SITE                                                        | s                |                                         |                               |                     |              |                                         |                                        |  |  |
|--------------------------|-----------------------------------------------|-------------------------|------------------------------------------------------------------|------------------|-----------------------------------------|-------------------------------|---------------------|--------------|-----------------------------------------|----------------------------------------|--|--|
| ASL Proje                |                                               | M2027.0003              |                                                                  |                  | *************************************** |                               |                     |              |                                         |                                        |  |  |
| Installation             |                                               | Elisworth AFB           | <br>}                                                            |                  |                                         |                               |                     |              |                                         |                                        |  |  |
| Site:                    |                                               |                         |                                                                  | 7140.6           | 7 <i>O</i>                              |                               |                     |              |                                         |                                        |  |  |
| Date:                    |                                               | Sit 2-                  | 3                                                                | <u> </u>         | 1 ~                                     |                               |                     |              | *************************************** |                                        |  |  |
| Sample T                 | echnician:                                    | Arek Ti                 | urolski                                                          | 1/Ma             | thew                                    | Buthi                         | rs wort             | Th.          |                                         |                                        |  |  |
| Well ID N                | lo.:                                          | mw881                   | Arek Turolski/ Matthew Buthrsworth<br>MWBBAFC02010 (ELSWHD2-607) |                  |                                         |                               |                     |              |                                         |                                        |  |  |
|                          |                                               |                         |                                                                  | itial Mea        |                                         |                               |                     |              |                                         |                                        |  |  |
| Well Tota                | al Depth: 2                                   | 6.34                    | ft BTOC                                                          | Water Lev        |                                         |                               |                     | ft BTOC      |                                         |                                        |  |  |
|                          |                                               | WELL VOLUME             | = (TOTAL                                                         | WELL DE          | PTH BI                                  | гос – 8                       | STATIC D            | EPTH TO      | WATER)                                  | X WELL CAPACIT                         |  |  |
| (only fill o             | out if applicable)                            | <del></del> -           | (20.34                                                           | Ft - 19,54       | Ft) × D                                 | 1.163                         | gal/ft = (          |              | Gal                                     |                                        |  |  |
| Calculated               | d Well Volume:                                | 0.13                    | Gallons                                                          | <u> </u>         |                                         | Well Dia                      | ameter:             | 2.0          | <del>)</del>                            | inches                                 |  |  |
|                          | Calculations:                                 | 1" diameter = 0         | ).041 gal/ft                                                     |                  | 2" diam                                 | eter = 0.1                    | 163 gal/ft          |              | 4" diamete                              | er = 0.653 gal/ft                      |  |  |
|                          |                                               |                         | We                                                               | ell Purgii       | ng Ac                                   | tivites                       |                     |              |                                         |                                        |  |  |
| Purging M                | Method (pump type):                           | Monsa                   | γ <b>γ</b>                                                       |                  | _<br>F                                  | low rate (                    | incl. units):       | . N          | IAX                                     |                                        |  |  |
|                          |                                               |                         |                                                                  |                  |                                         |                               |                     |              |                                         |                                        |  |  |
| Time                     | Flow Rate<br>(ml/min)                         | Turbidity<br>(NTUs)     | Temp<br>(°C)                                                     | Cond.<br>(mS/Cm) | рΗ                                      | Depth<br>to<br>water<br>(BTOC | DO<br>(mg/l)        | ORP          | Total Gal<br>Pumped                     | Comments                               |  |  |
|                          |                                               |                         |                                                                  |                  |                                         |                               |                     |              |                                         |                                        |  |  |
|                          |                                               |                         | ļ                                                                |                  |                                         |                               | -                   | 1            |                                         |                                        |  |  |
|                          |                                               |                         | <u> </u>                                                         | 1                |                                         | -                             | -                   |              |                                         | ************************************** |  |  |
|                          |                                               |                         | ļ                                                                | +                |                                         |                               |                     | -            |                                         |                                        |  |  |
|                          | †                                             |                         |                                                                  | 1                |                                         | <del> </del>                  |                     | -            |                                         |                                        |  |  |
|                          |                                               |                         |                                                                  |                  | 1                                       |                               |                     | T            |                                         |                                        |  |  |
|                          |                                               |                         |                                                                  | X L              |                                         | SEE                           | com                 | NENT         | S AN                                    | D                                      |  |  |
|                          |                                               | ļ                       |                                                                  |                  |                                         |                               | 1                   |              | 1 :                                     | R LOG                                  |  |  |
|                          | ļ                                             |                         | <u> </u>                                                         |                  |                                         |                               |                     | 10000        |                                         |                                        |  |  |
|                          |                                               |                         | <b> </b>                                                         | -                |                                         |                               |                     | $\leftarrow$ |                                         |                                        |  |  |
|                          | <del> </del>                                  |                         |                                                                  | <b> </b>         | <b></b>                                 | <del> </del>                  |                     |              |                                         |                                        |  |  |
|                          |                                               |                         | İ                                                                |                  |                                         |                               |                     |              |                                         |                                        |  |  |
|                          |                                               |                         |                                                                  |                  |                                         |                               |                     |              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                        |  |  |
|                          |                                               |                         |                                                                  |                  |                                         |                               |                     |              |                                         |                                        |  |  |
|                          |                                               |                         | <b> </b>                                                         |                  |                                         |                               |                     | į.           |                                         |                                        |  |  |
| Results                  | At End Of Purging:                            |                         |                                                                  |                  | <u> </u>                                | <u></u>                       | <u> </u>            |              |                                         | ŀ                                      |  |  |
| COMMI<br>X NOT o<br>rest | ENTS:<br>able to dev<br>bricled area.<br>eet. | elop due l<br>. This we | to lack<br>U was                                                 | of wet           |                                         | lan r<br>a per                | echargi<br>is laltu | e/lac        | kofa.<br>5ee                            | curs to<br>GW LOG                      |  |  |
|                          |                                               |                         |                                                                  |                  |                                         |                               |                     |              |                                         |                                        |  |  |

05/19



| SL Proje                                | ect No:                                       | M2027.0003          |                                                              |                                                            |                                              |                                                                   |                                         |                                                  |                                      |                   |
|-----------------------------------------|-----------------------------------------------|---------------------|--------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|--------------------------------------|-------------------|
| nstallatio                              | n:                                            | Ellsworth AF        | В                                                            |                                                            |                                              |                                                                   |                                         |                                                  |                                      |                   |
| Site:                                   |                                               | 2                   |                                                              |                                                            |                                              |                                                                   |                                         |                                                  |                                      |                   |
| Date:                                   |                                               | 5/8/1               | 8                                                            | -                                                          |                                              |                                                                   |                                         |                                                  |                                      |                   |
| Sample T                                | echnician:                                    |                     | Tunis                                                        | W/                                                         | 1 with                                       | en f                                                              | utte                                    | rsna                                             | ጤ                                    |                   |
| Vell ID N                               | lo.:                                          |                     | PFC 07                                                       |                                                            |                                              |                                                                   | 1102                                    |                                                  |                                      |                   |
|                                         |                                               |                     | _                                                            |                                                            |                                              |                                                                   |                                         |                                                  | - /                                  |                   |
|                                         | 3                                             | 3.93 (FD)           | lni                                                          | itial Mea                                                  |                                              |                                                                   |                                         |                                                  |                                      |                   |
|                                         | l Depth: 3                                    | 5.98                | ft BTOC                                                      | Water Lev                                                  |                                              | 21.2                                                              |                                         | ft BTOC                                          |                                      | ****              |
|                                         |                                               |                     |                                                              |                                                            |                                              |                                                                   |                                         |                                                  |                                      | X WELL CAPAC      |
|                                         | ut if applicable)                             |                     | 35,48                                                        | Ft -21,2                                                   | }Ft) x ©                                     |                                                                   |                                         | 2.4                                              | Gal 7 .C                             | ) <u>}</u>        |
| alculate                                | d Well Volume:                                | 2.4                 | Gallons                                                      | <u> </u>                                                   | 1                                            | Well Dia                                                          | ameter:                                 |                                                  | <u></u>                              | inches            |
| (                                       | Calculations:                                 | 1" diameter =       | 0.041 gal/ft                                                 |                                                            | 2" diame                                     | eter = 0.1                                                        | 163 gal/ft                              |                                                  | 4" diamete                           | er = 0.653 gai/ft |
| 5 5                                     | fethod (pump type)                            |                     | Monson                                                       | ~ * 1                                                      | •                                            | ,                                                                 | incl. units):                           |                                                  |                                      | mix 03-34         |
|                                         |                                               |                     |                                                              |                                                            |                                              | Depth                                                             |                                         |                                                  |                                      |                   |
| Time                                    | Flow Rate<br>(ml/min)                         | Turbidity<br>(NTUs) | Temp<br>(°C)                                                 | Cond.<br>(mS/Gm)                                           | рН                                           | Depth<br>to<br>water<br>(BTOC                                     | DO<br>(mg/l)                            | ORP                                              | Total Gal<br>Pumped                  | Comments          |
| Time                                    |                                               |                     | ,                                                            | ( <b>mS/Gm)</b><br>//S/cm<br>659                           | pH                                           | to<br>water<br>(BTOC                                              | (mg/l)                                  | 39-2                                             | Pumped                               | Comments          |
| 543<br>548                              | (ml/min)                                      | (NTUs)              | (°C)                                                         | (ms/em)<br>m5/cm<br>659<br>652                             |                                              | to<br>water<br>(BTOC<br>コンショ<br>生子社<br>ストスト                       | (mg/l)                                  | 39.)<br>-9.5                                     | Pumped                               | Comments          |
| 043<br>548<br>053                       | (ml/min)<br>378<br>757<br>1514                | (NTUs)              | (°c)<br>13 · 6<br>13 · 3<br>13 · 0                           | (ms/em)<br>m5/cm<br>d59<br>652<br>666                      | 7.40<br>7.45<br>7.50                         | to<br>water<br>(BTOC<br>コルロ<br>ターカ<br>イーカ<br>スト・スト                | (mg/l)<br>50-94<br>0-94<br>0-18         | 39.2<br>-9.5<br>-44.9                            | Pumped<br>の・5<br>1・5<br>3・5          | Comments          |
| 543<br>548<br>053<br>058                | (ml/min)<br>378<br>757<br>1514                | (NTUs)              | (°C)<br>13.6<br>(3.3<br>13.0<br>13.4                         | (ms/em)<br>ms/cm<br>659<br>652<br>666<br>675               | 7.40<br>7.45<br>7.50<br>7.53                 | to<br>water<br>(BTOC<br>31.)26<br>44-21<br>21.21<br>21.21         | (mg/l) 50 0-94 0-41 0-18 0-21           | 39.2<br>-9.5<br>-44.9<br>-62.3                   | 0.5<br>1.5<br>3.5                    | Comments          |
| 543<br>548<br>053<br>558                | (ml/min)  378  757  1514  1135  1514          | (NTUs)              | (°C)<br>13.6<br>13.3<br>13.0<br>13.4<br>13.2                 | (ms/em)<br>25/cm<br>652<br>666<br>675<br>684               | 7.40<br>7.45<br>7.50<br>7.53<br>7.51         | to water (BTOC 21-26 21-21 21-21 21-21                            | (mg/l) 50 0-94 0-14 0-18 0-21 0-10      | 39.2<br>-9.5<br>-44.9<br>-62.3<br>-70.6          | Pumped  0.5 1.5 3.5 5.0 7.0          | Comments          |
| 043<br>053<br>058<br>103                | (ml/min)  378  757  135  135  1892            | (NTUs)              | (°0)<br>13.6<br>13.3<br>13.0<br>13.4<br>13.2<br>12.9         | (ms/em)<br>m5/cm<br>659<br>652<br>666<br>675<br>684<br>691 | 7.40<br>7.45<br>7.50<br>7.53<br>7.51<br>7.51 | to water (BTOC 31.)2.6 (4.21.21.21.21.21.21.21.21.21.21.21.21.21. | (mg/l) 5 0.94 0.41 0.18 0.21 0.10       | 39.2<br>-9.5<br>-44.9<br>-62.3<br>-70.6<br>-79.9 | Pumped  0.5  1.5  3.5  5.0  7.0      | Comments          |
| 243<br>248<br>053<br>258<br>103<br>168  | (ml/min)  378  757  1514  1135  1514          | (NTUs)              | (°0)<br>13.6<br>13.3<br>13.0<br>13.4<br>13.2<br>12.9<br>13.4 | (ms/em)<br>m5/cm<br>659<br>652<br>666<br>675<br>684<br>695 | 7.40<br>7.45<br>7.50<br>7.53<br>7.51<br>7.53 | to water (BTOC 31-21-21-21-21-21-21-21-21-21-21-21-21-21          | (mg/l) 50 0.94 0.41 0.18 0.21 0.10 0.12 | 39.2<br>-9.5<br>-44.9<br>-62.3<br>-70.6          | Pumped  0.5 1.5 3.5 5.0 7.0          | Comments          |
| 243<br>248<br>053<br>258<br>103         | (ml/min)  378  757  135  135  1514  1892  757 | (NTUs)              | (°0)<br>13.6<br>13.3<br>13.0<br>13.4<br>13.2<br>12.9         | (ms/em)<br>m5/cm<br>659<br>652<br>666<br>675<br>684<br>691 | 7.40<br>7.45<br>7.50<br>7.53<br>7.51<br>7.53 | to water (BTOC 31.)2.6 (4.21.21.21.21.21.21.21.21.21.21.21.21.21. | (mg/l) 50 0.94 0.41 0.18 0.21 0.10 0.12 | 39.2<br>-9.5<br>-44.9<br>-62.3<br>-70.6<br>-79.9 | Pumped  0.5 1.5 3.5 5.0 7.0 9.5 10.5 | Comments          |
| 043<br>053<br>058<br>103<br>1168        | (ml/min)  378  757  135  135  1514  1892  757 | (NTUs)              | (°0)<br>13.6<br>13.3<br>13.0<br>13.4<br>13.2<br>12.9<br>13.4 | (ms/em)<br>m5/cm<br>659<br>652<br>666<br>675<br>684<br>695 | 7.40<br>7.45<br>7.50<br>7.53<br>7.51<br>7.53 | to water (BTOC 31-21-21-21-21-21-21-21-21-21-21-21-21-21          | (mg/l) 50 0.94 0.41 0.18 0.21 0.10 0.12 | 39.2<br>-9.5<br>-44.9<br>-62.3<br>-70.6<br>-79.9 | Pumped  0.5 1.5 3.5 5.0 7.0 9.5 10.5 | Comments          |
| 043<br>053<br>058<br>103<br>1168        | (ml/min)  378  757  135  135  1514  1892  757 | (NTUs)              | (°0)<br>13.6<br>13.3<br>13.0<br>13.4<br>13.2<br>12.9<br>13.4 | (ms/em)<br>m5/cm<br>659<br>652<br>666<br>675<br>684<br>695 | 7.40<br>7.45<br>7.50<br>7.53<br>7.51<br>7.53 | to water (BTOC 31-21-21-21-21-21-21-21-21-21-21-21-21-21          | (mg/l) 50 0.94 0.41 0.18 0.21 0.10 0.12 | 39.2<br>-9.5<br>-44.9<br>-62.3<br>-70.6<br>-79.9 | Pumped  0.5 1.5 3.5 5.0 7.0 9.5 10.5 | Comments          |
| 043<br>053<br>053<br>058<br>103<br>1168 | (ml/min)  378  757  135  135  1514  1892  757 | (NTUs)              | (°0)<br>13.6<br>13.3<br>13.0<br>13.4<br>13.2<br>12.9<br>13.4 | (ms/em)<br>m5/cm<br>659<br>652<br>666<br>675<br>684<br>695 | 7.40<br>7.45<br>7.50<br>7.53<br>7.51<br>7.53 | to water (BTOC 31-21-21-21-21-21-21-21-21-21-21-21-21-21          | (mg/l) 50 0.94 0.41 0.18 0.21 0.10 0.12 | 39.2<br>-9.5<br>-44.9<br>-62.3<br>-70.6<br>-79.9 | Pumped  0.5 1.5 3.5 5.0 7.0 9.5 10.5 | Comments          |
| 048<br>053<br>058<br>103<br>168<br>113  | (ml/min)  378  757  135  135  1514  1892  757 | (NTUs)              | (°0)<br>13.6<br>13.3<br>13.0<br>13.4<br>13.2<br>12.9<br>13.4 | (ms/em)<br>m5/cm<br>659<br>652<br>666<br>675<br>684<br>695 | 7.40<br>7.45<br>7.50<br>7.53<br>7.51<br>7.53 | to water (BTOC 31-21-21-21-21-21-21-21-21-21-21-21-21-21          | (mg/l) 50 0.94 0.41 0.18 0.21 0.10 0.12 | 39.2<br>-9.5<br>-44.9<br>-62.3<br>-70.6<br>-79.9 | Pumped  0.5 1.5 3.5 5.0 7.0 9.5 10.5 | Comments          |
| 043<br>053<br>058<br>103<br>1168        | (ml/min)  378  757  135  135  1514  1892  757 | (NTUs)              | (°0)<br>13.6<br>13.3<br>13.0<br>13.4<br>13.2<br>12.9<br>13.4 | (ms/em)<br>m5/cm<br>659<br>652<br>666<br>675<br>684<br>695 | 7.40<br>7.45<br>7.50<br>7.53<br>7.51<br>7.53 | to water (BTOC 31-21-21-21-21-21-21-21-21-21-21-21-21-21          | (mg/l) 50 0.94 0.41 0.18 0.21 0.10 0.12 | 39.2<br>-9.5<br>-44.9<br>-62.3<br>-70.6<br>-79.9 | Pumped  0.5 1.5 3.5 5.0 7.0 9.5 10.5 | Comments          |
| 043<br>053<br>058<br>103<br>1168        | (ml/min)  378  757  135  135  1514  1892  757 | (NTUs)              | (°0)<br>13.6<br>13.3<br>13.0<br>13.4<br>13.2<br>12.9<br>13.4 | (ms/em)<br>m5/cm<br>659<br>652<br>666<br>675<br>684<br>695 | 7.40<br>7.45<br>7.50<br>7.53<br>7.51<br>7.53 | to water (BTOC 31-21-21-21-21-21-21-21-21-21-21-21-21-21          | (mg/l) 50 0.94 0.41 0.18 0.21 0.10 0.12 | 39.2<br>-9.5<br>-44.9<br>-62.3<br>-70.6<br>-79.9 | Pumped  0.5 1.5 3.5 5.0 7.0 9.5 10.5 | Comments          |
| 043<br>053<br>058<br>103<br>1168        | (ml/min)  378  757  135  135  1514  1892  757 | (NTUs)              | (°0)<br>13.6<br>13.3<br>13.0<br>13.4<br>13.2<br>12.9<br>13.4 | (ms/em)<br>m5/cm<br>659<br>652<br>666<br>675<br>684<br>695 | 7.40<br>7.45<br>7.50<br>7.53<br>7.51<br>7.53 | to water (BTOC 31-21-21-21-21-21-21-21-21-21-21-21-21-21          | (mg/l) 50 0.94 0.41 0.18 0.21 0.10 0.12 | 39.2<br>-9.5<br>-44.9<br>-62.3<br>-70.6<br>-79.9 | Pumped  0.5 1.5 3.5 5.0 7.0 9.5 10.5 | Comments          |

COMMENTS: Surface well pad complete. TOC is 0.5' bgs

Sull volumes: 12 gd.

Blym purgling @ 1038

OR = out of range

C-97 POS/10



| Project Name:      | SI AFFF MULTIPLE SITES         |
|--------------------|--------------------------------|
| ASL Project No:    | M2027,0003                     |
| Installation:      | Elisworth AFB                  |
| Site:              | 3 (building 618)               |
| Date:              | 5/23/18                        |
| Sample Technician: | Arele Turolski, Miles Neilson. |
| Well ID No.:       | mw 18 PFC 030'1                |

#### **Initial Measurements**

| Well Total Depth: 9           | 0.38       | ft BTOC          | Water Level: | 9.02          | ft BTOC        |                  |              |
|-------------------------------|------------|------------------|--------------|---------------|----------------|------------------|--------------|
| WELL VOLUME PURGE:            | 1 WELL VOL |                  |              |               |                | WATER) X         | WELL CAPACIT |
| (only fill out if applicable) | =          | (20,38           | Ft -9.02 Ft) | x 0,163 gi    | at/ft = 1,85 c | )al              |              |
| Calculated Well Volume:       | 1.85       | Gallons          |              | Well Diam     | ieter: 2       | inche            | s            |
| Calculations:                 | 1" diamete | r = 0.041 gal/ft | 2" di        | ameter = 0.16 | 3 gal/ft 4     | l" diameter = 0, | 653 gal/ft   |

#### **Well Purging Activities**

| Purging M | lethod (pump type):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mega M              | <u>10~500</u> | ~                                               | F    | low rate (i                        | nci. units): |              | 757                 | m L/mih  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|-------------------------------------------------|------|------------------------------------|--------------|--------------|---------------------|----------|
| Time      | Flow Rate<br>(ml/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Turbidity<br>(NTUs) | Temp<br>(°C)  | Cond.<br>( <del>mS/Cm</del> )<br><i>JuSl</i> Cm | рН   | Depth<br>to<br>water<br>(BTOC<br>) | DO<br>(mg/l) | ORP          | Total Gal<br>Pumped | Comments |
| 1020      | #1 380 757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 K                 | U.L           | 444,5                                           | 7.04 | 10.42                              | 2.15         | 73.5         | 1.0                 |          |
| 1025      | 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OR                  | 11.3          |                                                 |      |                                    | 1.38         |              |                     |          |
| 1030      | 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OR                  | lia           | 4.79.0                                          | 7.36 | 10.47                              | 0.47         | -16.7        | 2.50                |          |
| 1035      | 757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OR                  | 10,7          | 446.1                                           | 7.55 | 11.44                              | 0.50         | -44.6        | 3,50                |          |
| 1040      | 757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OR                  | 10.4          | 4326                                            | 7.51 | 12 45                              | 0.62         | -479         | 4.50                |          |
| 1045      | 11 3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OR                  | 10.4          |                                                 |      |                                    | 2.17         |              |                     |          |
| 1050      | 7.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dβ                  | 10,7          | 434.8                                           |      |                                    | 2,77         |              |                     | 10001    |
| 1055      | 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OR                  | 11.0          |                                                 |      |                                    |              |              | 7,75                |          |
| 1100      | 945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OR                  | 11,0          | 442.5                                           |      |                                    | 4,67         |              |                     |          |
| 1105      | 757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OR                  | 10.8          |                                                 | 1,55 | 16.16                              | 5,31         | ~37.5        | 10.0                |          |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>            | 10,10         |                                                 |      | 00,00                              |              | - 11-2       | 10,0                |          |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |                                                 |      |                                    |              | <del> </del> |                     |          |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                   |               |                                                 |      |                                    |              |              |                     | WAREHALD |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |                                                 |      |                                    |              |              |                     |          |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PA                  |               | <u> </u>                                        |      |                                    |              | <del> </del> |                     |          |
|           | -TRANSPORTED TO THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH | 5/23                | 18            |                                                 |      |                                    |              | 1            |                     |          |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31                  |               |                                                 |      |                                    |              |              |                     |          |
|           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | 1             | 1                                               |      | l                                  |              | i            | l                   |          |

COMMENTS: Well pud complete.

3785 ml = 1 gal

Begin purging @ 1015

OR = out of rouge

5 well volumes = 9,25 gad

OR

Results At End Of Purging:

10.8 440.8 7.55 16.16 5.31 -37.5 10.0

E 5/24



| Project Name:      | SI AFFF MULTIPLE SITES              |  |
|--------------------|-------------------------------------|--|
| ASL Project No:    | M2027,0003                          |  |
| Installation:      | Ellsworth AFB                       |  |
| Site:              | 3 ( buildno 618)                    |  |
| Date:              | 5/6/18                              |  |
| Sample Technician: | Arek Turolski/Maythen Bullers north |  |
| Well ID No.:       | MWIXPECOSOZ                         |  |

**Initial Measurements** 

| Well Total Depth:            | 20.35           | ft BTOC        | Water Level: | 8.85               | ft BTOC        |                     |
|------------------------------|-----------------|----------------|--------------|--------------------|----------------|---------------------|
| WELL VOLUME PURG             | E: 1 WELL VOLUI |                |              |                    |                | R) X WELL CAPACIT   |
| (only fill out if applicable | ) =             | (20.35         | Ft -8.85 Ft) | x O.163 gal/ft     | = 1.88 Gal     |                     |
| Calculated Well Volume       | : 1.88          | Gallons        |              | Well Diameter      | r. 2           | inches              |
| Calculations:                | 1" diameter     | = 0.041 gal/ft | 2" d         | iameter = 0,163 ga | ıl/ft 4" diame | eter = 0.653 gai/ft |

#### **Well Purging Activites**

| Pui | ging M | lethod (pump type):   | Mega M              | LONS/90      | <u>ń</u>                                | F  | low rate (i                   | incl. units): |     | 720                 | nL/my      |
|-----|--------|-----------------------|---------------------|--------------|-----------------------------------------|----|-------------------------------|---------------|-----|---------------------|------------|
| 1   | ime    | Flow Rate<br>(mi/min) | Turbidity<br>(NTUs) | Temp<br>(°C) | Cond.<br>( <del>mS/Cm</del> )<br>/US/cm | рН | Depth<br>to<br>water<br>(BTOC | DO<br>(mg/l)  | ORP | Total Gal<br>Pumped | Comments . |

| Time    | Flow Rate<br>(mi/min) | Turbidity<br>(NTUs) | Temp<br>(°C) | Cond.<br>( <del>mS/Cm)</del><br>JUS/cm           | pН             | water<br>(BTOC              | DO<br>(mg/l)       | ORP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Gal<br>Pumped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comments |
|---------|-----------------------|---------------------|--------------|--------------------------------------------------|----------------|-----------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1560    | 757                   | OR                  | 17.2         | 429.6                                            | 7.56           | 10.65                       | 6,63               | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 1505    | 757                   | OR                  | 16.5         | 441.2                                            | 7.30           |                             |                    | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 1510    | 379                   | 0                   | 16,1         | 508                                              | 7.28           | 13,25                       | 4,46               | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 1515    | 757                   | of                  | 16.6         | 500                                              | 7.37           | 13.93                       | 497                | 3,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 1520    | 3 79                  | OL                  | 16,5         | 480                                              | 7.38           | 14.52                       | 5.05               | ~5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 1525    | 757                   | 0                   | 15,3         | 509                                              | 7.41           | 15.05                       | 4.85               | -5,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 1530    | 757                   | OR                  | 14.0         | 553                                              | 7,28           | 15,67                       | 2,62               | -4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /        |
| 1535    | 1136                  | OR                  | 13,8         | 583                                              | 7,33           | 15,77                       | 1,87               | -7,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 546     | 757                   | OR                  | 13.1         | 598                                              | 7.28           | 16.20                       | 2.63               | -9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 1545    | 757                   | OR                  | 12.9         | 602                                              | 7.29           | 16.67                       | 3.87               | -11,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|         |                       | 10000000            |              |                                                  |                |                             |                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -        |
|         |                       |                     |              |                                                  |                |                             | - TOTAL CONTROL OF | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | Name of Street, or other Designation of the Owner, |          |
|         |                       |                     |              |                                                  |                | AND RESIDENCE OF THE PARTY. | area -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|         |                       |                     |              | - ALLENS AND AND AND AND AND AND AND AND AND AND | and the second |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|         | #Î_                   |                     |              |                                                  |                |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|         |                       | 16/18               |              |                                                  |                |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|         | 51                    | 6(**                |              |                                                  |                |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| Results | At End Of Purging:    | OR                  | 12.9         | 602                                              | 7.29           | 16,6                        | 3,87               | ~11 <sub>1</sub> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |

COMMENTS: well pad not complete, TOC = 0.55 ags

5 rell volumes = 9.4 god Begin purging @ 1455

0R=out of ronge
3785 mL=1 god

05/07

720 ml-/mh



| Project Na   | ame:                  | SI AFFF MUL         | TIPLE SITES  | 3                         |              |                                    |                                         |                                                    |                     |                                        |
|--------------|-----------------------|---------------------|--------------|---------------------------|--------------|------------------------------------|-----------------------------------------|----------------------------------------------------|---------------------|----------------------------------------|
| ASL Proje    | ect No:               | M2027.0003          |              |                           |              |                                    |                                         |                                                    |                     |                                        |
| Installation | n:                    | Ellsworth AF        | В            |                           |              |                                    |                                         |                                                    |                     |                                        |
| Site:        |                       | 3 (R                | uldng        | 618                       | )            |                                    |                                         |                                                    |                     |                                        |
| Date:        |                       | 5/6/18              |              | ,                         |              |                                    |                                         |                                                    |                     |                                        |
| Sample To    | echnician:            | Acell               | Turolsl      | (1/M                      | u tha        | - B1                               | stor.                                   | 1                                                  |                     |                                        |
| Well ID N    | o.:                   | MWIB                |              |                           | ()     () () |                                    | <u> </u>                                | 0001                                               |                     | ······································ |
|              |                       | 1,000               | <u> </u>     |                           |              |                                    | ······································  | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,            |                     |                                        |
|              |                       |                     | Ini          | tial Mea                  |              |                                    |                                         |                                                    |                     |                                        |
| Well Total   |                       | 9.37                | ft BTOC      | Water Lev                 | , , ,        | <u>0-8</u>                         | 6                                       | ft BTOC                                            |                     |                                        |
| 1            |                       | WELL VOLUMI         |              |                           |              |                                    |                                         |                                                    |                     | X WELL CAPACIT                         |
|              | ut if applicable)     | =                   | (20.37       | Ft -10,8                  | (Ft) x (     |                                    |                                         |                                                    | Gal                 |                                        |
| Calculated   | d Weli Volume:        | 1677                | Gallons      |                           |              | Well Dia                           | ameter:                                 |                                                    | I                   | inches                                 |
| С            | alculations:          | 1" diameter =       | 0.041 gai/ft |                           | 2" diam      | eter = 0,                          | 163 gai/ft                              | <del></del>                                        | 4" diamete          | er = 0.653 gal/ft                      |
|              |                       |                     | We           | ll Purgi                  | na Act       | ivites                             |                                         |                                                    |                     |                                        |
| Purging M    | lethod (pump type):   | Megan               | <u>\$00</u>  | ~                         | . F          | low rate (                         | incl. units):                           |                                                    | 757                 | m L/m/h                                |
| Time         | Flow Rate<br>(ml/min) | Turbidity<br>(NTUs) | Temp<br>(°C) | Cond.<br>(mS/Cm)<br>MS/cm | рН           | Depth<br>to<br>water<br>(BTOC<br>) | DO<br>(mg/l)                            | ORP                                                | Total Gal<br>Pumped | Comments                               |
| 1615         | 757                   | OR                  | 17.6         | 391,7                     | 7,67         | 12.4                               | 9,49                                    | 16,3                                               | 1.0                 |                                        |
| 1620         | 1136                  | OR                  | 17.1         | 416,3                     | 7.51         | 13.82                              | 8,04                                    | 15.1                                               | 2.5                 |                                        |
| 1625         | 757                   | 01                  | 15.5         | 445,4                     | ·7,WZ        | 15,2                               | 6.81                                    | 7,5                                                | 3,5                 |                                        |
| 1630         | 379                   | DR                  | 15,3         | 418,4                     | 7,31         | 16,00                              |                                         | <del>  • • • • • • • • • • • • • • • • • • •</del> | 4.0                 |                                        |
| 1635         | 757                   | OR                  | 16.0         | 449.3                     |              | 16,24                              |                                         | 100.00                                             | 2.0                 |                                        |
| 1640         | 757                   | 06                  | 14.9         | 479,4                     | 7,38         | 17,18                              | 8.05                                    | 16,7                                               | 6.0                 | ·                                      |
| 1647         | 757                   | OIC                 | 15.4         | 4486                      | 7.35         | 18. F.                             | 819                                     | 10, 1                                              | 70                  |                                        |
| 1650         | 757                   | OK                  | 16.1         | 500.0                     | 7.44         | 143                                | 8.50                                    | 8-9                                                | 8.0                 | <del></del>                            |
|              |                       |                     |              |                           |              |                                    |                                         |                                                    |                     |                                        |
|              |                       |                     |              |                           |              |                                    |                                         |                                                    |                     |                                        |
|              |                       | /III                |              |                           |              |                                    |                                         |                                                    |                     |                                        |
|              |                       | 5/6/                | · Q          |                           |              |                                    |                                         |                                                    |                     |                                        |
|              | ر<br>ا                | 5/61                | 10           |                           |              |                                    |                                         |                                                    |                     |                                        |
|              | 10                    |                     |              |                           |              |                                    |                                         |                                                    |                     |                                        |
|              |                       |                     |              |                           |              |                                    | *************************************** |                                                    |                     |                                        |
|              |                       |                     |              |                           |              |                                    |                                         |                                                    |                     |                                        |
| Results      | At End Of Purging:    | OR                  | 16.1         | 500                       | 7.44         | 19.85                              | 8,5                                     | 8,9                                                | 8.0                 |                                        |
| СОММЕ        | ENTS: well            | pad not             | comp         | lete,                     | Sticl        | hup                                | :1.15                                   | s'ag                                               | s                   |                                        |
|              | ell volumes           | 2.1                 | gal B        | sezmq                     | wg1          | ~ @                                | 161                                     | O                                                  |                     |                                        |
|              | 5 ml= lg              |                     |              | ٠ ,                       | _            | <u> </u>                           | -                                       |                                                    |                     |                                        |
| 012=         | out of ro             | ingl                |              |                           |              |                                    |                                         |                                                    |                     | 1                                      |

05/07



| Project Name:      | SI AFFF MULTIPLE SITES                       |
|--------------------|----------------------------------------------|
| ASL Project No:    | M2027.0003                                   |
| Installation:      | Ellsworth AFB                                |
| Site:              | 4 (former fre studion)                       |
| Date:              | 5/23/18                                      |
| Sample Technician: | Arell Turolski, Miles Neilson                |
| Well ID No.:       | Arell Turolski, Miles Neilson<br>MW18PFCO401 |

#### **Initial Measurements**

| Well Total Depth:             | 35. <b>l</b> | ft BTOC        | Water Level: | 346            | ft BTOC           |             |              |         |
|-------------------------------|--------------|----------------|--------------|----------------|-------------------|-------------|--------------|---------|
| WELL VOLUME PURGE:            | 1 WELL VOLU  |                |              |                |                   | WATER)      | X WELL       | CAPACIT |
| (only fill out if applicable) | =            | ( 35, 9        | Ft -31.6 Ft) | x10.163g       | $al/\Omega = 0.7$ | Gal         |              |         |
| Calculated Well Volume:       | 0.7          | Gallons        |              | Well Diam      | neter: 2          |             | nches        |         |
| Calculations:                 | 1" diameter  | = 0.041 gal/ft | 2" d         | iameter = 0.16 | 3 gal/ft          | 4" diameter | r = 0.653 ga | al/ft   |

#### **Well Purging Activites**

| Purging Method (pump type): Mega Monson & | Pro | Flow rate (incl. units): | 400 | ml/mm |  |
|-------------------------------------------|-----|--------------------------|-----|-------|--|
| 3                                         |     |                          |     | •     |  |

|         | Time                                    | Flow Rate<br>(ml/min) | Turbidity<br>(NTUs) | Temp<br>(°C) | Cond.<br>(ms/cm)<br>MS/cm | pН   | Depth<br>to<br>water<br>(BTOC | DO<br>(mg/l) | ORP   | Total Gal<br>Pumped | Comments                                                                                                   |         |
|---------|-----------------------------------------|-----------------------|---------------------|--------------|---------------------------|------|-------------------------------|--------------|-------|---------------------|------------------------------------------------------------------------------------------------------------|---------|
| 5/23/18 | 1658                                    | 630                   | OR                  | 17,4         | 1323                      | 7.26 | 33,39                         | 3,06         | 28.9  | 0.5                 |                                                                                                            |         |
|         | 1701                                    | 630                   | 90                  | 15,4         | 1010                      | 7.20 |                               | 5,13         |       | 1.0                 | WLM antopot                                                                                                | ۵ میساه |
|         | 1702                                    |                       |                     | ell          | 5                         | 50   | 1                             | -            |       |                     | - ( <b>5 y</b> , <b>3 y</b>                                                                                | 4       |
| 5/24/18 | 0948                                    | 3 15                  | OR                  | 18.2         | 1295                      | 7.45 | (33,3                         | 3,53         | 127.5 | 1,25                | the block of the Art of Art Arman and Art Arman Art Arman Art Arman Art Arman Art Hall World Art Arman and |         |
| 3, 4,,  | 0951                                    | 315                   | OR                  | 16.4         | 1173                      | 7,35 | 34.16                         | 4.77         | 124.6 |                     |                                                                                                            |         |
|         | 6954                                    | 315                   | OR                  | 15,9         | 1104                      | 7.50 | 34.90                         | 5,06         |       | 1.75                |                                                                                                            |         |
|         | 0957                                    | 315                   | OR                  | 16,1         | 1135                      |      |                               | 6.56         | 116.1 | 2.0                 | Pumped well oby                                                                                            |         |
|         |                                         |                       |                     |              |                           |      |                               |              |       |                     | ,                                                                                                          |         |
|         |                                         |                       |                     |              |                           |      |                               |              |       |                     |                                                                                                            |         |
|         |                                         |                       |                     | · ·          |                           |      |                               |              |       |                     |                                                                                                            |         |
|         |                                         |                       |                     |              |                           |      |                               |              |       |                     |                                                                                                            |         |
|         |                                         |                       |                     |              |                           |      |                               |              |       |                     |                                                                                                            |         |
|         | *************************************** | ·                     |                     |              |                           |      | _,,                           |              |       |                     |                                                                                                            |         |
|         |                                         |                       | AL                  | 1.97         |                           |      |                               |              |       |                     |                                                                                                            |         |
|         |                                         |                       | -5/241              | ίο           |                           |      |                               |              |       |                     | AMARITANIA                                                                                                 |         |
|         |                                         |                       | -                   |              |                           |      |                               |              |       |                     |                                                                                                            |         |
|         |                                         |                       | _                   |              |                           |      |                               |              |       |                     |                                                                                                            |         |
|         | Results A                               | At End Of Purging:    | OR                  | 16.1         | 1135                      | 7.44 |                               | 6.56         | 116.1 | 2.0                 |                                                                                                            |         |

COMMENTS: well pad not complete. SHELLIP: 1.6 ags

5 well volumes = 3.5 gal

OR= out of rays

WLM=water level meter

3785 ml= 1 gal

Begin purging @ 1655 on 5/23/18 hesune development p 0945 on 5/24/18 DTur@ 32 proof poderato puent on 5/24/18

well considered developed after ~ 3 well volumes due to slow recharge and restricted access to well site.

Ø 5/24



|                                             | Project Na    | me:                                                                                                                  | SI AFFF MULTIPLE SITES |              |                                         |            |                             |               |                                         |                   |                                         |      |  |
|---------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------|------------------------|--------------|-----------------------------------------|------------|-----------------------------|---------------|-----------------------------------------|-------------------|-----------------------------------------|------|--|
|                                             | ASL Projec    | t No:                                                                                                                | M2027.0003             |              |                                         |            |                             |               |                                         |                   |                                         | -    |  |
|                                             | Installation  | :                                                                                                                    | Elisworth AFE          | 3            | *************************************** |            |                             |               |                                         |                   |                                         | *    |  |
|                                             | Site:         |                                                                                                                      | 4 (for                 | mer for      | re char                                 | mm)        |                             |               |                                         |                   |                                         | -    |  |
|                                             | Date:         |                                                                                                                      | 5/23/                  | 18           |                                         |            |                             |               |                                         |                   | *************************************** | •    |  |
|                                             | Sample Te     | chnician:                                                                                                            | Arch Tu                | rolskil.     | Miles                                   | Neî        | lson                        | ······        |                                         | ****              |                                         | -    |  |
|                                             | Well ID No    | .:                                                                                                                   | Mw 18 pg               |              |                                         | 10 ()      | y • • •                     | ,             |                                         |                   |                                         | -    |  |
|                                             |               |                                                                                                                      |                        | <u> </u>     |                                         |            |                             |               |                                         |                   |                                         | =    |  |
|                                             |               |                                                                                                                      |                        | <u>,</u> Ini | tial Mea                                | suren      | nents                       |               |                                         |                   |                                         | _    |  |
|                                             | Well Total    | Depth:                                                                                                               |                        | ft BTOC      | Water Lev                               | /el:       |                             |               | fl BTOC                                 |                   |                                         | _    |  |
|                                             | WELL VOL      | LUME PURGE: 1                                                                                                        | WELL VOLUME            | •            |                                         |            |                             |               |                                         | WATER)            | X WELL CAPACI                           | ŗ    |  |
|                                             | (only fill ou | t if applicable)                                                                                                     | =                      | (45,08       | Ft -34.56                               | Ft) x      | 0.163                       | gal/ft = 🕻    |                                         | Gal               |                                         |      |  |
|                                             | Calculated    | Well Volume:                                                                                                         | 1.71                   | Gallons      | <u> </u>                                |            | Well Dia                    | meter:        | 2                                       | I                 | inches                                  | 1    |  |
|                                             | Ca            | lculations:                                                                                                          | 1" diameter = 0        | ).041 gal/ft |                                         | 2" diame   | eter = 0.1                  | 63 gal/ft     |                                         | 4" diamete        | er = 0.653 gal/ft                       |      |  |
|                                             |               |                                                                                                                      |                        |              |                                         |            |                             |               |                                         |                   |                                         |      |  |
|                                             |               |                                                                                                                      |                        |              | li Purgi                                |            |                             |               |                                         |                   |                                         |      |  |
|                                             | Purging Me    | ethod (pump type)                                                                                                    | : Reclan               | mer          |                                         | F          | low rate (i                 | incl. units): | 34                                      | 5 ml              | - /min                                  | •    |  |
|                                             |               |                                                                                                                      |                        |              |                                         |            | Depth                       |               |                                         |                   |                                         | 1    |  |
|                                             | Time          | Flow Rate                                                                                                            | Turbidity              | Temp         | Cond                                    | рН         | to<br>water                 | DO            | ORP                                     | Total Gal         | Comments                                |      |  |
|                                             | ranie         | (ml/min)                                                                                                             | (NTUs)                 | (°C)         | (motom)                                 | рп         | (BTOC                       | (mg/i)        | ORP                                     | Pumped            | Comments                                |      |  |
| 5/23/18                                     | 1535          | 380                                                                                                                  | OR                     | 17.7         | 1018                                    | 7.59       | 36.5                        | 0.67          | -16,4                                   | 6,5               |                                         | -    |  |
| <i></i> • • • • • • • • • • • • • • • • • • | 1540          | 380                                                                                                                  | DR                     | 18.2         | 1065                                    |            | 37.65                       |               | -29,7                                   | 1.0               |                                         |      |  |
|                                             | 1845          | 380                                                                                                                  | OR                     | 14.9         | 1018                                    |            | 34.21                       | 2,67          | -31.1                                   | 1.5               |                                         | 1    |  |
|                                             | 1550          | 380                                                                                                                  | OR                     | 14.4         | 996                                     | 7.18       |                             |               | -30,6                                   | 2.0               |                                         | 1    |  |
|                                             | 1555          | 380                                                                                                                  | OR                     | 14,3         | 938                                     | 7.14       |                             | 4.78          | -26.5                                   | 2,5               | WLM on top of                           | Pump |  |
|                                             | 1600          | 380                                                                                                                  | OR                     | 15.2         | 949                                     | 7,12       |                             | 5,63          |                                         | . – . – –         | WLM on top of                           | 1    |  |
|                                             | 1605          | 380                                                                                                                  | OR                     | 15.4         | 974                                     | 7.15       |                             | 6,56          | -13,4                                   | 3,5               | well pumped do                          | ]    |  |
| 5/24/18                                     | 0845          | 380                                                                                                                  | OR                     | 13, 9        | 954                                     | 7,37       |                             |               | 169,1                                   | 4.0               | TO GOT   WOM PAR COM                    | 1    |  |
| J 1, **                                     | 0850          | 140                                                                                                                  | OR                     | 13.7         | 931                                     | 7.52       |                             | 4.93          |                                         |                   |                                         |      |  |
|                                             | 0855          | 190                                                                                                                  | OR                     | 14.3         | 927                                     | 7,48       |                             | 5,86          | 146.4                                   |                   |                                         |      |  |
|                                             | 0900          | 380                                                                                                                  | OR                     | 14,9         | 928                                     | 7,36       | ·                           | 7.38          |                                         |                   | well pumped.                            | dry  |  |
|                                             |               |                                                                                                                      |                        |              |                                         |            |                             |               |                                         | *                 |                                         |      |  |
|                                             |               |                                                                                                                      |                        |              |                                         |            |                             |               |                                         |                   |                                         | -    |  |
|                                             |               |                                                                                                                      |                        |              |                                         |            |                             |               |                                         |                   |                                         |      |  |
|                                             |               |                                                                                                                      | Al                     |              |                                         |            |                             |               |                                         |                   |                                         | -    |  |
|                                             |               |                                                                                                                      | 5/24/                  | -f8          |                                         |            |                             |               | *************************************** |                   | **************************************  | 1    |  |
|                                             | Posuite A     | at End Of Purging:                                                                                                   | OR                     | 14.9         | 928                                     | 7.36       |                             | 7,38          | 1364                                    | 5,0               |                                         | J    |  |
|                                             | results /     | it cha or raiging.                                                                                                   |                        | 1 1 1 1 1    | (20)                                    | 1.00       | l                           | 1000          | 02011                                   | L U               | I                                       |      |  |
|                                             | COMME         | MTC:                                                                                                                 |                        |              |                                         |            |                             | a . 1         |                                         |                   |                                         | 1    |  |
|                                             | COMMI         | NTS: well                                                                                                            | pud not                | mples        | 6 SHU                                   | lup        | 10.                         | 46° a         | 25                                      |                   |                                         |      |  |
|                                             | 5 ~~          | ell volumes = 8.55 gd. Begin purging @ 1530 on 5/23/18                                                               |                        |              |                                         |            |                             |               |                                         |                   |                                         |      |  |
|                                             | 012           | = out of r                                                                                                           | ungp                   |              | _                                       | -          |                             | -             |                                         |                   |                                         |      |  |
|                                             |               | 5mh = lga                                                                                                            |                        |              | γ<br>7                                  | r)<br>VIII | ( 2007)<br>(2) 2 <b>9</b> ( | ecopme        | wi wi                                   | rano o<br>sucto   | n 5/24/18.<br>Lev on 5/24/18            | ,    |  |
|                                             | - 10          | 3785ml = Igal DTW @ 38.66' stoe prior to dev. on 5/24/18; well considered developed after ~3 well volumes surged due |                        |              |                                         |            |                             |               |                                         |                   |                                         |      |  |
|                                             |               |                                                                                                                      |                        |              |                                         |            |                             |               |                                         |                   |                                         |      |  |
|                                             |               | <u>1</u>                                                                                                             | o Slow je              | rage.        | and o                                   | 424J       |                             | W ( CES       | S (LC)                                  | $\omega \sim c$ . | >1461                                   | j    |  |

8 5/21/2



| Project Na    | ime:                  | SI AFFF MUL                            | TIPLE SITES  | 3                |            |            |               |         |                                         |                   | _   |
|---------------|-----------------------|----------------------------------------|--------------|------------------|------------|------------|---------------|---------|-----------------------------------------|-------------------|-----|
| ASL Proje     | ct No:                | M2027,0003                             |              |                  |            |            |               |         |                                         |                   |     |
| Installation  | n:                    | Ellsworth AFI                          | В            |                  |            |            |               |         |                                         |                   | _   |
| Site:         |                       | 4 (for                                 | an er        | fore, si         | whow       | )          |               |         |                                         |                   | _   |
| Date:         |                       |                                        | 18           | , , ,            |            |            |               |         |                                         |                   |     |
| Sample Te     | echnician:            | Arell'                                 | Timble       | Li, Mi           | Ur A       | 10/15      | 8m            |         |                                         |                   | _   |
| Well ID No    | o.:                   | - Arw to (                             | FCONO        | ⇒ AT             | N          |            | FCOL          | 103     |                                         |                   | _   |
|               |                       |                                        | 70,          | 5 blood          | <u>(g.</u> |            |               |         | *************************************** |                   | _   |
|               |                       |                                        | Ini          | tial Mea         | suren      | nents      |               |         |                                         |                   |     |
| Well Total    | Depth:                | 10.69                                  | ft BTOC      | Water Le         | vel:       | 32.2       | 6             | ft BTOC |                                         |                   |     |
| WELL VO       | LUME PURGE; 1         |                                        |              |                  |            |            |               |         |                                         | X WELL CAPACI     | T.  |
| (only fill ou | ıt if applicable)     | =                                      | (40,69       | Ft -32.7         | Ft) x (    | 163        | gal/ft = ]    |         |                                         |                   | _   |
| Calculated    | I Well Volume:        | 1,4                                    | Gallons      |                  |            | Well Dia   | ameter:       | - 1     | 2                                       | inches            |     |
| C             | alculations:          | 1" diameter =                          | 0.041 gal/ft |                  | 2" diam    | eter = 0.1 | 163 gal/ft    |         | 4" diamete                              | er = 0,653 gal/ft |     |
|               |                       |                                        |              |                  |            |            | <u></u>       |         |                                         |                   | _   |
|               |                       |                                        | We           | ll Purgi         | na Act     | tivites    |               |         |                                         |                   |     |
| Purging M     | ethod (pump type)     | : Reclas                               |              | ŭ                | _          |            | incl. units); | 4       | 60 .                                    | m L/mm            |     |
|               |                       |                                        |              |                  |            |            |               | ,       | -                                       |                   | _   |
|               |                       |                                        |              |                  |            | Depth      |               |         |                                         |                   |     |
| Time          | Flow Rate<br>(ml/min) | Turbidity                              | Temp         | Cond.<br>(m8/Cm) | pН         | water      | DO<br>(math)  | ORP     | Total Gal<br>Pumped                     | Comments          |     |
|               | (mirmin)              | (NTUs)                                 | (°C)         | 14 Sicon         |            | (BTOC      | (mg/l)        |         | Fulliped                                |                   |     |
| 1620          | 380                   | OR                                     | 13.2         | 633              | · 31       | 34.0       | 665           | 12.5    | 0,5                                     |                   | 1   |
| 1625          | <i>ጋ80</i>            | OR OR                                  | 13.72        | 4887             |            |            |               |         |                                         |                   |     |
| 1630          | 380                   | OR                                     | 13.0         | 521              | 6,98       |            | 7.33          |         |                                         | WLM on top of     | bu  |
| 1635          | 755                   | OR                                     | 13, 4        | 558              | 6,96       |            | 7.78          |         |                                         |                   | - T |
| 1640          | 380                   | OR                                     | 13,3         | 604              | 7.0        |            | 8.28          |         |                                         | well dry          |     |
| 0920          | 380                   | OR                                     | 13,1         | 746              | 7.36       |            | 7.06          | 137.1   | 4.0                                     | WLM on top of     | unp |
| 0925          | 190                   | OR                                     | 12.8         | 718              | 7,30       | -          | 9.89          | 135.5   | 4,25                                    | well pumped dry   | ·   |
|               |                       |                                        |              |                  |            |            |               |         |                                         |                   | _   |
|               |                       |                                        |              | ļ                |            |            |               |         |                                         |                   | -   |
|               |                       | 00000000000000000000000000000000000000 |              |                  |            |            |               |         |                                         |                   | -   |
|               |                       |                                        | -            |                  |            | <u> </u>   |               |         |                                         |                   | -   |
|               |                       |                                        | -            |                  |            |            | <u> </u>      |         |                                         |                   | -   |
|               |                       |                                        | <u> </u>     | -                |            |            |               |         |                                         |                   | -   |
|               | • •                   | AT                                     | ta           |                  | -          | 1          | <b> </b>      |         |                                         | -                 | -   |

COMMENTS: well put not complete. Strckup: 1.40' ass

5 well volumes= 7 gal op = out obverge 3785 ml = 1 gal

Results At End Of Purging:

WLM = water level meter

Begn purgry @ 1615 on 5/23/18

Plesume Abrelogment @0415 on 5/24/18
Water level below top of pump prior to terelopment on 5/24/18

9.89 135,5

Well considered developed after 3 well volumes due to slow rechange and restricted access to well site.

C-10\$/24

730

718

5/23/18

5/24/18



|        | Project Na   | ame:               | SI AFFF MULT    | IPLE SITES   | 5                  |         |               |               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|--------|--------------|--------------------|-----------------|--------------|--------------------|---------|---------------|---------------|-----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|        | ASL Proje    | ct No:             | M2027.0003      |              |                    |         |               |               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                   |
|        | Installation | 1:                 | Ellsworth AFE   | 3            |                    |         |               |               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | Site:        |                    | Site 5 C        | 3-52         | Creus 4            | 197     | 0)            |               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                   |
|        | Date:        |                    | 5/2/1           | 8            |                    |         |               |               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | Sample T     |                    | Arek T          |              |                    | P+ B    | no            |               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                   |
|        | Well ID N    | o.:                | MWISP           | FC05         | 01                 |         |               |               | .,,,,           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        |              |                    |                 | lni          | itial Mea          | suren   | nents         |               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | Well Tota    |                    | 5.47            | ft BTOC      | Water Le           |         | 2.16          |               | ff BTOC         | ,          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | WELL VO      | LUME PURGE: 1      |                 |              |                    |         |               |               |                 |            | X WELL CAPACIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
|        |              | it if applicable)  |                 | (35,47       | Ft -4, <i>l(</i> 5 | Ft) x ( |               |               |                 | Gal        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | Calculated   | ا Well Volume: ا   | 1.3             | Gallons      | <u> </u>           |         | Well Dia      | ameter:       |                 |            | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
|        | С            | alculations:       | 1" diameter = 0 | 0.041 gal/ft |                    | 2" diam | eter = 0.     | 163 gal/ft    |                 | 4" diamete | er = 0.653 gai/ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
|        |              |                    |                 | We           | il Purgi           | ng Act  | tivites       |               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | Purging M    | ethod (pump type): | Redul           | ul-r         |                    | . F     | low rate (    | incl. units): | <u> </u>        | 66 m       | 11/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
|        |              |                    | 1               |              |                    |         | Depth         |               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | Time         | Flow Rate          | Turbidity       | Temp         | Cond.              | Hα      | to<br>water   | DO            | ORP             | Total Gal  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
|        | 1            | (ml/min)           | (NTUs)          | (°C)         | MS/Cm)             |         | (BTOC         | (mg/l)        | _,              | Pumped     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | 1115         | 710                | OR              | 14.5         | 7998               | 8.55    | 17,51         | ల, 59         | -35,2           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | 1125         | 379                | ÖR              | 14.1         | 5667               | 8,56    | 23,43         | 2.93          | -36,0           | 2.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | 1135         | <u> 568</u>        | OK              | 14.7         |                    |         |               | 3,02          |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 5/2/18 | 1145         | 568<br>946         | 0 R             | 14.3         | 5833<br>6967       |         |               | 2.85<br>1.58  | -25.3           | 5,5<br>& 0 | Stan la doc et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | for well growing    |
|        | 1340         | 379                | OR              | 13.3         | 4022               |         |               | 0,85          |                 | 8,5        | Jiop Reveropmon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 184 (0.00) 210001 7 |
| טונוע  | 1350         | 757                | OR              | 17.4         | 3451               | ·       |               | 2.22          |                 |            | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
|        | 1400         | 757                | OR              | 12.1         | 3267               | 7.23    | 28.09         | 2.61          | -43,4           | 12.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | रिपरि        | 946                | 00              | 12.4         | 3361               | 7.20    | 31.17         | 1,33          | -63.1           | 15.0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                   |
|        | 1420         | 568                | O R             | 13, 2        | 3675               | 7,34    |               | 3.99          | -58,0           |            | Water level meter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an top of pump      |
|        | (430         | 379                | 361             | 13.1         | 3731               | 7.34    | 30, 1         | 6.06<br>4.99  | -4/3,9<br>1/2 0 | 17.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | 1440         | <u>568</u><br>379  | 135             | 12,9<br>12.8 | 3732               | 7.27    | 30.4<br>20.26 | 6.52          | -313            | 20.0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | 1500         | 757                | 269             | 174          | 3653               | 7.31    | 31,46         | 6,61          | -286            | 27.0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | 7.0          |                    | 20 (            |              |                    |         | - 1 (0        |               |                 |            | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                     |
|        |              | A                  | 573/18          |              |                    |         |               |               |                 |            | - Common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
|        |              | ALE LOSE           | 269             | 62.4         | 3/52               | 7 1/    | 211.          | c 61          | -2x S           | 22.0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | Results .    | At End Of Purging: |                 | LL.          | 10//               | [ C./[  | 71,4          | 6,01          | -0(-            | 2210       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | СОММЕ        | ENTS: TOC          | = 1.14          | αίς          | ( we               | U pa    | d no          | t 0295        | nplet           | 2)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | _            | n purgina          |                 |              |                    | 5 tup   | purg          | ing @         | 2 115           | 5 on       | 5/2/18<br>35 an 5/3/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
|        | 1            | ell volu           |                 |              |                    | Res.    | ume o         | devel         | opmen           | 13         | 35 an 5/3/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>,</b>            |
|        | ノル           | eu voum            | mes: L1,        | s gar        | •                  |         |               |               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|        | 378          | 5 m L = 1 c        | gall.           |              |                    |         |               |               |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |

G 5/07 3/6/19



| Dodo Alba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                | OLASSE MILITA               | ::DI = 0:750                           |              |                     |            |           |                |             |                                       |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|----------------------------------------|--------------|---------------------|------------|-----------|----------------|-------------|---------------------------------------|--|--|
| Project Name: SI AFFF MULTIPLE SITES  ASL Project No: M2027,0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                             |                                        |              |                     |            |           |                |             |                                       |  |  |
| ASL Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                | M2027,0003<br>Ellsworth AFE | •                                      |              |                     |            |           |                |             |                                       |  |  |
| Site:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                             |                                        | E 2          |                     | 10.50      |           |                |             |                                       |  |  |
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                | Area                        | <u>5 (5</u>                            | -52          | rus h               | , 1°C      | 10)       |                |             |                                       |  |  |
| Sample Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | chnician:                                      | 05/02                       | <u>/18</u>                             | W1/          | . 11                | ,          | D 41.     |                |             |                                       |  |  |
| Well ID No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                | 1 rell                      |                                        |              | M att               | hen        | 13W14     | المحادث        | ×11         |                                       |  |  |
| TTON ID ITO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ••                                             | MWIB                        | YFCU:                                  | 3 <i>U</i> Z |                     |            |           |                |             |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                             | lni                                    | tial Mea     |                     |            |           |                |             |                                       |  |  |
| Well Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                | <i>ట</i> 5                  | fl BTOC                                | Water Lev    |                     |            |           | ft BTOC        |             |                                       |  |  |
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |                             | -                                      |              |                     |            |           |                |             | X WELL CAPACIT                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | if applicable)                                 | <u>=</u><br>1.82            | <u>(30.05</u>                          | Ft - [6,4    | (Ft) x <sup>C</sup> |            |           | 2              | Gal         | · · · · · · · · · · · · · · · · · · · |  |  |
| Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Well Volume:                                   |                             | Gallons                                | l            |                     | Well Dia   | imeter:   | 4-             |             | inches                                |  |  |
| Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lculations:                                    | 1" diameter = 0             | ).041 gai/ft                           |              | 2" diam             | eter = 0.1 | 63 gal/ft |                | 4" diamete  | er = 0.653 gal/ft                     |  |  |
| Well Purging Activites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |                             |                                        |              |                     |            |           |                |             |                                       |  |  |
| Purging Method (pump type): Reclaimer Flow rate (incl. units): 600 m L/m, h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                             |                                        |              |                     |            |           |                |             |                                       |  |  |
| Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                             |                                        |              |                     |            |           |                |             |                                       |  |  |
| Flour Rate Turbidity Temp Cond to DO Total Gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                             |                                        |              |                     |            |           |                |             |                                       |  |  |
| Time   Flow Rate   Turbidity   Temp   Cond.   pH   water   BTOC   (mg/l)   ORP   Total Gal   Comments   Pumped   Pumped   Comments   Pumped   Pumped   Pumped   Pumped   Pumped   Pumped   Pumped   Pumped   P |                                                |                             |                                        |              |                     |            |           |                |             |                                       |  |  |
| 0850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190                                            | OR                          | 12.6                                   | 3461         | 7.66                | 19,41      | 5,03      | 172.4          | 0.5         |                                       |  |  |
| 0400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 568                                            | OR                          | 11.7                                   | 3721         |                     |            | 2.73      |                |             |                                       |  |  |
| 0910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 568                                            | OR                          | 11,6                                   | 4712         |                     |            | 3.26      | 66.8           | 3,5         |                                       |  |  |
| 0920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 568                                            | OR                          | 11.4                                   | 5611         |                     | 21,55      |           |                | 5.0         |                                       |  |  |
| 0930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 946                                            | O. K                        | <u> 11.4</u>                           | 6007         |                     |            | 2.33      |                |             |                                       |  |  |
| 0940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 757                                            | OR                          | 11.4                                   | 6227<br>6477 |                     | 22,25      |           | -33,9<br>-43,1 | <del></del> |                                       |  |  |
| 0 (40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 757                                            | OR                          | 11,-0                                  | Q T !!       | 1,0                 | 722,50     | 2,17      | 75,1           | 9,5         |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                             |                                        |              |                     |            |           |                |             |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | 7.                          | ************************************** |              |                     |            |           |                |             |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                             |                                        |              | ***                 |            |           |                |             |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | 1.                          |                                        |              |                     |            |           |                |             |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                             |                                        |              |                     |            |           |                |             |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                             |                                        |              |                     |            |           |                |             |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A 1 5 12                                       | 118                         |                                        |              |                     |            |           |                |             |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 517                                            | (("                         |                                        |              |                     |            |           |                |             |                                       |  |  |
| Results A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t End Of Purging:                              | DR                          | li u                                   | 6477         | 7.26                | 22.30      | 2,17      | -43.1          | 9,5         |                                       |  |  |
| (1000110)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 2.1.2 O. 7 a. g. 1.g.                        |                             |                                        |              |                     |            |           |                |             |                                       |  |  |
| CONTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \(\tag{\tag{\tag{\tag{\tag{\tag{\tag{          |                             |                                        |              |                     |            |           |                |             |                                       |  |  |
| COMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COMMENTS: Well pad not complete. TOC = 009 ags |                             |                                        |              |                     |            |           |                |             |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ell whomes                                     | •                           |                                        | •            |                     |            |           |                |             |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 mL= lo                                       | _                           | ,                                      |              |                     |            |           |                |             |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | punging @                                      | _                           |                                        |              |                     |            |           |                |             |                                       |  |  |

\$005/67



| Ellsworth AFB   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project Na   |                    | SI AFFF MUL    | IICLE SHE   | ·······   |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|----------------|-------------|-----------|----------|------------|---------------|------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •            |                    | M2027.0003     |             |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stock   Stoc   | Installation | :                  |                |             |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A Two 15 W   M. Buffers worth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Site:        |                    |                |             | crash)    |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Initial Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date:        |                    |                |             |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Initial Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •            |                    |                |             |           | with     |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Flow Rate (mi/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Weil ID No   | it                 | MWISP          | FC0601      |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Flow Rate (mi/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                    |                | Ini         | tial Maa  | curon    | onte       |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH BTOC = STATIC DEPTH TO WATER) X WELL CAP/ nly fill cut if applicable) = (20.34 Ft - 15.5Ft) x 0.163 gu/n = 0.8 Gal    Calculations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vell Total   | Depth: 20          | 9.34           |             |           |          |            | 0             | ft BTOC          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calculations:   Calculations:   Calculations:   Calculated Well Volume:   Flow Rate   Calculations:   Calcul   |              |                    | WELL VOLUME    |             |           |          |            |               |                  | WATER)        | X WELL CAPAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Calculations:   1" diameter = 0.041 gal/ft   2" diameter = 0.163 gal/ft   4" diameter = 0.653 gal/ft     Well Purging Activites   Flow rate (incl. units):   (DOO m// und)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                    |                |             |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1" diameter = 0.041 gal/ft   2" diameter = 0.163 gal/ft   4" diameter = 0.653 gal/ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | calculated   | Well Volume:       | 4.008          |             |           |          |            |               |                  |               | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Well Purging Activites    Comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.           | •                  | }              | 0.044116    |           | 01 -1:   | -1 0       | 100119        |                  | ما مانسمه من  | 0 CE2 III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Flow rate (incl. units): (DOC) M//m/h  Time Flow Rate (ml/min) (NTUs) Temp (Cond. (ms/m) pH (BTOC) (mg/l)) ORP Total Gal Pumped (ml/min)  3.2 C 7 5 7 OR (4, 4 374, 6 7.53 16.24 9.46, 28.7 1.0  3.2 S 7 5 7 OR 13.7 39.7 7.35 16.24 9.46, 28.7 1.0  3.3 S 7 5 7 OR 13.4 406, 7.33 16.48 7.68 40.0 3.6  3.3 S 7 5 7 OR 12.6 406.5 7.33 16.48 7.61 42.0 4.0  3.4 C 7 2 7 1 OR 12.0 407.4 7.36 16.45 9.25 43.2 7.0  OMMENTS: Well pal not complete. TOC is (.51° a 35  Beam purama @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ui           | alculations;       | i diameter = t | 3.041 gai/π |           | 2" diame | eter = u.  | ibs gaint     |                  | 4 diamete     | ai = 0.653 gai/it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Flow rate (incl. units): (DOC) M//m/h  Time Flow Rate (ml/min) (NTUs) Temp (Cond. (ms/m) pH (BTOC) (mg/l)) ORP Total Gal Pumped (ml/min)  3.2 C 7 5 7 OR (4, 4 374, 6 7.53 16.24 9.46, 28.7 1.0  3.2 S 7 5 7 OR 13.7 39.7 7.35 16.24 9.46, 28.7 1.0  3.3 S 7 5 7 OR 13.4 406, 7.33 16.48 7.68 40.0 3.6  3.3 S 7 5 7 OR 12.6 406.5 7.33 16.48 7.61 42.0 4.0  3.4 C 7 2 7 1 OR 12.0 407.4 7.36 16.45 9.25 43.2 7.0  OMMENTS: Well pal not complete. TOC is (.51° a 35  Beam purama @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                    |                | We          | II Puraii | na Aci   | ivites     |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time Flow Rate (nt/min) (NTUs) (°C) (ms/cm) pH water (BTOC) (mg/l) ORP Total Gal Pumped (NTUs) (°C) (ms/cm) pH water (BTOC) (mg/l) ORP Pumped (Ms/cm) (Ms/cm) pH water (BTOC) (mg/l) ORP Pumped (Ms/cm) pH water (BTOC) (mg/l) ORP Pumped (Ms/cm) (Ms/cm) pH water (BTOC) (mg/l) ORP Pumped (Ms/cm) (Ms/cm) PH water (BTOC) (Mg/l) ORP Pumped (Ms/cm) PH water (BTOC) (Mg/l) ORP Pumped (Ms/cm) PH water (BTOC) (Mg/l) ORP Pumped (Ms/cm) PH water (BTOC) (Mg/l) ORP Pumped (Ms/cm) PH water (BTOC) (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pumped (Mg/l) ORP Pum |              |                    | 4 6            |             | -         | -        |            |               | 18               | <u>ነ</u> ለነፈን | 00// 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Time   Flow Rate (ml/min)   Temp (NTUs)   Temp (NTUs)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)   PH (NTUS)  | urging Me    | ethod (pump type): | Mega M         | wascom      |           |          | low rate ( | inci. units): |                  |               | ML/ min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Time   How Rate   Iurbicity   Temp   (NTUs)   (°C)   (mestron)   (BTOC   (mg/l))   ORP   ORP   Data Gal   Pumped   Comments   320 757 62 (4, 4) 374, 6 7.53 6.24 9.46 28.7 1.0 325 757 02 13.7 397, 1 7.35 6.54 7.88 37.8 2.0 330 757 02 13.4 406, 7 7.36 6.55 7.08 40, 0 3.0 535 757 02 12.6 406.5 7.33 6.48 6.6 42.0 4.0 340 2271 02 12.0 407.4 7.36 6.45 9.25 43.2 7.0  OMMENTS: well pak not complete. TOC is 1.51 a §5  Soull volumes = 4.0  Beam purama @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                    |                |             |           |          | Depth      | 1             |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (m/min) (NTUS) (C) (ms/m) (BTOC (mg/l)) Pumped  320 757 OR (4,4 374,6 7.53 16.24 9.46 28.7 1.0  325 757 OR 13.7 397,1 7.3515,97 38.8 37.8 2.0  330 757 OR 13.4 406,7 7.3616.55 9.08 40.0 3.6  535 757 OR 12.6 406,5 7.33 16.48 8.61 42.0 4.0  340 2271 OR 12.0 407,4 7.3616.45 9.25 43.2 7.0  OMMENTS: well put not complete. TOC 13 1.51 ags  Bean purang @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>T</b> ,   | Flow Rate          | Turbidity      | Temp        | Cond.     |          |            | DO            | 000              | Total Gal     | Commonto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 320 757 OR (4.4 374.6 7.53 16.24 9.46 28.7 1.0 325 757 OR 13.7 397.1 7.35 15.97 38.5 37.8 2.6 330 757 OR 13.4 406.7 7.36 16.55 7.08 40.0 3.6 335 757 OR 12.6 406.5 7.33 16.48 8.61 42.0 4.0 3340 2271 OR 12.0 407.4 7.36 16.45 9.25 43.2 7.0  OMMENTS: well pak not complete. TOC is 1.51' ags  Soull volumes =4.0  Bean gurang @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lime         | (mi/min)           | 1              | (°C)        | (mS/Cm)   | рн       |            | (mg/l)        | ORP              | Pumped        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 325 757 OR 13.7 397, (7.35)5, 97 385 37.8 2.6 330 757 OR 13.4 406, 77.36 6, 55 4.08 40.0 3.6 335 757 OR 12.6 406, 57.33 6, 48 8.61 42.0 4.0 340 2271 OR 12.0 407, 47.36 6, 45 9.25 43.2 7.0  CRESUITS AT END OF Purging: OR 12-0 407, 47.36 6, 45 9.25 43.2 7.0  OMMENTS: well pal not complete. TOC 15 1.51 a 55  5 well volumes = 4.0  Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                    |                |             | 1         |          | `)         |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 330 757 OR 13.4 406,7 7.36 6.55 7.08 40 0 3.0  330 757 OR 12.6 406,5 7.33 16,48 8.61 42.0 4.0  340 2271 OR 12.0 407.4 7.36 6.45 9.25 43.2 7.0  Results At End Of Purging: OR 12.0 407.4 7.34 16,45 9.25 43.2 7.0  OMMENTS: well pak not complete. TOC 13 1.51 a 35  5 well volumes = 4.0  Beain purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 320          | 757                |                | -           |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12.6 406.5 7.33 16.48 8.61 42.0 4.0 340 2271 OR 12.0 407.4 7.3616.45 9.25 43.2 7.0  Results At End Of Purging: DR 12.0 407.4 7.36 16.45 9.25 43.2 7.0  OMMENTS: well pak not complete. TOC is 1.51' ags  5 well volumes = 4.0  Begin purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 325          | 751                |                |             |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 340 2271 OR 12.0 407.4 7.3616.45 9.25 43.2 7.0  Results At End Of Purging: DR 12-0 407.4 7.3616.45 9.25 43.2 7.0  OMMENTS: well pal not complete. TOC is 1.51' ags  5 well volumes = 4.0  Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 121                | -              |             | 406.7     | 4.26     |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ASSUITS At End Of Purging: DR 12-0 407.47,34 (6,45 9,25 43,2 7.0)  OMMENTS: well pak not complete. TOC is 1.51° ass  5 well volumes =4.0  Bean purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                    |                | 1.40        |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OMMENTS: well pad not complete. TOC 13 1.51' ags  5 well volumes =4.0 Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .570         | 7011               | 012            | 12.0        | 107,1     | 1.26     | (6,47      | 7.65          | -L), C           | 1,0           | at the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th |
| OMMENTS: well pad not complete. TOC 13 1.51' ags  5 well volumes =4.0 Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                    |                |             |           |          |            |               |                  |               | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |
| OMMENTS: well pad not complete. TOC 13 1.51' ags  5 well volumes =4.0 Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                    |                |             |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OMMENTS: well pad not complete. TOC 13 1.51' ags  5 well volumes =4.0 Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                    |                |             |           |          |            |               |                  |               | 1 h 11 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OMMENTS: well pad not complete. TOC 13 1.51' ags  5 well volumes =4.0 Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                    |                |             |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OMMENTS: well pad not complete. TOC 13 1.51' ags  5 well volumes =4.0 Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                    |                | *********   |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OMMENTS: well pad not complete. TOC 13 1.51' ags  5 well volumes =4.0 Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                    |                |             |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OMMENTS: well pad not complete. TOC 13 1.51' ags  5 well volumes =4.0 Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                    |                |             |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OMMENTS: well pad not complete. TOC 13 1.51' ags  5 well volumes =4.0 Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | P.5                |                |             |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OMMENTS: well pad not complete. TOC 13 1.51' ags  5 well volumes =4.0 Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 1/1/1              | <u> </u>       |             |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OMMENTS: well pad not complete. TOC 13 1.51' ags  5 well volumes =4.0 Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 5101               |                |             | ļ         | ~~~~~    |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OMMENTS: well pad not complete. TOC 13 1.51' ags  5 well volumes =4.0 Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                    |                |             |           |          |            | 0.00          | 1                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 well volumes = 4.0 Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Resuits A    | t End Of Purging:  | DK             | 12-0        | 407.      | 7,30     | 16,45      | 9,25          | 43.2             | 7,0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 well volumes = 4.0 Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                    |                |             |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 well volumes = 4.0 Beam purging @ 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COMME        | NTS: Well a        | 4              | Com Ole     | te.To     | )() (    | × 1.1      | 51' a         | - <del>୧</del> ୨ |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| beam purama le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | ·                  |                |             |           |          |            |               | - ر              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | •                  |                | Bea         | in our    | giNq     | @ 13       | ()            |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OR = out of range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ORE          | out of rung        | e              | J           | ,         | ر -      |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3785 mL= 1 gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                    |                |             |           |          |            |               |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| ASI, Project No: Installation:   Ellsworth AFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | г     | Project Nam  | ne:               | SI AFFF MUL   | HPLE SHE                                         | S                                       |                        |                |                                 |          |           |                   | _   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|-------------------|---------------|--------------------------------------------------|-----------------------------------------|------------------------|----------------|---------------------------------|----------|-----------|-------------------|-----|
| Site:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A     | ASL Project  | t No:             | M2027,0003    |                                                  |                                         |                        |                |                                 |          |           |                   |     |
| Date:   Sample Technician:   Meli DNo:   Initial Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lr    | nstallation: |                   | Ellsworth AF  | В                                                |                                         |                        |                |                                 |          |           |                   | _   |
| Sample Technician:   Arch Turolski / Multiple But less   Multiple But less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S     | Site:        |                   | 6 (19         | 88 B-1                                           | crash                                   | )                      |                |                                 |          |           |                   | _   |
| Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note      |       | Date:        |                   | 5/6/1         | в                                                |                                         |                        |                |                                 |          |           |                   | _   |
| Initial Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S     | Sample Tec   | chnician:         | Arek.         | Turolsk                                          | 4 /M                                    | Athen                  | - Bu           | plers                           |          |           |                   |     |
| Well Total Depth:   20.36   ft BTOC   Water Level:   (0,43   ft BTOC   WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH BTOC - STATIC DEPTH TO WATER)   X WELL CAPACIT (only fill out if applicable)   = (20.36 Ft -10.43Ft)   x 0.163   gal/ft = 1,62   Gal   Calculated Well Volume:   1,62   Gallons   Well Diameter:   2   inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ٧     | Well ID No.: | :                 | MW18          | PFC06                                            | 02                                      |                        |                |                                 |          |           |                   | _   |
| Well Total Depth:   20.36   ft BTOC   Water Level:   (0,43   ft BTOC   WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH BTOC - STATIC DEPTH TO WATER)   X WELL CAPACIT (only fill out if applicable)   = (20.36 Ft -10.43Ft)   x 0.163   gal/ft = 1,62   Gal   Calculated Well Volume:   1,62   Gallons   Well Diameter:   2   inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |              |                   |               |                                                  |                                         |                        |                |                                 |          |           |                   |     |
| Well volume purge: 1   Well volume   (20,36 Ft -10,43Ft) x 0.163   gal/ft = 1,62   Gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _     |              |                   | 9/2 7/        |                                                  | 1                                       |                        |                | _                               |          |           |                   | ٦   |
| Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Continued   Cont   | _     |              |                   |               |                                                  | · • · · · · · · · · · · · · · · · · · · |                        |                |                                 |          |           | V MELL CARACE     | ]   |
| Calculated Well Volume:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |              |                   |               | •                                                |                                         |                        |                |                                 |          | -         | X WELL CAPACI     | 1   |
| Calculations:   1" diameter = 0.041 gal/ft   2" diameter = 0.163 gal/ft   4" diameter = 0.653 gal/ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -     |              |                   |               | · · · · · · · · · · · · · · · · · · ·            | 1 -10,2                                 | SE() X C               |                |                                 |          | Gal       | inchos            | 1   |
| New Part   Purging Activites   Sq. 5 m. L /m/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲     | -alculated \ | veli volume:      | 1,60          | Ganons                                           | 1                                       | T                      | vven Dia       | ameter.                         |          |           | Inches            | 1   |
| Purging Method (pump type):   Rechannel   Flow rate (incl. units):   395 m L /m/n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Cal          | culations:        | 1" diameter = | 0.041 gal/ft                                     |                                         | 2" diam                | eter = 0.      | 163 gal/ft                      |          | 4" diamet | er = 0.653 gal/ft | _]  |
| Purging Method (pump type):   Rechannel   Flow rate (incl. units):   395 m L /m/n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |              |                   | ř             |                                                  |                                         |                        |                |                                 |          |           |                   |     |
| Time Flow Rate (ml/min) Turbidity (NTUs) (°C) (mestyrin) pH to water (BTOC) (mg/l) ORP Total Gal Pumped Comments (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) (MYC) ( |       |              |                   | a .           |                                                  | ell Purgi                               | ng Act                 | ivites         |                                 | 0        | <i>.</i>  |                   |     |
| Time Flow Rate (ml/min) (NTUs) (°C) (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm)  | Р     | ourging Met  | thod (pump type): | Keclas        | NEY                                              |                                         | . F                    | low rate (     | incl. units);                   |          | 95 ~      | · L /mm           | _   |
| Time Flow Rate (ml/min) (NTUs) (°C) (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm) pH (me/cm)  | Г     |              |                   | 1             | 1                                                | 1                                       | T                      | Denth          |                                 |          |           |                   | ٦   |
| 11me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |              | Flow Pato         | Turbidity     | Temn                                             | Cond                                    |                        |                | DO.                             |          | Total Gal |                   |     |
| 1150 568 OR 11,5 3465 7,41 13,45 9.73 34,0 1.5  200 At 568 OR 11,5 368.4 7.23 16,70 9,88 34.2 3.0  12040 1 379 OR 12,1 382,5 7.32 - 9,00 31.4 4.0 will on top of or  18 1215 379 OR 13,6 402.7 7.29 - 9,16 28.6 4.5 well day  18 1435 379 OR 12.1 624.7 7,10 - 6,67 2.9 5,6 will on report in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the c |       | Time         |                   |               | ,                                                | (me/çm)                                 | pН                     | 1              |                                 | ORP      |           | Comments          |     |
| 200 1 568 OR 11,5 368,4 7.23 16,70 9,88 34,2 3,0  12010 1 379 OR 12,1 382,5 7.32 - 9,00 31,4 4.0 with on top of the 1215 379 OR 13,6 402,77,29 - 9,16 28,6 4.5 well day  18 1435 379 OR 12,1 624,77,10 - 6,67 2,9 5,6 with on top of the 14 14 14 14 14 14 14 14 14 14 14 14 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |                   |               |                                                  | MStem                                   |                        | )              |                                 |          |           |                   |     |
| 12040 379 OR 12.1 382,57.32 - 9.00 31.4 4.0 with on top of but 12.15 379 OR 13.6 402.77.29 - 9.16 28.6 4.5 well day 18 1435 379 OR 12.1 624.77.10 - 6.67 2.9 5.6 with on top of but 18 1435 379 OR 12.4 449.1 7.06 - 8.71 14.0 5.5 1450 189 OR 13.0 441.9 7.11 - 9.62 23.1 6.0 1455 189 OR 13.3 444.77.17 - 9.72 27.3 6.25 well day @ 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |              |                   | or            |                                                  |                                         |                        |                | ******************************* |          |           |                   |     |
| 1/8 [2]5 379 OR 13.6 402.77.29 - 9.16 28.6 4.5 well day 1/8 [435] 379 OR 12.1 624.77.10 - 6.67 2.9 5.6 who important 1/8 1435 379 OR 12.1 624.77.10 - 6.67 2.9 5.6 who important 1/8 1435 379 OR 12.4 449.1 7.06 - 8.71 14.0 5.5 1/8 OR 13.3 444.77.17 - 9.62 23.1 6.0 1/8 1455 189 OR 13.3 444.77.17 - 9.72 27.3 6.25 well day @ 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -     |              |                   |               | · · · · · · · · · · · · · · · · · · ·            |                                         | _                      | 16,70          |                                 |          |           |                   | _[_ |
| 18 1435 379 OR 12.1 624.77.10 - 6.67 2.9 5.6 WIN on top of his inno 379 OR 12.4 449.17.06 - 8.71 14.0 5.5 1450 189 OR 13.0 441.97.11 - 9.62 23.1 6.0 1455 189 OR 13.3 444.77.17 - 9.72 27.3 6.25 Well dry. @ 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,~ ⊢∓ | 5000         |                   |               |                                                  |                                         |                        |                |                                 |          |           | Wen on top of     | βu  |
| 1450 189 OR 13,0 441,9 7,11 - 9.62 23,1 6,0 1455 189 OR 13.3 444,77,17 - 9,72 27,3 6.25 well dry.@14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _     | 1/425        |                   |               |                                                  |                                         |                        |                | —                               |          |           |                   | -   |
| 1450 189 OR 13.3 444,77.17 - 9.62 23,1 6.0 1455 189 OR 13.3 444,77.17 - 9.72 27.3 6.25 well dry @ 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |              |                   |               | ·                                                |                                         |                        |                |                                 |          |           | WAPI ON TOP OF    | Jim |
| 1455 189 OR 13.3 444,77.17 - 9.72 27.3 6.25 well dry.@ 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-    | - 1          |                   |               |                                                  | ,                                       |                        | -              |                                 |          |           |                   | 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |                   |               | <del>1                                    </del> |                                         |                        |                |                                 |          |           | well don @        | 14. |
| Popule At End Of Purging: 0.90 13.3 1444 2 7.17 - 19.72 2.7.3 4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F     |              | , v               | 0 1           |                                                  |                                         |                        |                | ., , ,                          |          | 0.00      |                   | +   |
| Postule At End Of Purging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |              | 48-104 PA         |               | 20027200                                         |                                         |                        |                |                                 |          |           |                   |     |
| Populs At End Of Purging: 0.00 13.3 1444 2 7.17 - 9.72 2.7.3 6.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _     |              |                   |               |                                                  |                                         |                        |                |                                 |          |           | Ĺ                 | -   |
| Populs At End Of Purging 0.00 13.3 1444 2 7.17 - 19.72 2.7.3 4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |              |                   |               |                                                  |                                         |                        |                |                                 |          |           |                   | -   |
| Populs At End Of Purging: 0.00 13.3 1444 2 7.17 - 19.72 2.7.2 4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |              |                   |               |                                                  |                                         |                        |                |                                 |          |           |                   | -   |
| Populse At End Of Purging: 0.0 13.3 1444 2 7.17 - 9.72 2.7.3 4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     |              | A-S               |               |                                                  |                                         |                        |                |                                 |          |           |                   | -   |
| Populse At Ford Of Purging: 0.0 13.3 444.2 7.17 - 9.72 7.7.3 4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |              |                   |               |                                                  |                                         |                        |                |                                 |          |           |                   | 1   |
| Possible At End Of Purging: 00 13.3 444 2 7.17 - 972 77.2 6 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |              |                   |               |                                                  | -                                       | ······················ |                |                                 |          |           |                   | 1   |
| Neauka Ac Linu Or Fulging, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     | Results At   | End Of Purging:   | OR            | 13.3                                             | 444.2                                   | 7.17                   | -              | 9.72                            | 27,3     | 6,25      |                   |     |
| neauga // Linu Or Fulging, 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Results At   | End Of Purging:   | O.R.          | 13,3                                             | 444.2                                   | าแก                    | -              | 9.72                            | 27,3     | 6,25      |                   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ſ     | COMMEN       | ITS: Well         | pud no        | t comp                                           | Lete, T                                 | -oc                    | ≂ l.Ղ          | 31 a                            | <b>5</b> |           |                   |     |
| COMMENTS: Well put not complete. TOC = 1.23' ags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 0 R=         |                   | . 4           |                                                  |                                         |                        |                |                                 |          | Resun     | ne pureino        |     |
| Well put not complete. 10c = 1.73° ags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |                   | , ,           | egin pi                                          | wighy                                   | ا پ                    | i TO           | r ), 1                          |          |           |                   |     |
| OR = out of range Beach purally (2) 1140 Resume purging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 1   | -            | •                 |               | ALDA IM                                          | kavir 1                                 | or 12                  | ND on          | b/6/                            | i d      | アグシュ      | infine amount     |     |
| OR= ont of range Begin purging @ 1140 Resume purging 3785 ml= 1 gal stop jurging @ 1215 on 5/6/18 @ 1430 on 5/7/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 5 well       | volumes:          | 8.1 gal       |                                                  |                                         |                        |                |                                 |          | G = IF    | 108               |     |
| OR= out of range Begin purgly @ 1140 Resume purgling 3785 ml= I gal stop jurgling @ 1215 on 5/6/18 @ 1430 on 5/7/18  Could not complete. 10C=1.73 ags  Resume purgling  Brusher purgling  Dru before pumpling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |              |                   | •             | م <b>. د</b> . م                                 | ال د                                    | cn                     | <b>5</b> 0 - 0 |                                 | . ئر ر   | سر ال     | s and a D         |     |
| OR= ont of range Begin purgly @ 1140 Resume purgling  3785 ml= I gal stop jurging @ 1215 on 5/6/18 @ 1430 on 5/7/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | in we        | 1- 1-2241-24      | · www) 💯      | when of                                          | ~~~                                     | · .                    | IVWE           | with                            | UM 42.   | were (    | , consi proved    | 1   |

OS/07 3/6/19



| Project Na                                                               | ıme:                                                                                                   | SI AFFF MULT    | TIPLE SITES  | 3         |          |                                                   |             |          |           |                                         |  |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------|--------------|-----------|----------|---------------------------------------------------|-------------|----------|-----------|-----------------------------------------|--|
| ASL Projec                                                               | ct No:                                                                                                 | M2027.0003      |              |           | -        |                                                   |             |          |           |                                         |  |
| Installation                                                             |                                                                                                        | Elisworth AFE   |              |           |          |                                                   |             |          |           |                                         |  |
| Site:                                                                    |                                                                                                        | 6(19            | 88 B-1 c     | 1100      |          |                                                   |             |          |           |                                         |  |
| Date:                                                                    |                                                                                                        | 5/5/19          |              | rush)     |          |                                                   |             |          |           |                                         |  |
| Sample Te                                                                | echnician:                                                                                             | Arek T          |              | Moth      | ч В      | i He                                              | 5240-572-   | .,       | •••••     |                                         |  |
| Well ID No                                                               |                                                                                                        | MWISSE          |              |           | ~w, k    | <del>, , , , , , , , , , , , , , , , , , , </del> | J WOY IV    | <u> </u> |           |                                         |  |
|                                                                          |                                                                                                        | MWIGHT          | COSO         | <u> </u>  |          |                                                   |             |          |           | *************************************** |  |
|                                                                          |                                                                                                        |                 | Ini          | tial Mea  | suren    | nents                                             |             |          |           |                                         |  |
| Well Total                                                               |                                                                                                        | 7.40            | ft BTOC      | Water Lev |          | 27.6                                              |             | ft BTOC  |           |                                         |  |
| WELL VO                                                                  | LUME PURGE: 1                                                                                          |                 |              |           |          |                                                   |             |          |           | X WELL CAPACIT                          |  |
| (only fill ou                                                            | it if applicable)                                                                                      |                 | (60,h        | Ft - 27,6 | ≸f) x (  | 2.163                                             | gai/ft =    | 5,34     | Gal       |                                         |  |
| Calculated                                                               | Well Volume:                                                                                           | 5.34            | Gallons      |           |          | Well Dia                                          | ameter:     |          | )<br>T    | inches                                  |  |
| C                                                                        | alculations:                                                                                           | 1" diameter = 0 | 0.041 gal/ft |           | 2" diam  | eter = 0.1                                        | 163 gal/ft  |          | 4" diamet | er = 0,653 gal/ft                       |  |
|                                                                          |                                                                                                        |                 |              |           |          |                                                   |             |          |           |                                         |  |
|                                                                          |                                                                                                        |                 | We           | li Purgi  | ng Act   | ivites                                            |             |          |           |                                         |  |
| Purging Method (pump type): Reclamber Flow rate (incl. units): 520 mc/mg |                                                                                                        |                 |              |           |          |                                                   |             |          |           |                                         |  |
|                                                                          |                                                                                                        |                 |              | 1         |          | Depth                                             | 1           |          |           |                                         |  |
|                                                                          | Flow Rate                                                                                              | Turbidity       | Temp         | Cond.     |          | to                                                | DO          |          | Total Gal |                                         |  |
| Time                                                                     | (ml/min)                                                                                               | (NTUs)          | (°C)         | (mS/Gm)   | pН       | water<br>(BTOC                                    | (mg/l)      | ORP      | Pumped    | Comments                                |  |
|                                                                          |                                                                                                        |                 |              | juS/cm    | į        | `)                                                |             |          |           |                                         |  |
| 1620                                                                     | <b>ા</b> કવ3                                                                                           | OR              | 15.6         | 1192      | 7.23     | 32.88                                             | 7.78        | 2.l      | 5.0       | 5/5/18                                  |  |
| 1630                                                                     | 1514                                                                                                   | OK.             | 15,2         | 1037      | 7,91     | 50.9                                              | 18,00       | 5.8      | 40        |                                         |  |
| 1640                                                                     | 1136                                                                                                   | OR.             | 14,7         | 23.55     | 6.40     | 54.38                                             | 5.27        |          | 120       | <u> </u>                                |  |
| 1650                                                                     | 757                                                                                                    | OR_             | 14.8         | 2637      | 6,77     |                                                   | 6.54        | (4.0     | 140       | 5/6/18 0 1650                           |  |
| 0815                                                                     | 568                                                                                                    | <u> </u>        | 12.4         | 3827      |          |                                                   | 2.95        | 84,4     | 15.5      | 5/6/(8 V                                |  |
| 0830                                                                     | 505<br>379                                                                                             | 551             | 12.6         | 38N       |          |                                                   | 2.78        | 24.7     | 17.5      |                                         |  |
| 0845<br>0900                                                             | 379                                                                                                    | 5 R             | 12.8         | 3808      |          |                                                   | 5.44        |          | 20.5      | *************************************** |  |
| 0915                                                                     | 126                                                                                                    | 6 R             | (3,5         | 3671      | 6.79     |                                                   |             | 39.7     | 21.0      | 100                                     |  |
| 3930                                                                     | 252                                                                                                    | OR              | 13,0         | 3624      |          |                                                   |             | 44,4     | 22.0      |                                         |  |
| 0945                                                                     | 126                                                                                                    | 08              | 13.3         | 3690      |          | _                                                 | 6.39        | 46,5     | 27.5      | well dry                                |  |
| 1000                                                                     | 126                                                                                                    | 00              | 13.3         | 3761      | 6.92     |                                                   | 10.33       | 32.2     | 23.0      | welldon                                 |  |
| viou                                                                     | 252                                                                                                    | ÖR              | 12.8         | 3768      | 7.15     | ٠                                                 | 11.46       | 62.8     | 24.0      | wellow                                  |  |
|                                                                          |                                                                                                        | · .             |              |           |          |                                                   |             |          |           |                                         |  |
|                                                                          |                                                                                                        |                 |              |           | <u> </u> |                                                   |             |          |           |                                         |  |
|                                                                          | AT 5661                                                                                                | 118             |              |           |          |                                                   |             |          |           |                                         |  |
| -                                                                        | 5000                                                                                                   |                 | 130          | 27/5      | 7,7      |                                                   | (1.1.0      | 10 0     | 21 12     |                                         |  |
| Results /                                                                | At End Of Purging:                                                                                     | P.              | (2,4         | 3768      | 7.19     |                                                   | 1,46        | 62-8     | 24-0      |                                         |  |
|                                                                          |                                                                                                        |                 |              |           |          |                                                   | <del></del> |          |           |                                         |  |
| COMMENTS: well put not complete. TOC 15 0,88° ags                        |                                                                                                        |                 |              |           |          |                                                   |             |          |           |                                         |  |
|                                                                          | , purging                                                                                              | •               |              |           |          |                                                   |             |          |           | 16/18 @ 0805                            |  |
|                                                                          | cout of ron                                                                                            |                 | ` '          |           |          | we                                                | U van       | Any O    | 6000      | on 546/18                               |  |
|                                                                          | int= l gal                                                                                             | _               |              |           |          | KLS                                               | sime p      | my Jan   | e loso    | on 516168                               |  |
|                                                                          |                                                                                                        |                 | a al         |           | Due      | to th                                             | ne con      | strails  | s, well   | constand                                |  |
| J W 1                                                                    | 5 well volumes = 26.7 gal.  Due to the constraints, well considered of berely gallons. Restricted when |                 |              |           |          |                                                   |             |          |           |                                         |  |

D5/07



| Project Name:      | SI AFFF MULTIPLE SITES            |  |
|--------------------|-----------------------------------|--|
| ASL Project No:    | M2027,0003                        |  |
| Installation:      | Ellsworth AFB                     |  |
| Site:              | 7 (Taxing Delta 2000 crash)       |  |
| Date:              | 5/9/18                            |  |
| Sample Technician: | Arek Twobki/ Multhen Buttersworth |  |
| Well ID No.;       | MW18PFC0701                       |  |

#### **Initial Measurements**

| Well Total Depth:             | 40.38       | ft BTOC        | Water Level: | 13.66             | ft BTOC         |                   |
|-------------------------------|-------------|----------------|--------------|-------------------|-----------------|-------------------|
| WELL VOLUME PURGE:            | 1 WELL VOLU |                |              |                   |                 | X WELL CAPACIT    |
| (only fill out if applicable) | =           | (40.38         | Ft -13,66Ft) | x O.163 gal/fi    | t = 4.4 Gal     |                   |
| Calculated Well Volume:       | 4.4         | Gallons        |              | Well Diamete      | er: <u>2</u>    | inches            |
| Calculations:                 | 1" diameter | = 0.041 gal/ft | 2" d         | iameter = 0.163 g | al/ft 4" diamet | er = 0.653 gal/ft |

Well Purging Activites

| Purging Method (pump type): | Recladuer | _ | Flow rate (incl. units): | 575 | nL/mih |  |
|-----------------------------|-----------|---|--------------------------|-----|--------|--|
|                             |           |   |                          |     |        |  |

| Time        | Flow Rate<br>(ml/min) | Turbidity<br>(NTUs) | Temp<br>(°C) | Cond.<br>(mS/Cm) | рΗ   | Depth<br>to<br>water<br>(BTOC | DO<br>(mg/l) | ORP   | Total Gal<br>Pumped | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
|-------------|-----------------------|---------------------|--------------|------------------|------|-------------------------------|--------------|-------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1435        | 379                   | OR                  | 12.7         | 1581             | 7,06 | 19,05                         | 1.99         | -4.9  | 1.0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1445        | 757                   | DR                  | 12.2         | 1564             | 7,03 | 28,00                         | 2,62         | -19.2 | 3,0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1455        | ১৫৪                   | OR                  | 12.4         | 1641             | 7.10 | 30.52                         | 2,63         | -20.7 | 4.5                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1505        | 757                   | 00                  | 13,0         | 1397             | 7.08 |                               | 2.93         | -21.6 | 6.5                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1515        | 568                   | OR                  | 12.7         | 1602             |      | 34.09                         | 2,99         | -29,5 | 8.0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :       |
| 1523        | 568                   | OR                  | 13,1         | 1888             | 6.85 | 36.27                         | 1,57         | -40,4 | 9.5                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| US 35       | 379                   | 00                  | 13.7         | 2241             | 6,95 | <u></u>                       | 341          | -30.3 | 10.5                | WLM on top of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , hours |
| 1545        | 56g                   | OR                  | 12.2         | 2153             | 7,04 |                               | 7,46         | -16.3 | 12,0                | welling @ 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45 `    |
| 0830        | 757                   | OR                  | 10.8         | 2712             | 6.88 | 23,79                         |              |       | 14.0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 0830        | 568                   | OR                  | 10.8         | 2686             |      | 29.82                         | 12,40        | 37,2  | 15.5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 0840        | 757                   | OR                  | 10.8         | 2538             | 6,20 | 33,84                         | 3,08         | 24.5  | 17.5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 0850        | 568                   | ઉ જ                 | 10.9         | 2566             | 6.81 | 36,29                         | 3,62         | 27.6  | 19.0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| <b>6406</b> | 568                   | OR                  | 10.9         | 2619             | 6.84 | <b>←</b>                      | 3,18         | 21.2  | 20.5                | Whan top of p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ums     |
| 0910        | 190                   | OR                  | II.O         | 2678             |      | -                             | 6.00         | 25.7  | 21,0                | - Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Cons | •       |
| 0945        | 379                   | 01                  | 10.9         | 2648             | 6.92 |                               | 5,89         | 26.8  | 22,0                | well dy ec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 905     |
|             |                       | ارس سا              | 0/18         |                  |      |                               |              |       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|             |                       | ₩T 2/               | V/10         |                  |      |                               |              |       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Results     | At End Of Purging:    | OQ                  | 10.9         | 2648             | 6.92 |                               | 5,89         | 26,8  | 22.0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |

COMMENTS:
Well pool not completed. Stickup: 1.05 ags

5 well volumes = 22 gd.

Begin purgling @ 1425 on 5/9/18

Oh = Out of rouge

Resume purgling @ 0810 on 5/10/18

8785 ml = 1 gd

DTW: 14.77 prior to purgling an 5/10/18

Wen = water level meter

Co 0410



| Project Name:                                                                                  |                        | SI AFFF MULT     | TIPLE SITES | s         |          |                 | •                  |              |               |                                         |                                         |  |
|------------------------------------------------------------------------------------------------|------------------------|------------------|-------------|-----------|----------|-----------------|--------------------|--------------|---------------|-----------------------------------------|-----------------------------------------|--|
| ASL Project No:                                                                                |                        | M2027.0003       |             |           |          |                 |                    |              |               |                                         | ···········                             |  |
| Installation:                                                                                  |                        | Ellsworth AFi    |             |           |          |                 |                    |              |               |                                         |                                         |  |
| Site:                                                                                          |                        |                  |             | †         |          | _ 1             |                    | <del>,</del> |               |                                         |                                         |  |
| Date:                                                                                          |                        | 1 (2K)           | to tax      | 5 hardy   | we!      | 24              |                    |              |               |                                         |                                         |  |
| Sample Technician                                                                              | 1:                     | را ، ار <u>د</u> | Turols      | 1/1 /4    | مالم     | C 101-          | بزاده              |              |               | *************************************** |                                         |  |
| Well ID No.:                                                                                   |                        | MWIER            |             |           | VIIE.    | > 100           | <u>/1150</u>       | Δ            | ,             |                                         |                                         |  |
| TTOIL ID ING                                                                                   |                        | PIWIST           | PCO 10      | L         |          |                 |                    |              |               |                                         |                                         |  |
|                                                                                                |                        |                  | lni         | itial Mea | suren    | nents           |                    |              |               |                                         |                                         |  |
| Well Total Depth:                                                                              | 25.                    |                  | ff BTOC     | Water Le  |          | 15,             |                    | ft BTOC      |               |                                         |                                         |  |
| WELL VOLUME P                                                                                  | URGE: 1\               | WELL VOLUME      |             |           |          |                 |                    |              | WATER)        | X WELL CAPA                             | ACIT                                    |  |
| (only fill out if applic                                                                       | cable)                 | =                | (25,9       | Ft -15.74 | VFt) x ( |                 |                    | <u>, 66</u>  | Gal           |                                         |                                         |  |
| Calculated Well Vo                                                                             | lume:                  | 1.66             | Gallons     |           |          | Well Dia        | meter:             | <u> </u>     |               | inches                                  |                                         |  |
| Calculations: 1" diameter = 0.041 gal/ft 2" diameter = 0.163 gal/ft 4" diameter = 0.653 gal/ft |                        |                  |             |           |          |                 |                    |              |               |                                         |                                         |  |
| Well Purging Activites                                                                         |                        |                  |             |           |          |                 |                    |              |               |                                         |                                         |  |
|                                                                                                | Well Purging Activites |                  |             |           |          |                 |                    |              |               |                                         |                                         |  |
| Purging Method (pu                                                                             | ump type):             | heclai           | ner         |           | . F      | low rate (      | incl. units):      |              | (D)           | Mr M.N                                  |                                         |  |
|                                                                                                |                        |                  | l           |           | 1        | Depth           |                    |              |               |                                         |                                         |  |
| Flow                                                                                           | v Rate                 | Turbidity        | Temp        | Cond      |          | to              | DO                 |              | Total Gal     | 0                                       |                                         |  |
| : lime                                                                                         | l/min)                 | (NTUs)           | (°C)        | (mS/Cm)   | pН       | water<br>(BTOC  | (mg/l)             | ORP          | Pumped        | Comments                                |                                         |  |
|                                                                                                |                        |                  |             | US/cm     |          | <u>`</u> )      |                    |              |               |                                         |                                         |  |
| 1125                                                                                           | _<br>-                 | 20               |             | ~         |          | 15.74           | 1 11-              | ~~           | 0.0           | Begn Dove                               | lophent                                 |  |
| 1135 768                                                                                       |                        | OR               | 10.7        | 76 11     | 694      | 16.70           | 1.95               | 35.3         | 1.5           |                                         |                                         |  |
| 1125 268                                                                                       | <u>, 75 /</u>          | OR               | 10.3        | 1277 7    | 517      | 1012            | 200                | 19.4         | 3.03.9<br>5.0 | <u> </u>                                |                                         |  |
| 205 56                                                                                         | <u>0</u>               | OR               | 9.5         | 1200      | 700      | 19.52           | 3.80<br>2 90       | 18.3         | 6.5           |                                         |                                         |  |
| 12 56                                                                                          | Q                      | OR               | 10.0        | 1777      | 7,63     | 20.60           | 3.75               | 16.3         | 9.0           |                                         |                                         |  |
| 1220 365                                                                                       | Ž                      | OR               | 10.3        | 2305      |          | 20.95           | 3,51               | 15.1         | 8.75          |                                         |                                         |  |
| 1225 56                                                                                        | 8                      | OR               | 10.4        | 2243      |          | 21.45           |                    |              | 9,50          | End Deve                                | Monto                                   |  |
|                                                                                                |                        |                  | 1000        |           | 7        | . ,             | •                  | ,,,,,,       |               |                                         |                                         |  |
|                                                                                                |                        |                  |             |           |          |                 |                    |              |               |                                         |                                         |  |
|                                                                                                |                        |                  |             | M         | 127      | . 11            |                    |              |               |                                         | _                                       |  |
|                                                                                                |                        |                  |             | / CPV     | 5        | 3               | 8                  |              |               |                                         |                                         |  |
|                                                                                                |                        | <b></b>          | /           |           |          |                 |                    |              |               | AAAMANA                                 | $\dashv$                                |  |
|                                                                                                |                        |                  |             |           |          |                 |                    |              |               |                                         |                                         |  |
|                                                                                                |                        |                  |             |           |          |                 |                    |              |               |                                         |                                         |  |
|                                                                                                |                        |                  |             |           | _        |                 | 20.00              |              | A -           |                                         |                                         |  |
| Results At End Of Purging: 6R 10.4 2243 744 21.45 3.75 4.8 9.5                                 |                        |                  |             |           |          |                 |                    |              |               |                                         |                                         |  |
|                                                                                                |                        |                  |             |           |          |                 |                    |              |               |                                         |                                         |  |
| COMMENTS:                                                                                      | للعلل عا               | ed not           | د هي. ۱۵    | Re 54     | ichia    | 0:1             | .31                |              |               |                                         |                                         |  |
|                                                                                                |                        |                  |             | T- 1      | 2000     | വ കി            | 775                |              |               |                                         |                                         |  |
| Begin pu                                                                                       | rong                   | e 1175           |             | The !     |          | الم الترا       | $\frac{UUU}{1000}$ | 1            |               |                                         | 1                                       |  |
| 3785 mL                                                                                        | = land                 | (                | _           | J. 6      | 934110   |                 | N/OR               | MILLO        | ie togo       | espa                                    | *************************************** |  |
| OR= out                                                                                        |                        |                  |             | Jurp:     | d 10     | 1001            | $(I \mid V)$       | WALCO        | ~ 1081        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  |                                         |  |
| 5 well vol                                                                                     |                        |                  |             | see t     | sore 1   | $\mathcal{A}$ . |                    |              |               |                                         |                                         |  |

P21185/19



|              | me:                           | SI AFFF MUL   | TIPLE SITE   | S                                       |                                         |                    |                                         |                   |                                         |                   |
|--------------|-------------------------------|---------------|--------------|-----------------------------------------|-----------------------------------------|--------------------|-----------------------------------------|-------------------|-----------------------------------------|-------------------|
| ASL Projec   | ct No:                        | M2027,0003    |              | -                                       |                                         |                    |                                         |                   |                                         |                   |
| nstallation  | :                             | Ellsworth AF  | В            |                                         |                                         |                    |                                         |                   |                                         |                   |
| Site:        |                               | 7 (del        | ta taxi      | was w                                   | est)                                    |                    |                                         |                   |                                         |                   |
| Date:        |                               | 5/17/         | 18           | 1 ~                                     | 7.1                                     |                    | MAN .                                   |                   |                                         |                   |
| Sample Te    | chnician:                     | Arelis        | Turolsk      | ~ /M                                    | boc                                     | NRA                | 30 N                                    | (: SA             | <u>N</u>                                |                   |
| Vell ID No   | u:                            | MWISI         |              |                                         | <del>' (~   '</del>                     |                    |                                         | <u>~, ,,,, ~</u>  | v - j                                   |                   |
|              |                               |               |              |                                         |                                         |                    |                                         |                   |                                         |                   |
|              | Depth: 25,                    | <u> </u>      |              | itial Mea                               |                                         | nents<br>17,3      | 20                                      | ~ ====            | *************************************** | ···               |
| Vell Total   |                               | -             | ft BTOC      | Water Le                                |                                         |                    |                                         | ft BTOC           | ) MATERY                                | X WELL CAPAC      |
|              |                               | =             | ( 25,91      | Ft -                                    |                                         |                    | gal/ft =                                |                   |                                         | A WELL CAPAC      |
|              | t if applicable) Well Volume: | 110           |              | T                                       | ıŋ X                                    | Well Dia           | -                                       | <u>ነ ፣ ሀ</u>      | Gal                                     | inches            |
| Jaiculated   | vveit voiume:                 | 170           | Gallons      | 1                                       |                                         | 7                  |                                         |                   |                                         |                   |
| Ca           | alculations:                  | 1" diameter = | 0.041 gal/ft | ·                                       | 2" diam                                 | eter = 0,          | 163 gal/ft                              |                   | 4" diamete                              | er = 0.653 gal/ft |
|              |                               |               | We           | ell Purgi                               | ng Aci                                  | tivites            |                                         |                   | ~                                       |                   |
| urgina Ma    | ethod (pump type):            | hecla         |              |                                         | _                                       |                    | incl, units):                           | -38               | K (S)                                   | L -757 m          |
| urging in    | strict (parrip type).         | _ Nuna        | VINARA       |                                         | •                                       | ) 0101 1101        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                   | • د د د                                 |                   |
|              |                               |               |              |                                         |                                         | Depth              |                                         |                   |                                         |                   |
| Time         | Flow Rate                     | Turbidity     | Temp (       | u Bond.                                 | pH                                      | to<br>water        | DO                                      | ORP               | Total Gal                               | Comments          |
| 131,16       | (ml/min)                      | (NTUs)        | (°C)         | (mstem)                                 |                                         | (BTOC              | (mg/l)                                  |                   | Pumped                                  |                   |
| 1,           | 20-                           | <u> </u>      | 10 /         | CA SUL                                  | 774                                     | )                  | <u> </u>                                | {\\\\ \ <b>\_</b> | 1 -                                     | D :: 1)           |
| 15           | 300 (A)                       | OK            | 10.8         | 16/14                                   | 1.18                                    | 17,43              | 7.07                                    | 124.7             | 1,00                                    | Born De           |
| 25           | 280 567                       |               | 10,4         | 1029                                    | 1.15                                    | 1.1 <sub>4</sub> 7 | 2012                                    | 51.               | 100                                     | .5 Inclease       |
| 35           | 457                           | 01/2          | 7,8          | 1346                                    | 7,33                                    | 18.0               | 1500                                    | -264              | 4.5.                                    |                   |
| 45           | 751                           | <b>Ø S</b>    | 4. /         | 1474                                    | 7.35                                    | 118.14             | 5.83                                    | -55.0             |                                         |                   |
| 150          | 757                           | OK.           | 9.7          | 1480                                    |                                         | 18.20              |                                         | -58.7             | 7.5                                     | End Dallatar      |
| 55           | 757                           | OK            | 7.6          | 1480                                    | 1.58                                    | 10.50              | 5,89                                    | -58.9             | 8.5                                     | REACTION          |
| -+           |                               |               |              |                                         |                                         | -                  |                                         |                   |                                         | O'O SALIET D      |
|              |                               |               |              |                                         |                                         |                    |                                         |                   |                                         |                   |
|              |                               |               |              | ~************************************** |                                         |                    |                                         |                   |                                         |                   |
|              |                               |               |              |                                         |                                         |                    |                                         |                   |                                         |                   |
|              |                               |               |              |                                         |                                         |                    |                                         |                   |                                         |                   |
|              |                               |               |              |                                         |                                         |                    |                                         |                   |                                         |                   |
|              | <u>*</u>                      | 4             | 4            | -                                       | *************************************** |                    |                                         |                   |                                         |                   |
|              | <u> </u>                      | ST ATT        | 7/18         |                                         |                                         |                    |                                         |                   |                                         |                   |
|              |                               | יט            |              |                                         |                                         |                    | <u> </u>                                |                   | 1                                       |                   |
|              |                               | Φ.0           | 6/           | 11. Colo                                | _ 41                                    | 1 44 2 0           | 166                                     | 1 TV 0            | 18                                      | <u>.</u>          |
| tesuits A    | At End Of Purging:            | OR            | 9,6          | 11480                                   | 1,58                                    | 11.2.20            | 8.89                                    | -201              | 800                                     | 1                 |
| COMME        | NTO                           | •             |              |                                         |                                         |                    |                                         | -201              | 10.3                                    |                   |
|              | well b                        | and not a     | complete     | e, SHO                                  | Kup:                                    | 1.58               | <b>5</b>                                | []                | _ 1                                     | . 1               |
| D            | a a) - @                      | 1005          | 1            | F:dru                                   | y d                                     | :9 N               | 1ot 5                                   | tab: :            | 7c due                                  | to goobyy         |
| عديرس        | brusing 6                     | <i>(</i> 00)  | 1            | neo Ra                                  | K2 Cc                                   | . ॅ                |                                         | •                 |                                         | 2 00              |
| 9 – ~ .      | 5 pmc = lgal                  | }             | 7            | ) -                                     |                                         | 0,4                | $\sum_{x}$                              | 100               |                                         |                   |
| くフレリ         |                               |               | 7            | ) ~ C ~ C                               | Aallo                                   | C YC               | 101                                     | 469               |                                         |                   |
|              | not no me                     | ge.           |              | (                                       |                                         |                    | . '                                     | J                 |                                         |                   |
| 5 18!<br>OR= | 000, 01, 10-5                 |               |              |                                         |                                         |                    |                                         |                   |                                         |                   |
| OR=          | U volmes =                    | 7201          |              |                                         |                                         |                    |                                         |                   |                                         |                   |



| Dunia at N  |                                         | OLAFEE MUL      | riol e orre | _           |                                               |             |               |         |            |                                         |
|-------------|-----------------------------------------|-----------------|-------------|-------------|-----------------------------------------------|-------------|---------------|---------|------------|-----------------------------------------|
| Project N   |                                         | SI AFFF MUL     | HPLE SHE    | 5           |                                               |             |               |         |            |                                         |
| ASL Proj    |                                         | M2027.0003      |             |             |                                               |             |               |         |            |                                         |
| Installatio | on:                                     | Ellsworth AF    |             | ·····       |                                               |             |               |         |            |                                         |
| Site:       |                                         | Sik 8-          | -Markn      | (Ras        | h                                             |             |               |         |            |                                         |
| Date:       |                                         | 4-26            | -17         |             |                                               |             |               |         |            |                                         |
| Sample T    | echnician:                              | 411.W.A         | / A         | Turol       | SILI                                          |             |               |         |            |                                         |
| Well ID N   | lo.:                                    | SIWM            | PFC080      | , l         |                                               |             |               |         |            |                                         |
| Bs4         | tim of Scree                            | _               | _           | itial Mea   | asuren                                        | nents       |               |         |            | -                                       |
|             | al Depth: 1051.                         |                 | ft BTOC     | Water Le    | vel;                                          | 15 5        | 73            | ft BTOC |            |                                         |
|             |                                         |                 |             | <del></del> |                                               |             |               |         | ) WATER)   | X WELL CAPACIT                          |
| ł .         | ut if applicable)                       | =               | (51.28      |             |                                               |             |               |         | Gal        | *************************************** |
|             |                                         | 5.76            | Gallons     |             | <u>, , , , , , , , , , , , , , , , , , , </u> | Well Dia    |               | 7       |            | inches                                  |
|             |                                         |                 | 2044        |             | OU dimon                                      |             |               |         | 411 -12    |                                         |
| <u> </u>    | Calculations:                           | 1" diameter = 0 | J.041 gal/π |             | 2 diam                                        | eter = u.   | 163 gal/ft    |         | 4" diamete | er = 0,653 gal/ft                       |
|             |                                         |                 | We          | il Purgi    | na Aci                                        | tivites     |               |         |            |                                         |
|             |                                         | 2 J2            |             | _           | _                                             |             |               | a       | ΕK         | n L/mm                                  |
| Purging N   | flethod (pump type);                    | -R-HEK- N       | iega Mor    | soen        | . F                                           | low rate (  | incl. units): | 1       | 2 2 m      | al/m/h                                  |
|             | 1                                       |                 |             |             |                                               | Depth       |               | T       | 1          |                                         |
|             | Flow Rate                               | Turbidity       | Temp        | Cond.       |                                               | to          | DO            |         | Total Gai  |                                         |
| Time        | (ml/min)                                | (NTUs)          | (°C)        | (mS/Cm)     | PΗ                                            | water       | (mg/l)        | ORP     | Pumped     | Comments                                |
|             | ,                                       | , ,             | , ,         |             |                                               | (BTOC       | , ,           |         | ,          | *************************************** |
| 1010        | 946                                     | OR              | 12.3        | 8,52        | 7.07                                          | 22.25       | 0.64          | -78 4   | 1.25       | 1                                       |
| 1020        | 852                                     | OR              | 12.4        |             |                                               |             | 0.22          |         |            |                                         |
| 1030        | ้า 5 ใ                                  | OB              | 12.8        | 14.90       |                                               |             |               | -94,0   |            |                                         |
| 1040        | 757                                     | OR              | 12.9        | 25.46       |                                               |             |               | -130,9  |            |                                         |
| 1050        | 757                                     | OR              | 12.7        | 26,47       |                                               |             |               |         | 4.50       |                                         |
| 1100        | 751                                     | OR              | (2.7        | 27.40       |                                               |             | 0.32          |         | 11.50      |                                         |
| 1110        | 946                                     | OR              | 12.5        | 27.84       |                                               | 34.78       |               |         | 14.00      | No.                                     |
| 1120        | 757                                     | OR              | 12,5        | 27.64       | 7.06                                          | 36,33       | 0.67          | -991    | 16.06      | Y                                       |
| 1130        | 757                                     | OR              | 12,5        | 27,90       | 7,07                                          | 38.35       | 0.17          | -116.3  | 18.00      |                                         |
| 1140        | 1135                                    | 6-72            | 12.5        | 27.61       | 7.08                                          | 39,20       | 0.20          | -103,9  | 21,00      | <b></b>                                 |
| 1150        | 1135                                    | OR              | 13.0        | 23,95       | 7.13                                          | 37.19       |               |         | 24.00      |                                         |
| 1200        | 1892                                    | 0 12            | 12.6        | 19.73       | 7.67                                          | 43,75       | 0.44          | -82.9   | 29.00      | 1                                       |
|             |                                         |                 |             |             |                                               |             |               |         |            |                                         |
|             | *************************************** |                 |             |             |                                               |             |               |         |            |                                         |
|             | AT                                      |                 |             |             |                                               |             |               |         |            |                                         |
|             | A-1                                     |                 |             |             |                                               |             |               |         |            |                                         |
|             | A. E. ( 8.5 B. +                        | . 0             | NO (        | 10 2        |                                               | I. o ····Fi | - 1.1.        | Ma.     | 04-        |                                         |
| Results     | At End Of Purging:                      | Oh              | 12.6        | 19.13       | 1.0 f                                         | 43.75       | 0.44          | -62.Y   | 29,00      |                                         |
|             |                                         |                 |             |             |                                               |             |               |         |            |                                         |
| COMME       | ENTS: D                                 |                 |             |             | ١.                                            | 0011 -      | . 0           | .Ł      | مار ،      |                                         |
|             | ENTS: Begn &                            | Imagina 6       | 1003        | ל           | W                                             | en p        | aa n          | ox con  | mplexe,    | Toc is                                  |
| 04          | to two =.                               | ange            |             |             | 0,4                                           | 31 a g      | \$ ,          |         |            |                                         |
| •           | 85mL=1 g.                               | •               |             |             |                                               | J           | •             |         |            |                                         |
|             | rell vol. =                             |                 | J           |             |                                               |             |               |         |            |                                         |
| ) r         | ren vol                                 | 2010 g          | ч,          |             |                                               |             |               |         |            |                                         |



|                                                                                                               | Project Na   | ame:                     | SI AFFF MUL         | TIPLE SITES  | 3                |                                       |                      |              |              |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------|--------------|--------------------------|---------------------|--------------|------------------|---------------------------------------|----------------------|--------------|--------------|-----------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                               | ASL Proje    | ct No:                   | M2027.0003          |              |                  |                                       |                      |              |              |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               | Installation | n;                       | Elisworth AF        | В            |                  |                                       |                      |              |              |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               | Site:        |                          | 8-m                 | ar Irn       | (rash            | `                                     |                      |              |              |                       |                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                               | Date:        |                          | 4123                | 7.19         |                  |                                       |                      |              | ·····        |                       |                   | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                               | Sample Te    | echnician:               | MNe                 | ilson        | I A. TI          | JWOISK                                | }                    |              |              |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               | Well ID No   | o,:                      |                     | PFC O        | ~ ~              |                                       |                      |              |              |                       |                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                               |              |                          |                     | Ini          | itial Mea        | suren                                 | nents,               | 10 m 1 (2    | ሰ <i>ራ</i> - |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               | Well Total   | Depth: 49.6              | ጓ                   | ft BTOC      | Water Le         |                                       | الكيس ا              | 5 10,        | ₩ BTOC       |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               |              | LUME PURGE: 1            | WELL VOLUM          |              | ·                |                                       | oc - s               | STATIC D     | EPTH TO      | (VATER)               | X WELL CAPAC      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               |              | at if applicable)        | =                   | (49.63       | Ft ,20.          | 18 15                                 | 163                  | gal/ft = 2   | 514          | Gal 5.0               | 02                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                               | Calculated   | l Well Volume: 💋         | 52                  | Gallons      |                  |                                       | Well Dia             | meter:       | 2            |                       | inches            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               | С            | alculations:             | 1" diameter =       | 0.041 gal/ft |                  | 2" diam                               | eter = 0.1           | 63 gal/ft    |              | 4" diamete            | er = 0.653 gal/ft |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               |              |                          |                     | We           | ll Purgi         | na Aci                                | tivites              | ₹'5          |              | _                     | •                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               | Purging M    | ethod (pump type):       | Maga Mo             |              |                  | _                                     |                      | ncl. units); | 76           | 5-300                 | wallain           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               |              |                          | -                   |              | T                | 1                                     | Depth                |              |              |                       | i                 | ٦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ,                                                                                                             | Time         | Flow Rate<br>(ml/min)    | Turbidity<br>(NTUs) | Temp<br>(°C) | Cond.<br>(mS/Cm) | pΗ                                    | to<br>water<br>(BTOC | DO<br>(mg/l) | ORP          | Total Gal<br>Pumped   | Comments          | Western was a second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the se |
| ė.                                                                                                            | 100-         | MIN                      |                     |              |                  |                                       | 10 00                |              |              |                       | 2 5               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                               | 1320         | 1000 1400                | ~ <u>~~</u>         | 14 (1        | 10.01            |                                       | 18.85                | <u> </u>     |              | 3.70                  | Begin Davido      | FINGU!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                               | 1550         | 1400                     | or_                 | 14.4         | 18.96            | 7.00                                  | 27.00                | 0.90         | -68.6        |                       |                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                               | 1372         | 1000                     | OR<br>OR            | 145          | 10.77            | 773                                   | 37.00<br>41.20       | 1.70         | -600         | 7,40                  | MAW 8.7           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                               | 1350         | 1000                     | ÖR                  | 14.3         | 17.88            | 7.70                                  | 42.45                | 7.15         | -13.3        | 10.00                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               | 1355         | 700                      | OR                  | 14.6         | 17.75            | 7067                                  | 44013                | 2,22         | -33.6        | 10.90                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               | 1400         | 1000                     | OR                  | 14.6         | 17,59            | 7.66                                  | 4495                 | 1.98         | -33.6        | 12.20                 | ، (               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               | 1405         | 700                      | OB                  | 15.0         | 17.63            | 100                                   | 45.12                | 199          | - 32.        | 13.12                 |                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                               | 1410         | 1000                     | δķ                  | 14.7         | 18,91            | 7.65                                  | 45.57                | 1605         | -483         | 14.07                 | 420 acy @ 141     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| u1 - 10                                                                                                       | 1413         | 1400 700                 | <sub>v</sub> or_    | 13.9         | 17.44            | ]do [                                 | 46.70                | 7/1/20       | -51.8        |                       | ENMEY DING        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4 24 1800                                                                                                     | 1250         | 7 100 10                 | 200                 | 12 /         | 27.64            | · · · · · · · · · · · · · · · · · · · | 70 9                 | 1641         | 2.10         | 16.26                 | hesenve devel     | dennet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                               | 1300         | 3,000<br>3,000           | OR                  | 12.7         | 22 24            | 7 45                                  | 29.7<br>20.7         | 209          | -248         | 20,26                 | ł                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               | RI           | 3,000                    | OR                  | 17.3         | 28.40            | 7.44                                  | 7001<br>42.22        | 7.75         | -781         | 750                   |                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                               | 1811         | 3,000                    | OR                  | 1704         | 26.64            | 746                                   | 41.11                | 3.26         | -22.9        | 22.66<br>25.0<br>2).4 | 6 End Deve        | MONA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                               |              |                          |                     |              |                  |                                       |                      |              |              |                       | E Par Hear        | 14 14 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de |              |                          |                     |              |                  | $\mathcal{O}$                         |                      |              |              |                       |                   | <u>L</u> _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                               | Results A    | At End Of Purging:       | DR.                 | R.H          | 26.64            | 7.42                                  | 4.11                 | 7.26         | ースス・ク        | 27,46                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               | <del></del>  |                          |                     |              |                  |                                       |                      |              |              |                       |                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| *                                                                                                             | COMME        | NTS:                     | 06                  | į ii         |                  |                                       |                      |              |              |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                                                                                             | 1 2          | well volum               | @క్క" <u>/</u> [ఏ   | المهداه      | เขามี"           | •                                     |                      |              |              |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               | OR: (        | Well Volum<br>Over Range | · —                 | U            |                  |                                       |                      |              |              |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                               |              | 41. Galle                |                     |              |                  |                                       |                      |              |              |                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Q 4/24/17



|            | Project N    | ame:                | SI AFFF MUL   | TIPLE SITES                             | S          |                                         |                          |                   |              |                | n de la companya de la companya de la companya de la companya de la companya de la companya de la companya de<br>La companya de la co |                            |
|------------|--------------|---------------------|---------------|-----------------------------------------|------------|-----------------------------------------|--------------------------|-------------------|--------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|            | ASL Proje    | ect No:             | M2027.0003    |                                         |            |                                         |                          | ****              |              |                |                                                                                                                                                                                                                                 |                            |
|            | Installatio  | n:                  | Eilsworth AF  | В                                       | ****       |                                         |                          |                   |              |                |                                                                                                                                                                                                                                 |                            |
|            | Site:        |                     | SITE 8        | - MAR                                   | て言り        | CRAS                                    | Н                        | ,                 |              |                |                                                                                                                                                                                                                                 | •                          |
|            | Date:        |                     | 4-22-1        |                                         |            |                                         |                          |                   |              |                |                                                                                                                                                                                                                                 |                            |
|            | Sample T     | echnician:          | N. Willis     | /M. Ne                                  | Ison/      |                                         |                          |                   |              |                |                                                                                                                                                                                                                                 |                            |
|            | Well ID N    | o.;                 | MWIBE         | FC08                                    | ა3 '       |                                         |                          |                   |              |                |                                                                                                                                                                                                                                 |                            |
|            |              | Screen: 50          | . B           | lni                                     | itial Mea  | surem                                   | ents                     |                   |              |                |                                                                                                                                                                                                                                 |                            |
|            | Well Tota    | l Depth: '5 0.3     | <b>8</b>      | ft BTOC                                 | Water Le   | vel:                                    | 15.93                    | 8                 | ft BTOC      |                |                                                                                                                                                                                                                                 | ·                          |
|            | WELL VO      | LUME PURGE: 1       | WELL VOLUM    | •                                       |            | PTH BT                                  | oc – s                   | STATIC D          | EPTH TO      | WATER)         | X WELL CAPACIT                                                                                                                                                                                                                  |                            |
| 1.         | (only fill o | ut if applicable)   | =             | (50.13                                  | Ft - 15.99 | r <sub>Ft) x</sub> o                    | 163                      | gal/ft = <b>5</b> | ,57          | Gal            |                                                                                                                                                                                                                                 |                            |
|            | Calculated   | d Well Volume:      | T             | Gallons                                 |            | F                                       | Well Dia                 | meter:            |              |                | inches                                                                                                                                                                                                                          |                            |
|            | C            | alculations:        | 1" diameter = | 0.041 gal/ft                            |            | 2" diame                                | eter = 0,1               | 63 gal/ft         |              | 4" diamete     | r = 0.653 gal/ft                                                                                                                                                                                                                |                            |
|            |              |                     |               |                                         |            |                                         |                          |                   |              |                |                                                                                                                                                                                                                                 |                            |
|            |              |                     |               |                                         | ll Purgi   | ng Act                                  | ivites                   |                   |              |                |                                                                                                                                                                                                                                 |                            |
|            | Purging M    | lethod (pump type): | Monson        | ^                                       |            | . FI                                    | ow rate (ii              | ncl. units):      | 1400         | - 2000         | me/min                                                                                                                                                                                                                          |                            |
|            |              | ,                   | Ţ             |                                         | T          |                                         | Depth                    |                   |              |                | • ,                                                                                                                                                                                                                             |                            |
|            | T:           | Flow Rate           | Turbidity     | Temp                                    | Cond.      |                                         | to                       | DO                |              | Total Gai      | C                                                                                                                                                                                                                               |                            |
|            | Time         | (ml/mɨn)            | (NTUs)        | (°C) (                                  | (mS/Cm)    | $\supset_{H}$                           | water<br>(BTOC           | (mg/i)            | ORP          | Pumped         | Comments                                                                                                                                                                                                                        |                            |
| 4/21       | 1-1C1        |                     |               |                                         |            |                                         | )                        |                   |              |                | <u> </u>                                                                                                                                                                                                                        |                            |
| 11-1-      | 1751         | 1 M00               | ~~            | 14.5                                    | 32,22      | 2.11                                    | 15. <b>9/</b> 3<br>34.78 | 2.0               | 22.2         | 3.7            | Development ?                                                                                                                                                                                                                   | n Haleer                   |
|            | 1001         | 1,400<br>7,570      | OR<br>OR      |                                         | 2693       | , , , ,                                 | 31060<br>31060           | 7.09<br>4.84      | 22.2<br>12.9 | 5.55           | * Sugre Tripesol<br>* Disjut 1809<br>Resure Develo                                                                                                                                                                              | CUL ED I DOP               |
| 11/20 100  | 1000         | 1 600               |               | 1602                                    | 2007.>     | ,                                       | 1690                     | 1001              |              | 0. 456         | Range Dalata                                                                                                                                                                                                                    | want                       |
| 4130       | 0809         | 1 booman            | OR            | 12.3                                    | 16.78      | 7.27                                    | 25.5                     | 2.49              | 224,6        | 9.56           | IN-2011 C NGACIO                                                                                                                                                                                                                | AAICLI                     |
|            | 0813         | 100900              | OR            | 12.4                                    | 16.91      | 7,30                                    | 29.3                     | 2.02              | 175.9        | 11.37          |                                                                                                                                                                                                                                 |                            |
|            | 0817         | 1,400               | OR'           | 12.4                                    | 16.45      | 7.37                                    | 30,5                     | 1.67              | 71.7         | 12.53          |                                                                                                                                                                                                                                 |                            |
|            | 0821         | 2,000               | 461           | 12.7                                    | 17.07      | 7.44                                    | 34.0                     | 1.75              | -7.8         | 13.81          | ***************************************                                                                                                                                                                                         |                            |
|            | 0825         | 2,000               | 253           | 1207                                    | 16.74      | 7.46                                    |                          | 2.18              | -13.8        | 15.92          | 1 2                                                                                                                                                                                                                             | CE(10 21                   |
| 20         | 0835         | 2:400               | OR            | 12.7                                    | 13,78      | 7,47                                    | 47.p                     | 4.81              | 11.8         | 2122           | A Surged, Kuy                                                                                                                                                                                                                   | aped Dry 0837<br>Idopiment |
| 5470 CMM ] | 0851         | 1,200               | -0            | 10.0                                    |            | 7 54                                    | 6.17                     |                   | 2. 11        | 22,49          | Kessime 120                                                                                                                                                                                                                     | clopineint                 |
|            | 0940         | 1,400               | OR.           | 12.9                                    | 18.10      |                                         | 31.0                     | 1.53              | -200         | 12.0           | MAN 25.66                                                                                                                                                                                                                       |                            |
|            | 0445<br>0450 | 1,400               | or            | 17.0                                    | 18,40      | 7.60                                    | 7107                     | 1.48              | 205          | 27.51<br>29.31 |                                                                                                                                                                                                                                 |                            |
|            | 0955         | 2,000               |               | 128                                     | 11, 27     | 7 6                                     | 45.0                     | 7.01<br>4.00      | -0.J         | 7) 21          |                                                                                                                                                                                                                                 | ·                          |
| <u> </u>   | 0958         | 2,000<br>2,000mm    | oR            | 17 0                                    | 16 21      | 7.49                                    | 46.05                    | 4.07              | او o         | 33.06          |                                                                                                                                                                                                                                 | ± .                        |
|            | 1001         | 2,0001.20           | OR            | 12.9                                    | 11.79      | 7.58                                    | 46.54                    | 4.90              |              | 33.94          | End Develor                                                                                                                                                                                                                     | MANTAN                     |
| •          |              | At End Of Purging:  | OR.           | 12.9                                    | 16,29      | 7.58                                    | 46.55                    | 1,90              | -05          | 33.81          |                                                                                                                                                                                                                                 |                            |
|            |              |                     |               | *************************************** |            | • • • • • • • • • • • • • • • • • • • • | -                        |                   |              |                |                                                                                                                                                                                                                                 |                            |

5 Well Volumes = 27.85 gallons #X End Development, Turbidity notable to leach lange the to geology

The 4/24/109

M2027.0003

C-114



| Project Name:                                                              |                                  |                                                                                                                                   |                                                       |                            |                                                  |                                                 |                                         |                              |                        |                     |
|----------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------|--------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------|------------------------|---------------------|
| ASL Project No:                                                            | M2027,0003                       |                                                                                                                                   |                                                       |                            |                                                  |                                                 |                                         |                              |                        |                     |
| Installation:                                                              | Ellsworth AF                     | В                                                                                                                                 |                                                       |                            |                                                  |                                                 |                                         |                              |                        |                     |
| Site:                                                                      | 9 (000                           | sh4,20                                                                                                                            | 206)                                                  |                            |                                                  |                                                 |                                         |                              |                        | _                   |
| Date:                                                                      | 5/2/11/                          | 18                                                                                                                                | -007                                                  |                            |                                                  |                                                 |                                         |                              |                        | -                   |
| Sample Technician;                                                         | AN To                            | 10<br>-1 <b-< td=""><td>-Mites</td><td></td><td>ells.</td><td>_</td><td>D 4 1.</td><td>Allie</td><td>w/Escort</td><td></td></b-<> | -Mites                                                |                            | ells.                                            | _                                               | D 4 1.                                  | Allie                        | w/Escort               |                     |
| Well ID No.:                                                               | MW18 f                           | 5 C COL                                                                                                                           | 4                                                     | ) / V                      | CICO                                             | <del>/                                   </del> | _ 7                                     | 11112                        | W/ ESCOPI              | -                   |
|                                                                            |                                  | <u> </u>                                                                                                                          | 0 (/                                                  |                            |                                                  |                                                 |                                         |                              |                        | -                   |
|                                                                            |                                  | lni                                                                                                                               | tial Mea                                              |                            |                                                  |                                                 |                                         |                              | ,                      | ,<br><del>"</del> 1 |
| Well Total Depth: 35.                                                      |                                  | ft BTOC                                                                                                                           | Water Le                                              |                            |                                                  | <i>"</i>                                        | ft BTOC                                 |                              |                        |                     |
| WELL VOLUME PURGE:                                                         | I WELL VOLUM                     |                                                                                                                                   |                                                       |                            |                                                  |                                                 |                                         |                              | X WELL CAPACI          | Г                   |
| only fill out if applicable)                                               | =                                | (35-33                                                                                                                            | Ft - 17.8                                             | IFt) x                     | كهاده                                            | gal/ft =1.1                                     | *************************************** | Gal                          |                        | _                   |
| Calculated Well Volume:                                                    | 1-23                             | Gailons                                                                                                                           |                                                       |                            | Well Di                                          | ameter:                                         | 2,0                                     | ·<br>F                       | inches                 |                     |
| Caiculations:                                                              | 1" diameter =                    | 0.041 gal/ft                                                                                                                      |                                                       | 2" diam                    | eter = 0.                                        | 163 gai/ft                                      |                                         | 4" diamete                   | er = 0.653 gal/ft      |                     |
| · ·                                                                        |                                  |                                                                                                                                   |                                                       |                            |                                                  |                                                 |                                         |                              |                        | -                   |
|                                                                            |                                  | We                                                                                                                                | ll Purgi                                              | na Ac                      | tivites                                          |                                                 |                                         |                              |                        |                     |
| Purging Method (pump type                                                  | . O.oloina                       |                                                                                                                                   | _                                                     | _                          |                                                  | Soot                                            | .2 00                                   | -1201                        | m L/min                |                     |
| rurging Method (pump type                                                  | · <del>- Keekun a</del> i        | C ~ 1710                                                                                                                          | וטטעו                                                 | . F                        | low rate (                                       | inci, units):                                   | 7 00                                    | 1000                         | mymin                  | -                   |
|                                                                            |                                  | Τ                                                                                                                                 | I                                                     |                            | Depth                                            | i                                               |                                         |                              |                        | 7                   |
|                                                                            |                                  |                                                                                                                                   |                                                       | 1                          | I DODGE                                          |                                                 |                                         |                              | 1                      |                     |
| Flow Rate                                                                  | Turbidity                        | Temp                                                                                                                              | Cond                                                  | رنبو                       | to                                               | DO .                                            |                                         | Total Gal                    |                        |                     |
| Time Flow Rate (ml/min)                                                    | Turbidity<br>(NTUs)              | Temp                                                                                                                              | Cond.                                                 | pH                         | water                                            | DO<br>(mg/l)                                    | ORP                                     | Total Gal<br>Pumped          | Comments               |                     |
| Lime                                                                       | 1 .                              | Temp<br>(°C)                                                                                                                      | Cond.<br>(mS/Cm)<br>U3/cn                             | pΗ                         |                                                  | (math                                           | ORP                                     |                              | Comments               | 41111               |
| (ml/min)                                                                   | 1 .                              |                                                                                                                                   | (mS/Cm)                                               | pH pH                      | water<br>(BTOC                                   | (math                                           | ORP                                     |                              | Comments               | biated              |
| (ml/min)                                                                   | 1 .                              |                                                                                                                                   | (mS/Cm)                                               | ш <sub>рН</sub>            | water<br>(BTOC<br>)                              | (mg/l)                                          |                                         | Pumped                       | Comments  Devdapant in | irialed             |
| 510 800<br>514 800                                                         | (NTUs)                           | (°C)                                                                                                                              | (ms/cm)<br>U3/cn<br>—<br>3593                         | pH<br>-<br>641<br>6.42     | water<br>(BTOC<br>)<br>27.43<br>27.23            | (mg/l)<br>-<br>2.90                             | -                                       | Pumped  0.85                 | Development in         |                     |
| 5/0 800<br>5/4 800<br>520 800                                              | (NTUs)                           | (°C)                                                                                                                              | (ms/cm)<br>U3/cn<br>—<br>3593                         | 6-92                       | water<br>(BTOC<br>)<br>27.23<br>30.2             | (mg/l)                                          | -<br>-24.7<br>-33.0                     | Pumped                       | Development in         |                     |
| 5/0 800<br>5/4 800<br>520 800                                              | OR<br>OR<br>OR                   | (°C)  13.2 12.6                                                                                                                   | (ms/cm)<br>us/cn<br>-<br>3593<br>3275<br>3348         | 6-92<br>6-39               | water<br>(BTOC<br>)<br>27.63<br>27.23<br>30.2    | (mg/l)<br>-<br>2.90<br>3.2 6<br>3.19            | -<br>-34.7<br>-33.0<br>-51.3            | Pumped                       | Development in         |                     |
| 5/0 800<br>5/4 860<br>524 360<br>(524 1260<br>550                          | OR<br>OR<br>OR<br>OR<br>OR       | (°C)<br><br>13.2<br>12.6<br>WRE                                                                                                   | (ms/cm)<br>us/cn<br>3593<br>3275<br>3348<br>CHAR      | 6.92<br>6.89<br>6E,        | water<br>(BTOC<br>)<br>27.43<br>30.2<br>*-       | (mg/l)<br>-<br>2.90<br>3.2 6<br>3.19            | -<br>-24.7<br>-33.0<br>-51.3            | Pumped                       | Development in         |                     |
| 5/0 800<br>5/4 860<br>524 260<br>1524 260                                  | OR<br>OR<br>OR                   | (°C)<br><br>13.2<br>12.6<br>WRE                                                                                                   | (ms/cm)<br>us/cn<br>-<br>3593<br>3275<br>3348         | 6.92<br>6.89<br>6E,        | water<br>(BTOC<br>)<br>27.43<br>30.2<br>*-       | (mg/l)<br>-<br>2.90<br>3.2 6<br>3.19            | -<br>-24.7<br>-33.0<br>-51.3            | Pumped                       | Development in         |                     |
| 510 800<br>514 860<br>524 860<br>(524 1260<br>1550 600                     | OR<br>OR<br>OR<br>OR<br>OR<br>OR | (°C)<br><br>13.2<br>12.6<br>WRE                                                                                                   | (ms/cm)<br>45/cn<br>-<br>3593<br>3275<br>3348<br>CHAR | 6.99<br>6.89               | water<br>(BTOC<br>)<br>27.43<br>30.2<br>*<br>FUI | (mg/l)<br>-<br>2.90<br>3.26<br>3.19<br>(11T     | -<br>-34.7<br>-33.0<br>-51.3<br>UIN E   | Pumped -0.85 2.12 3.38 , AN  | Development in         |                     |
| 5/0 800<br>5/4 860<br>524 860<br>(524 1260<br>550 800<br>(524 1260         | OR<br>OR<br>OR<br>OR<br>OR       | (°C)<br><br>13.2<br>12.6<br>WRE                                                                                                   | (ms/cm)<br>us/cn<br>3593<br>3275<br>3348<br>CHAR      | 6.99<br>6.89               | water<br>(BTOC<br>)<br>27.43<br>30.2<br>*<br>FUI | (mg/l)<br>-<br>2.90<br>3.26<br>3.19<br>(11T     | -<br>-24.7<br>-33.0<br>-51.3            | Pumped -0.85 2.12 3.38 , AN  | Development in         |                     |
| 5/0 800<br>5/4 860<br>524 860<br>(524 1260<br>550 800<br>(524 1260         | OR<br>OR<br>OR<br>OR<br>OR<br>OR | (°C)<br><br>13.2<br>12.6<br>WRE                                                                                                   | (ms/cm)<br>45/cn<br>-<br>3593<br>3275<br>3348<br>CHAR | 6.99<br>6.89               | water<br>(BTOC<br>)<br>27.43<br>30.2<br>*<br>FUI | (mg/l)<br>-<br>2.90<br>3.26<br>3.19<br>(11T     | -<br>-34.7<br>-33.0<br>-51.3<br>UIN E   | Pumped -0.85 2.12 3.38 , AN  | Development in         |                     |
| 510 800<br>514 860<br>524 860<br>(524 1260<br>1550 600                     | OR<br>OR<br>OR<br>OR<br>OR<br>OR | (°C)<br><br>13.2<br>12.6<br>WRE                                                                                                   | (ms/cm)<br>45/cn<br>-<br>3593<br>3275<br>3348<br>CHAR | 6.99<br>6.89               | water<br>(BTOC<br>)<br>27.43<br>30.2<br>*<br>FUI | (mg/l)<br>-<br>2.90<br>3.26<br>3.19<br>(11T     | -<br>-34.7<br>-33.0<br>-51.3<br>UIN E   | Pumped -0.85 2.12 3.38 , AN  | Development in         |                     |
| 510 800<br>514 860<br>524 860<br>(524 1260<br>1550 600                     | OR<br>OR<br>OR<br>OR<br>OR<br>OR | (°C)<br><br>13.2<br>12.6<br>WRE                                                                                                   | (ms/cm)<br>45/cn<br>-<br>3593<br>3275<br>3348<br>CHAR | 6.99<br>6.89               | water<br>(BTOC<br>)<br>27.43<br>30.2<br>*<br>FUI | (mg/l)<br>-<br>2.90<br>3.26<br>3.19<br>(11T     | -<br>-34.7<br>-33.0<br>-51.3<br>UIN E   | Pumped -0.85 2.12 3.38 , AN  | Development in         |                     |
| 5/0 800<br>5/4 860<br>524 860<br>(524 1260<br>550 800<br>(524 1260         | OR<br>OR<br>OR<br>OR<br>OR<br>OR | (°C)<br><br>13.2<br>12.6<br>WRE                                                                                                   | (ms/cm)<br>45/cn<br>-<br>3593<br>3275<br>3348<br>CHAR | 6.99<br>6.89               | water<br>(BTOC<br>)<br>27.43<br>30.2<br>*<br>FUI | (mg/l)<br>-<br>2.90<br>3.26<br>3.19<br>(11T     | -<br>-34.7<br>-33.0<br>-51.3<br>UIN E   | Pumped -0.85 2.12 3.38 , AN  | Development in         |                     |
| 510 800<br>514 860<br>524 860<br>(524 1260<br>1550 600                     | OR<br>OR<br>OR<br>OR<br>OR<br>OR | (°C)<br><br>13.2<br>12.6<br>WRE                                                                                                   | (ms/cm)<br>45/cn<br>-<br>3593<br>3275<br>3348<br>CHAR | 6.99<br>6.89               | water<br>(BTOC<br>)<br>27.43<br>30.2<br>*<br>FUI | (mg/l)<br>-<br>2.90<br>3.26<br>3.19<br>(11T     | -<br>-34.7<br>-33.0<br>-51.3<br>UIN E   | Pumped -0.85 2.12 3.38 , AN  | Development in         |                     |
| 510 800<br>514 860<br>1524 1200<br>1524 1200<br>1550 LESTA                 | OR<br>OR<br>OR<br>OR<br>OR<br>OR | (°C)<br><br>13.2<br>12.6<br>WRE                                                                                                   | (ms/cm)<br>45/cn<br>-<br>3593<br>3275<br>3348<br>CHAR | 6.99<br>6.89               | water<br>(BTOC<br>)<br>27.43<br>30.2<br>*<br>FUI | (mg/l)<br>-<br>2.90<br>3.26<br>3.19<br>(11T     | -<br>-34.7<br>-33.0<br>-51.3<br>UIN E   | Pumped -0.85 2.12 3.38 , AN  | Development in         |                     |
| 5/D 800<br>5/4 860<br>1524 1200<br>15-4 1200<br>15-4 1200<br>15-6 0 16-577 | OR<br>OR<br>OR<br>OR<br>OR<br>OR | (°C)<br><br>13.2<br>12.6<br>WRE                                                                                                   | (ms/cm)<br>45/cn<br>-<br>3593<br>3275<br>3348<br>CHAR | 6.92<br>6.39<br>6E,<br>Vol | water<br>(BTOC<br>)<br>27.43<br>30.2<br>X<br>FUI | (mg/l) - 2.90 3.26 3.19 (con                    | -<br>-34.7<br>-33.0<br>-51.3<br>UIN E   | Pumped -0.75 2.12 3.38 1, AN | Development in         |                     |

(N) 05/30 C-115



|         | ASL Proje    | ect No:               | M2027.0003    |              |                          |          |                                         |                  | •       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|---------|--------------|-----------------------|---------------|--------------|--------------------------|----------|-----------------------------------------|------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|         | Installation |                       | Elisworth AF  | В            |                          |          |                                         |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _       |
|         | Site:        |                       |               | ash 4,       | 2006                     | )        |                                         |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _       |
|         | Date:        |                       | 5/24/         | 18           | <i></i>                  | <u>/</u> |                                         |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|         | Sample T     | echniciaп:            | Arek 7        | holsky       | . M/1.                   | 25 N     | reilsa                                  | ·<br>ንኅ          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|         | Well ID N    | o.:                   | MW18          |              |                          |          |                                         |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|         |              |                       |               |              | •                        |          |                                         |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|         |              |                       | 35.U          |              | itial Mea                |          | nents                                   | Λ /              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7       |
|         | Well Total   | <del></del>           |               | ft BTOC      | Water Le                 |          |                                         |                  | ft BTOC | ) MATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X WELL CAPACI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _]<br>T |
|         |              | ut if applicable)     | =             | (21.36)      | 17.<br>Ft - <b>24</b> .9 |          |                                         |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X WELL ON NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ì       |
|         |              | d Well Volume:        | 0.84          | Galions      | 4/18                     |          | Well Di                                 |                  | \ Z     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
|         |              |                       |               |              |                          | au "     | *************************************** |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|         | C            | alculations:          | 1" diameter = | 0.041 gal/ft |                          | 2" diam  | eter = 0.                               | 163 gal/ft       |         | 4" diamete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | er = 0.653 gal/ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _       |
|         |              |                       |               | We           | eli Purgi                | na Aci   | tivites                                 |                  |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|         | Dinasia - M  | lethod (pump type):   | اما مم (      | ,            | _                        | \        | 1                                       | GL \_#_\         | 200°    | 0<br>1200 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~ / Min @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
|         | Fulging W    | ietnoa (parrip (ype). | Necun         | mer /        | VV41 (JULIUS             | .` 「     | low rate (                              | ,irici. uriits). | 700     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _       |
|         |              |                       |               |              |                          |          | Depth                                   |                  | T       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7       |
|         | Time         | Flow Rate             | Turbidity     | Temp         | Cond.                    | Hq       | to<br>water                             | DO               | ORP     | Total Gai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Соттелтя                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
|         | ,,           | (ml/min)              | (NTUs)        | (°C)         | (mS/em)                  | ļ        | (BTOC                                   | (mg/l)           |         | Pumped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 5/24/18 | 1515         | X 12/A                | OR            | 14.4         | 860                      | 7.38     | )                                       | 7,50             | 25,3    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~ // 84 A. sha a nb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - A     |
| 7 7 6   | 1520         | 4 N/A                 | OR            | 14.2         | 721                      | 7.37     |                                         | 9,63             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WLM on top of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t amb   |
|         | 1525         | 4 NA                  | OR            | 15,4         | 787                      | 7.33     |                                         | 8.34             | 25,3    | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | well princed o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lrv     |
| 5136/18 | 1133         | 800                   | OR            |              |                          |          | 27.8                                    | <b>-</b>         |         | 1,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Well pumped o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ععرط    |
| _       | 1146         | 1300                  | DR            | 12.9         | 1034                     | 6.95     |                                         | 3.03             |         | 7 4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       |
|         | 1153         | 1200                  | OK            | 12.3         | 1055                     |          | 30.61<br>32.27                          | 7.02             |         | 8.07<br>9.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10- 7 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -       |
|         | 1307         | 1000                  | OR            | 14.54        | 1003                     | 7.0-1    | Jan . T                                 | 7.02             | 77.3    | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Developed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -       |
|         |              |                       |               |              | -                        |          |                                         |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |
|         |              |                       |               |              |                          |          |                                         |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - TATALOGICA CONTROLLA CON |         |
|         |              |                       |               |              |                          |          |                                         |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|         |              |                       |               |              |                          | 09       |                                         |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|         |              |                       |               |              | <del></del>              |          |                                         |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       |
| •       |              |                       |               |              |                          |          |                                         |                  |         | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|         |              |                       |               |              |                          | •        |                                         |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |
|         |              |                       |               |              |                          |          |                                         | :                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| •       | Results      | At End Of Purging:    | OR            | 12.9         | 1055                     | 7.04     | 32.27                                   | 7.02             | 74.5    | 9.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|         |              |                       |               |              |                          |          |                                         |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|         |              |                       |               |              |                          |          |                                         |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| ſ       | COMME        | NTS.                  | pud no        |              |                          |          |                                         |                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |

DR: out of range X3785 = 1 gal 5 well volumes = 4,2 gal WLM = water level meder

J 5/30



| Project Name:      | SI AFFF MULTIPLE SITES               |
|--------------------|--------------------------------------|
| ASL Project No:    | M2027,0003                           |
| Installation:      | Ellsworth AFB                        |
| Site:              | 10 (umTP)                            |
| Date:              | 5/5/18, 5/8/18, 5/9/18               |
| Sample Technician: | Arek Turolski / dutthen Buttersmorte |
| Well ID No.:       | MW18 PFCLOOI                         |
|                    |                                      |

#### **Initial Measurements**

| Well Total Depth:             | <i>50.</i> 39 | ff BTOC        | Water Level:    | 13,97                    | ft BTOC      |                     |
|-------------------------------|---------------|----------------|-----------------|--------------------------|--------------|---------------------|
| WELL VOLUME PURGE:            | 1 WELL VOLU   | •              |                 |                          |              | R) X WELL CAPACIT   |
| (only fill out if applicable) | =             | (50,39         | Ft - 13,97Ft) : | x <i>O,</i> (63 gal/ft = | = 5, 43 Gal  |                     |
| Calculated Well Volume:       | 5,43          | Gallons        |                 | Well Diameter            | . 2 .        | inches              |
| Calculations:                 | 1" diameter   | = 0.041 gal/ft | 2" di           | ameter = 0.163 gal       | l/ft 4" diam | eter = 0.653 gal/ft |

**Well Purging Activites** 

|   | Purging Method (pump type): | <u>keclamer</u> | <br>Flow rate (incl. unit | s):414 | mL/mm |  |
|---|-----------------------------|-----------------|---------------------------|--------|-------|--|
|   |                             | ,               |                           |        |       |  |
| ſ |                             |                 | Depth                     |        |       |  |

|        | Time      | Flow Rate<br>(ml/min) | Turbidity<br>(NTUs) | Temp<br>(°C) | Cond.<br>(mS/Cm) | рН   | to water (BTOC | DO<br>(mg/l) | ORP   | Total Gal<br>Pumped | Comments          |          |
|--------|-----------|-----------------------|---------------------|--------------|------------------|------|----------------|--------------|-------|---------------------|-------------------|----------|
| 5/5/18 | 0430      | 946                   | OR                  | 12.9         | 3884             | 7,20 | 27.27          | 0,16         | 103,4 | 2.5                 |                   |          |
|        | 9950      | 757                   | OR                  | L3.7         | 3835             | 7.19 | 42.7           | 3 1.24       | 17.8  | 6.5                 |                   |          |
|        | 1010      | 284                   | OR                  | 14.9         | 3793             | 7,04 | 46,12          | 0.54         | 2.8   | 8.0                 |                   |          |
|        | 1030      | 189                   | OB                  | 17.9         | 4362             | 7,07 |                | 0.72         | 6,3   | 9.0                 | WLM on top ofp    | imp      |
|        | 1050      | 4.5                   | or                  | 16, 2        | 4308             | 7,18 |                | 5.76         | 15.7  | 4,5                 | well dry          | •        |
| 5/8/18 | 1255      | 284                   | OR                  | 15.6         | 4876             | 7,40 | 24.45          |              | 43.7  |                     | resund purgly     | on5/8/18 |
|        | 1315      | 284                   | 362                 | 15,7         | 4855             | 7.41 | 31,40          | 1,16         | 40,0  | 12.5                | , , ,             |          |
|        | 1335      | 379                   | 142                 | 14,9         | 5832             | 7,42 | 40.47          | 2,70         | 35,4  | 14.5                |                   |          |
|        | 1355      | 379                   | ૧૧૦                 | ι 5. (       | 4581             | 7.32 | 44.27          | 1,71         | 30,9  | 16,5                |                   |          |
|        | 1415      | 284                   | OR                  | 15.4         | 4744             | 7.26 |                | 2.61         | 39,1  | 18.0                | WLM on top of     | pump     |
|        | 1430      | 379                   | હદૂ                 | 15,1         | 4640             |      |                | 6.50         | 43.3  | 12.5                | welldry           | •        |
| 5/9/18 |           | 568                   | OR                  | 12.9         | 4721             |      |                |              | 34,4  | 22,5                | 5/9/18, resure pu | g.ny     |
|        | 0910      | 757                   | OR                  | 12.7         | 4660             |      | 44.88          |              | 27.2  | 24.5                | <u>'</u>          | - 3      |
|        | 0920      | 757                   | OR                  | 12.9         | 4627             | 7.32 |                | 6,37         |       |                     | were on top of    | pump     |
|        | 0922      | 946                   | OR                  | 12.7         | 4563             | 7-33 | _              | 7,65         | 47.4  | 27.0                | wellday           | · ·      |
|        |           | MT_                   |                     |              |                  |      |                |              |       |                     |                   |          |
|        |           |                       | 5/9/18              |              |                  |      |                |              |       |                     |                   |          |
|        | Results / | At End Of Purging:    | OR                  | 12.7         | <b>4563</b>      | 7,33 |                | 7,65         | 47.4  | 27.0                |                   |          |

COMMENTS:

Well pad not complete, TOC > 1.3' ags

5 well volumes: 29.7 gal

3785mL= lgal

OR = out of runge

WLM=noter | end meter

Begin purgry @120. Stop@ L050 on 5/5/18
flesume development @ 1235. Stop @
1430 on 5/8/18. Well dry.
flesume development @ 0840. Well
ron dry @ 0922 on 5/4/18.





Purging Method (pump type): Manager

#### WELL DEVELOPMENT LOG

| Project Name:      | SI AFFF MULTIPLE SITES              |
|--------------------|-------------------------------------|
| ASL Project No:    | M2027.0003                          |
| Installation:      | Ellsworth AFB                       |
| Site:              | 10 (WWTP)                           |
| Date:              | 5/5/18 - 5/9/18                     |
| Sample Technician: | Arek Timolski / Mathen Buttersworth |
| Well ID No.:       | MW18PFC1002                         |

#### **Initial Measurements**

| Well Total Depth:             | 40.4        | ft BTOC        | Water Level: | 6.45               | ft BTOC       |             |                |
|-------------------------------|-------------|----------------|--------------|--------------------|---------------|-------------|----------------|
| WELL VOLUME PURGE             | 1 WELL VOLU | JME≂ (TOTAL    | WELL DEPTH   | BTOC - STAT        | TC DEPTH TO   | WATER)      | X WELL CAPAC   |
| (only fill out if applicable) | ***         | (40.4          | Ft -6:45Ft)  | x 0,163 gal/ft     | <u>= 5,54</u> | Gal         |                |
| Calculated Well Volume:       | 5,54        | Gallons        |              | Well Diamete       | er: 2         | in          | iches          |
| Calculations:                 | 1" diameter | = 0.041 gal/ft | 2" c         | liameter = 0,163 g | al/ft         | 4" diameter | = 0.653 gal/ft |

#### **Well Purging Activites**

Flow rate (incl. units):

|        | Time                | Flow Rate<br>(ml/min) | Turbidity<br>(NTUs) | Temp<br>(°C) | Cond.<br>(m <del>S/Crh</del> )<br>MS/cm | рН                                     | Depth<br>to<br>water<br>(BTOC<br>) | DO<br>(mg/l) | ORP          | Total Gal<br>Pumped | Comments            |           |
|--------|---------------------|-----------------------|---------------------|--------------|-----------------------------------------|----------------------------------------|------------------------------------|--------------|--------------|---------------------|---------------------|-----------|
| ,      | 1150                | 568                   | OR                  | 17,4         | 3447                                    | 7,67                                   | 17.22                              | 1.16         | -47,3        | 1.5                 |                     |           |
|        | 1200                | 568                   | OR                  | 15.8         | 3351                                    | 7,19                                   | 22,80                              | 0,79         | -70,1        | 3,6                 |                     |           |
|        | 1215                | 252                   | OK                  | 17.1         | 3596                                    |                                        |                                    |              |              | 4.0                 |                     |           |
|        | 1330                | 1001                  | OK                  | 15.)         | 3,950                                   |                                        | 33.8C                              | 1-52         | -96.3        | 8.0                 | A                   |           |
|        | <u> </u>  ગ્રેપ્સ્ડ | 505                   | OK                  | 15.2         | 3,037                                   |                                        | 36.30                              |              |              |                     | 11.0                | r 1 = 1 = |
|        | 1300                | 379                   | <u>OR</u>           | 15.8         | 3'560                                   | 7,12                                   |                                    | 2,00         | -76,3        | 11,5                | well day @ 1302     | , 5/5/18  |
| 5/8/6  | 1520                | 946                   | DR                  | 13, (        | 4130                                    | 7,23                                   |                                    | 2.43         | 7.3          | 14.0                | 5/8/18              |           |
|        | 1530                | 757                   | 00                  | 13.4         | 4033                                    | 7.24                                   |                                    |              | 1 <b>~</b> . |                     |                     |           |
|        | 1545                | 757                   | OK                  | 13.9         | 4262                                    | 7.16                                   | 34.85                              |              | - 10         | 19.0                |                     |           |
|        | 1600                | 253                   | OK                  | 14.4         |                                         | 60 کر                                  |                                    | 2,15         | 7.7          | 20,0                | WLM on top of       |           |
|        | 1610                | 757                   | 01/2                | 1/5.1        | 3958                                    | 7,43                                   |                                    | 3,37         | 11.3         | 22.0                | welldy 01<br>5/9/18 | 610       |
| 5/9/18 | 1300                | 656                   | OR.                 | 13.2         | 4345                                    | 11,70                                  |                                    | 3,81         | 58.1         | 24.5                | 517(181             |           |
|        | 1315                | 757                   | 412                 | 13.6         | 4344                                    | 7,33                                   |                                    | 2 90         | 70,5         | 210                 |                     |           |
|        | 1330                | 883                   | 860                 | 13.1         | 4797                                    | 1,07                                   | 36.75                              | 3,40         | 32,2         | 31,0                |                     |           |
|        |                     | ****                  |                     |              | <u></u>                                 | ************************************** |                                    |              |              |                     |                     |           |
|        |                     |                       |                     |              |                                         |                                        |                                    |              |              |                     |                     |           |
| ļ      | Results /           | At End Of Purging:    | ४६०                 | 13,1         | 4797                                    | 7.19                                   | 38.7                               | 3.90         | 32.2         | 31.0                |                     | I         |

Begin purging @ 1140 on 5/5/18

Suell volumes = 27.7 gol.

OR=out of range

3785 mL=1 gol

( og/ 10

635 m L/min

### **AerostarSES**...

#### WELL DEVELOPMENT LOG

| <del></del>    |                                                                                         |                                                                                     | le kcl                                         |                                                                          |                                                                                                                                                                                        |                                                                           |                                                                 |                                                    |                                                                   | Project Na                                                                |
|----------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|
| ***            |                                                                                         |                                                                                     |                                                |                                                                          |                                                                                                                                                                                        |                                                                           |                                                                 | M2027.0003                                         | ect No:                                                           | ASL Proje                                                                 |
| <del>-</del>   |                                                                                         |                                                                                     |                                                |                                                                          | -B                                                                                                                                                                                     |                                                                           | LUMO                                                            |                                                    | ก:                                                                | nstallation                                                               |
|                |                                                                                         |                                                                                     |                                                |                                                                          |                                                                                                                                                                                        | J77                                                                       | الما- ر                                                         | Site 10                                            |                                                                   | Site:                                                                     |
|                |                                                                                         |                                                                                     |                                                |                                                                          |                                                                                                                                                                                        |                                                                           | -18                                                             | <u>10-2</u>                                        |                                                                   | Date:                                                                     |
|                |                                                                                         |                                                                                     |                                                |                                                                          | Phial                                                                                                                                                                                  | <u>~5Hi~</u>                                                              | 12 / 20                                                         | الأس. ٨_                                           | echnician:                                                        | Sample Te                                                                 |
| _              |                                                                                         |                                                                                     |                                                |                                                                          | <b>V</b>                                                                                                                                                                               | 3                                                                         | 2FC160                                                          | WM 181                                             | 0.:                                                               | Well ID No                                                                |
| _              | (?)                                                                                     | s welcz                                                                             | Driller:                                       |                                                                          | urements                                                                                                                                                                               | tial Mea                                                                  | lni                                                             |                                                    |                                                                   |                                                                           |
|                |                                                                                         |                                                                                     | ft BTOC                                        | ,7                                                                       | ı: 🔻 7 , ı                                                                                                                                                                             | Water Lev                                                                 | ft BTOC                                                         | 1.53                                               | l Depth: 5                                                        | Well Total                                                                |
|                | X WELL CAPACIT                                                                          |                                                                                     |                                                |                                                                          |                                                                                                                                                                                        |                                                                           |                                                                 | WELL VOLUM                                         | LUME PURGE: 11                                                    | VELL VO                                                                   |
| ased water     | spect-drillers                                                                          | Gal (Sw                                                                             | .45                                            | gal/ft = 3                                                               | t) x 0.163                                                                                                                                                                             | Ft - ].67                                                                 | 59.53                                                           | -                                                  | ut if applicable)                                                 | only fill ou                                                              |
| - Chalendar Or | inches                                                                                  | . 0 "                                                                               | <b>₽</b>                                       | meter:                                                                   | Well D                                                                                                                                                                                 | <u></u>                                                                   | Gallons                                                         | 8.45                                               | d Well Volume;                                                    | Calculated                                                                |
|                | er = 0.653 gal/ft                                                                       | 4" diamete                                                                          |                                                | 63 gal/ft                                                                | " diameter = 0                                                                                                                                                                         |                                                                           | 0.041 gal/ft                                                    | 1" diameter =                                      | Calculations:                                                     | C                                                                         |
|                |                                                                                         |                                                                                     |                                                |                                                                          |                                                                                                                                                                                        |                                                                           |                                                                 |                                                    |                                                                   |                                                                           |
|                | cs 1/.                                                                                  | . 12                                                                                |                                                |                                                                          | g Activites                                                                                                                                                                            |                                                                           |                                                                 |                                                    |                                                                   |                                                                           |
| <u>~</u>       | 50 mL/n:,                                                                               | 3 - 17                                                                              | 75.4                                           | incl, units):                                                            | Flow rate                                                                                                                                                                              |                                                                           | er                                                              | Reclaim                                            | fethod (pump type):                                               | urging M                                                                  |
|                | Comments                                                                                | Total Gal                                                                           | ORP                                            | DO<br>(mg/l)                                                             | Depth                                                                                                                                                                                  | Condac<br><del>(mS/C</del> m)<br>AS/Lm                                    | Temp<br>(°C)                                                    | Turbidity (NTUs)                                   | fethod (pump type):  Flow Rate (ml/min)                           | Purging M                                                                 |
|                | Comments                                                                                | Total Gal                                                                           |                                                | DO                                                                       | Depth to pH water                                                                                                                                                                      | <del>(mS/G</del> m)                                                       | Temp                                                            | Turbidity                                          | Flow Rate                                                         | Time                                                                      |
|                | ,                                                                                       | Total Gal<br>Pumped                                                                 | ORP                                            | DO                                                                       | Depth<br>to<br>pH water<br>(BTOO                                                                                                                                                       | <del>(mS/G</del> m)                                                       | Temp                                                            | Turbidity                                          | Flow Rate<br>(ml/min)                                             | Time                                                                      |
|                | Comments                                                                                | Total Gai<br>Pumped  - 0.99 2.04                                                    | ORP<br>-<br>-3.4<br>-30.4                      | DO (mg/l)  0.43 0.22                                                     | Depth to water (BTOC) - (14.43) 7.64 9.30 7.81 18.73                                                                                                                                   | (mS/Gm)<br>AS/Lm                                                          | Temp<br>(°C)                                                    | Turbidity<br>(NTUs)                                | Flow Rate (ml/min)  750 750 1000                                  | Time 605                                                                  |
|                | Comments                                                                                | Total Gai<br>Pumped  - 0.99 2.04 4.39                                               | ORP<br>-<br>-3.4<br>-30.4<br>50.0              | DO (mg/l)  0.43 0.22 1.86                                                | Depth to water (BTOC) - (94.93) 7.44 9.30 7.81 18.73 7.14 33.0                                                                                                                         | (ms/cm)<br>As/cm<br>—<br>—<br>—<br>4184<br>996<br>502                     | Temp<br>(°C)<br>                                                | Turbidity<br>(NTUs)<br>OR<br>OR                    | Flow Rate (ml/min)  750 750 1000 1350                             | Time 605 1610 1614 1612                                                   |
|                | Comments                                                                                | Total Gal<br>Pumped  - 0.99 2.04 4.39 3.46                                          | ORP -3.4 -30.4 -50.0 -1.4                      | DO (mg/l)  0.43 0.22 1.86 3.86                                           | Depth to water (BTOC) - (94.53) 7.64 9.30 7.81 18.73 7.16 33.0                                                                                                                         | (me/om)<br>As/cm<br>-<br>444<br>996<br>502<br>473.7                       | Temp<br>(°C)<br>                                                | Turbidity (NTUs)  OR OR OR OR OR                   | Flow Rate (ml/min)  750 750 1000 1350                             | Time 605 1010 1014 1012 1032                                              |
|                | Comments                                                                                | Total Gai<br>Pumped  - 0.99 2.04 4.39 3.46 7.17                                     | ORP -3.4 -30.4 -50.0 -1.4 -5.5                 | DO (mg/l)  0.43 0.22 1.36 1.2]                                           | Depth to water (BTOC) - (94.93) 7.64 9.30 7.81 18.73 7.16 33.0                                                                                                                         | (ms/cm)<br>As/cn<br>-<br>4844<br>996<br>502<br>478.7<br>784               | Temp<br>(°C)<br>                                                | Turbidity (NTUs)  OR OR OR OR OR OR                | Flow Rate (ml/min)  750 750 1000 1350 1350 1356                   | Time  605 1610 1614 1712 1032 1634                                        |
|                | Comments                                                                                | Total Gai<br>Pumped  - 0.99 2.04 4.39 3.46 9,17                                     | ORP                                            | DO (mg/l)  6.43 0.22 1.36 3.86 1.27 3.14                                 | Depth to water (BTOC) - (94.43 7.44 9.30 7.81 18.73 7.16 33.0 6.15 52.34 6.01 54.65 1.94 56.05                                                                                         | (ms/cm)<br>As/cn<br>—<br>484<br>996<br>502<br>473.7<br>784<br>855         | Temp (°C)                                                       | Turbidity (NTUs)  OR OR OR OR OR OR OR OR          | Flow Rate (ml/min)  750 750 1000 1350 1350 1350                   | Time 605 1610 1614 1612 1632 1634 1633                                    |
| the d          | Comments  Deudipmet in                                                                  | Total Gai<br>Pumped  - 0.99 2.04 4.39 3.46 7.17 [6.59]                              | ORP -3.4 -30.4 -50.0 -1.4 -5.5 1.6 5.4         | DO<br>(mg/l)<br><br>0.43<br>0.22<br>1.36<br>3.76<br>1.27<br>3.14<br>2.21 | Depth to water (BTOC) - (94.43 7.44 9.30 7.81 1873 7.16 33.0 6.15 52.34 1.94 51.05                                                                                                     | 45/cm)<br>45/cm<br>-<br>484<br>996<br>502<br>473.7<br>754<br>855<br>859   | Temp (°C)                                                       | Turbidity (NTUs)  OR OR OR OR OR OR OR OR          | Flow Rate (ml/min)  750 750 1000 1350 1350 1350 1350              | Time  605 1610 1614 1712 1632 1633 1644                                   |
| the d          | Comments  Deudipmet in                                                                  | Total Gai<br>Pumped  - 0.99 2.04 4.39 8.46 7,17 16,59 11.77 12.49                   | ORP                                            | DO (mg/l)  6.43 0.22 1.36 3.76 1.27 3.14 2.21 1.37                       | Depth to water (BTOC)  - (94.93)  7.84 9.30  7.81 18.78  7.16 33.0  6.15 52.34  6.01 54.55  1.94 56.65                                                                                 | (ms/cm)<br>As/cn<br>—<br>484<br>996<br>502<br>473.7<br>784<br>855         | Temp (°C)                                                       | Turbidity (NTUs)  OR OR OR OR OR OR OR OR OR       | Flow Rate (ml/min)  750 750 1000 1350 1350 1356 1350 1350 750     | Time  605 1610 1614 1712 1032 1634 1633 1644 1648                         |
| the d          | Comments  Development in i                                                              | Total Gai<br>Pumped  - 0.99 2.04 4.39 3.16 7.17 16.59 11.77 12.49                   | ORP                                            | DO (mg/l)  0.43 0.22 1.86 3.86 1.27 3.14 2.21 1.38                       | Depth to water (BTOC)  - (94.93 7.164 9.30 7.81 18.78 7.16 33.0 6.15 52.36 1.94 51.65 1.94 51.65                                                                                       | 45/cm) 45/cm 996 502 478.7 754 855 859 860                                | Temp (°C)                                                       | Turbidity (NTUs)  OR OR OR OR OR OR OR OR OR OR OR | Flow Rate (ml/min)  750 750 1000 1350 1350 1356 1356 1356 750 750 | Time  605 1610 1614 1712 1032 1032 1034 1634 1634 1644                    |
| the d          | Development init                                                                        | Total Gai<br>Pumped  - 0.99 2.04 4.39 8.46 7.17 [6.59 11.77 12.49 12.89             | ORP                                            | DO (mg/l)  - 0.43 0.22 1.86 3.76 1.27 3.14 2.21 1.38 -                   | Depth to water (BTOC)  - (94.93)  7.84 9.30  7.81 18.78  7.16 32.34  0 54.65  1.94 56.65  1.94 56.65  1.94 56.65                                                                       | 45/cm) 45/cm 996 502 478.7 786 859 860 -                                  | Temp (°C)  [2.7  [3.6  [1.6  [1.5  [1.6  12.0  12.9  12.9  [3.0 | Turbidity (NTUs)  OR OR OR OR OR OR OR OR OR OR OR | Flow Rate (ml/min)  750 750 1000 1350 1350 1356 1356 1356 750 750 | Time  605 1610 1614 1612 1632 1634 1633 1644 1633 1644 1633               |
| the d          | Development init                                                                        | Total Gai<br>Pumped  - 0.99 2.04 4.39 3.16 7.17 16.59 11.77 12.49                   | ORP                                            | DO (mg/l)  - 0.43 0.22 1.86 3.76 1.27 3.14 2.21 1.38 -                   | Depth to water (BTOC)  - (94.93)  7.84 9.30  7.81 18.78  7.16 32.34  0 54.65  1.94 56.65  1.94 56.65  1.94 56.65                                                                       | 45/cm) 45/cm 996 502 478.7 784 855 859 860                                | Temp (°C)                                                       | Turbidity (NTUs)  OR OR OR OR OR OR OR OR OR OR OR | Flow Rate (ml/min)  750 750 1000 1350 1350 1356 1356 1356 750 750 | Time  605 1610 1614 1612 1632 1638 1638 1644 1648 1726 1728               |
| the d          | Development init                                                                        | Total Gai<br>Pumped  - 0.99 2.04 4.39 8.46 7.17 [6.59 11.77 12.49 12.89             | ORP                                            | DO (mg/l)  - 0.43 0.22 1.36 3.96 1.27 3.14 2.21 1.38 - 1.61 0.17         | Depth to water (BTOC)  - (94.93)  7.81 18.73  7.16 33.0  6.15 62.36  1.94 51.05  1.94 51.05  1.94 \$1.05  1.94 \$1.05  1.94 \$1.05  1.94 \$1.05  1.94 \$1.05  1.94 \$1.05  1.94 \$1.05 | 45/cm) 45/cm 996 502 478.7 754 855 859 860 - 1006 1013                    | Temp (°C)  [2.7  [3.6  [1.6  [1.5  [1.6  12.0  12.9  12.9  [3.0 | Turbidity (NTUs)  OR OR OR OR OR OR OR OR OR OR OR | Flow Rate (ml/min)  750 750 1000 1350 1350 1356 1356 1356 750 750 | Time   605   1610   1614   1632   1637   1644   1646   1724   1724        |
| the d          | Development init                                                                        | Total Gai<br>Pumped  - 0.99 2.04 4.39 8.46 7.17 [6.59 11.77 12.49 12.89             | ORP                                            | DO (mg/l)  - 0.43 0.22 1.36 3.96 1.27 3.14 2.21 1.38 - 1.61 0.17         | Depth to water (BTOC)  - (94.93)  7.84 9.30  7.81 18.78  7.16 32.34  0 54.65  1.94 56.65  1.94 56.65  1.94 56.65                                                                       | 45/cm) 45/cm 996 502 478.7 754 855 859 860 - 1006 1013                    | Temp (°C)  [2.7  [3.6  [1.6  [1.5  [1.6  12.0  12.9  12.9  [3.0 | Turbidity (NTUs)  OR OR OR OR OR OR OR OR OR OR OR | Flow Rate (ml/min)  750 750 1000 1350 1350 1356 1356 1356 750 750 | Time   605   1610   1614   1632   1637   1644   1646   1724   1724        |
| the d          | Development init                                                                        | Total Gai<br>Pumped  - 0.99 2.04 4.39 8.46 7.17 [6.59 11.77 12.49 12.89             | ORP                                            | DO (mg/l)  - 0.43 0.22 1.36 3.96 1.27 3.14 2.21 1.38 - 1.61 0.17         | Depth to water (BTOC)  - (94.93)  7.81 18.73  7.16 33.0  6.15 62.36  1.94 51.05  1.94 51.05  1.94 \$1.05  1.94 \$1.05  1.94 \$1.05  1.94 \$1.05  1.94 \$1.05  1.94 \$1.05  1.94 \$1.05 | 45/cm) 45/cm 996 502 478.7 754 855 859 860 - 1006 1013                    | Temp (°C)  [2.7  [3.6  [1.6  [1.5  [1.6  12.0  12.9  12.9  [3.0 | Turbidity (NTUs)  OR OR OR OR OR OR OR OR OR OR OR | Flow Rate (ml/min)  750 750 1000 1350 1350 1356 1356 1356 750 750 | Time   605   610   614   142   632   638   638   644   648                |
| the d          | Comments  Development init  Shapped develop  Shapped develop  Shapped develop  well DRY | Total Gai<br>Pumped  - 0.99 2.04 4.39 8.46 7.17 16.59 11.77 12.49 12.79 12.89 14.28 | ORP3.4 -30.4 -50.0 -1.4 -5.55.4 -8.153.0 -44.4 | DO (mg/l)  - 0.43 0.22 1.36 3.76 1.27 3.14 2.21 1.38 - 1.61 0.17         | Depth to water (BTOC)  - (94.93)  7.81 18.73  7.16 33.0  6.15 62.36  1.94 51.05  1.94 51.05  1.94 \$1.05  1.94 \$1.05  1.94 \$1.05  1.94 \$1.05  1.94 \$1.05  1.94 \$1.05  1.94 \$1.05 | 45/cm<br>45/cm<br>996<br>502<br>478.7<br>784<br>855<br>859<br>800<br>1013 | Temp (°C)  [2.7  [3.6  [1.6  [1.5  [1.6  12.0  12.9  12.9  [3.0 | Turbidity (NTUs)  OR OR OR OR OR OR OR OR OR OR OR | Flow Rate (ml/min)  750 750 1000 1350 1350 1356 1356 1356 750 750 | Time   605   1010   1014   1032   1037   1037   1044   1038   1724   1725 |

AXX Due to Slow rescharge (1601/35min) and time constraint -could not start developing until 11530 due to grout food timing we had to return carts by 1700. Purged ever 1/2 well volumes.

R 6/63



| Project Na    | ame:                  | SI AFFF MULT          | IPLE SITES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                |               |                                      |            |                                         |               |
|---------------|-----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|---------------|--------------------------------------|------------|-----------------------------------------|---------------|
| ASL Proje     | et No:                | M2027,0003            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                |               |                                      |            |                                         | -             |
| Installation  |                       | Ellsworth AFE         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                |               |                                      |            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | A             |
| Site:         |                       | 11- SPR               | AY NOZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ZLE T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EST F   | A EA           | `             |                                      |            |                                         | -             |
| Date:         |                       | <b>- (-   9 -   1</b> | ъ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                |               |                                      |            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,  | -             |
| Sample Te     | ehnician:             | A.willi               | 5 , n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Neil50"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                |               |                                      |            |                                         | -             |
| Well ID No    | 3                     | MWITPA                | C 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                |               |                                      |            |                                         | -             |
|               |                       |                       | ini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | itial Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | suren   | nents          |               |                                      |            |                                         |               |
| Well Total    | Depth: 20             | ٠, ک                  | ft BTOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vel:    | 13.90          | ĵ             | ft BTOC                              | g):==      | 413                                     | ]             |
| WELL VO       | LUME PURGE: 1         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                |               |                                      |            | X WELL CAPACIT                          | ŗ.            |
| (only fill ou | ıt if applicable)     | =                     | (20.Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ft - 13.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ft) x   | 0./63          | gal/ft = /    |                                      |            |                                         |               |
| Calculated    | f Well Volume:        | 1.01                  | Gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·····   | Well Dia       | ameter:       | ع. د                                 | 2          | inches                                  | i igher       |
| c             | alculations:          | 1" diameter = 0       | .041 gal/ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2" diam | eter = 0.1     | 163 gal/ft    |                                      | 4" diamete | er = 0.653 gal/ft                       |               |
|               |                       |                       | We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eli Purgi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | na Aci  | livites        |               |                                      |            |                                         | •             |
| Purging M     | ethod (pump type):    | Reclaim               | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                | incl. units): | · .                                  | 746.       | nUmin                                   | ىك.           |
|               |                       | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T       | ······         | Ţ             | I                                    | ·<br>Y     |                                         | 7             |
|               | <b>-</b>              | <b></b>               | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Depth          |               |                                      | T. 4 1.0 1 |                                         |               |
| Time          | Flow Rate<br>(ml/min) | Turbidity<br>(NTUs)   | Temp<br>(°C) <b>C</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mS/Cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ŊpH     | water<br>(BTOC | DO<br>(mg/l)  | ORP                                  | Total Gal. | Comments                                |               |
| 1310          | 9 H Cm Umin           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 13.20          |               |                                      | -          | Stopped to a<br>Resummed/<br>Resummed   | Tal Hiceles   |
| 1815          | 94 UML/Min            |                       | J. B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.16    |                | 5,20          | 19.3                                 | 1.25       | severoper                               |               |
| 1330          | 946 ml/min            | Oscrange.             | ъ. <del>г</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                | 3.92          | 19.2                                 |            | 5 tunged to 0                           | llowrecharge  |
| 12,26         | 946mc/mi              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -       | 16.4           | _             | -                                    | 2-80       | Resummed/                               | 0-25gal behin |
| 1334          | 946mL/min             | Overrange             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 16.4           |               |                                      | 3.7        | Resummed                                | Tuhning day   |
| 1838          | 946mL/min             | Overage               | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7-21    | 16.9           | 3.95          | 29.1                                 | 3.3        | Developed * *                           | 1             |
|               |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                |               |                                      |            |                                         | -             |
|               |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                |               |                                      |            |                                         | -             |
|               |                       |                       | Name of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last o |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                |               |                                      |            |                                         | -             |
|               |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | -              |               |                                      |            |                                         |               |
|               |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$      |                |               |                                      |            |                                         |               |
| ····          |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _       |                |               |                                      |            |                                         |               |
|               |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                |               | Name and Address of the Owner, where |            |                                         | -             |
|               |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                |               |                                      |            |                                         |               |
|               |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                |               |                                      |            |                                         |               |
| Results       | At End Of Purging:    | Overrans              | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.21    | 16.9           | 3.95          | 29.1                                 | 33         |                                         | j             |
|               |                       | 0 '                   | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                | ·             | L                                    | 1          | •                                       |               |
| CONANAT       | MTQ,                  | r                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                |               | ·                                    |            |                                         | 1             |
| COMME         | * WL                  | - Metce is            | on hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | refer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pre     | د(مرا سه       | c-una         | hole lo                              | Juge U     | OL.                                     |               |
| **            | Developed             | after po              | ri-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nell .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 lun  | n d            | (ne to        | FI.                                  | sht L      | ine, time, a                            | ind           |
|               | escort re             | shi chions.           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                |               |                                      |            |                                         | ***           |
|               | 2,025                 |                       | -4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                |               |                                      | ì          |                                         |               |
|               |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a for the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of |         |                |               |                                      |            |                                         |               |
| 1             |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                |               |                                      |            |                                         |               |

D 5/19

C-120



| Project N                                      |                                                   | *************************************** |                                                        |                                          |                                                                | ···········                                          |                                             |                                   |                                                                |                                          |
|------------------------------------------------|---------------------------------------------------|-----------------------------------------|--------------------------------------------------------|------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------------------------------|------------------------------------------|
| ASL Proje                                      |                                                   | M2027.0003                              |                                                        |                                          |                                                                |                                                      |                                             |                                   |                                                                |                                          |
| Installatio                                    | n:                                                | Elisworth Af                            |                                                        |                                          | •                                                              |                                                      |                                             |                                   |                                                                |                                          |
| Site:                                          |                                                   | Sife 11.                                | - SPRA                                                 | 4 Nor                                    | WE ?                                                           | હ્ડિ                                                 | AREA                                        | <u> </u>                          |                                                                |                                          |
| Date:                                          |                                                   | 5-19-                                   |                                                        |                                          |                                                                |                                                      |                                             |                                   |                                                                |                                          |
| Sample T                                       | echnician:                                        | A. Wil                                  | lis jm.                                                | N9:1500                                  | )                                                              |                                                      |                                             |                                   |                                                                |                                          |
| Well ID N                                      | 0.:                                               | WM131                                   | PFC 110                                                | }                                        |                                                                |                                                      |                                             |                                   | ***************************************                        |                                          |
|                                                |                                                   |                                         | In                                                     | itial Mea                                | asuren                                                         | nents                                                |                                             |                                   |                                                                |                                          |
| Well Tota                                      | l Depth: ドス                                       | <b>১</b> -                              | fl BTOC                                                | Water Le                                 | vel: X                                                         | 15.95                                                |                                             | ft BTOC                           |                                                                |                                          |
| WELL VO                                        | DLUME PURGE: 1                                    | WELL VOLUM                              | IE = (TOTA                                             | WELL DE                                  | РТН ВТ                                                         | гос – :                                              | STATIC E                                    |                                   | ) WATER)                                                       | X WELL CAP                               |
|                                                | ut if applicable)                                 | =                                       | (20.3                                                  | Ft - 15.9                                |                                                                |                                                      |                                             | 0.71                              | Gal                                                            |                                          |
| Calculate                                      | d Well Volume:                                    | 0.71                                    | Gallons                                                |                                          |                                                                | Well Dia                                             | ameter:                                     | 2.0                               | )                                                              | inches                                   |
| r                                              | Calculations:                                     | 1" diameter =                           | 0.041 091/#                                            |                                          | 2" diam                                                        | otar - 0                                             | 163 gal/ft                                  |                                   | 4" diamet                                                      | er = 0.653 gal/ft                        |
|                                                |                                                   |                                         | 90#11                                                  |                                          | <u>_ wani</u>                                                  |                                                      | . se gant                                   |                                   | r viamet                                                       | 5. O.OOO Yalit                           |
|                                                |                                                   |                                         | W                                                      | ell Purgi                                | na Ac                                                          | tivites                                              |                                             |                                   |                                                                |                                          |
| Dunain a Ai                                    | And hand for the law of                           | Monsoon                                 | n                                                      | u.g.                                     | _                                                              |                                                      |                                             | 140                               |                                                                | oml/min                                  |
| TITCHTET IV                                    |                                                   |                                         |                                                        |                                          |                                                                |                                                      |                                             |                                   | 11 <b>~</b> 1 D D                                              | 13100111000                              |
| a.gg.ii                                        | lethod (pump type):                               |                                         | ***************************************                |                                          | ·                                                              | iow rate (                                           | iiioi. uiiita)                              |                                   | 0 1 7 0                                                        | on if ince i                             |
|                                                | ietnoa (pump type):                               |                                         | <u> </u>                                               | 1                                        | - '<br>                                                        |                                                      | inor units)                                 |                                   | T                                                              |                                          |
|                                                | , , , ,                                           |                                         |                                                        | Cond                                     |                                                                | Depth<br>to                                          |                                             |                                   |                                                                | *                                        |
| Time                                           | Flow Rate (ml/min)                                | Turbidity<br>(NTUs)                     | Temp                                                   | Cond.<br>(mS/Cm)                         | pH                                                             | Depth<br>to<br>water                                 | DO (mg/l)                                   | ORP                               | Total Gal                                                      | Comments                                 |
|                                                | Flow Rate<br>(ml/min)                             | Turbidity                               | Temp                                                   |                                          |                                                                | Depth<br>to                                          | DO (mg/l)                                   |                                   | Total Gal                                                      | *                                        |
| Time                                           | Flow Rate (ml/min)                                | Turbidity<br>(NTUs)                     | Temp                                                   | (mS/Cm)                                  | pH                                                             | Depth to water (BTOC )                               | DO<br>(mg/l)                                | ORP                               | Total Gal<br>Pumped                                            | Comments                                 |
| Time                                           | Flow Rate<br>(ml/min)                             | Turbidity<br>(NTUs)                     | Temp<br>(°C) (                                         | (mS/Cm)<br>-<br>0. 230                   | pH — 6.62                                                      | Depth to water (BTOC ) 15.99                         | DO<br>(mg/l)                                | ORP                               | Total Gal<br>Pumped                                            | Comments  Development                    |
| Time                                           | Flow Rate (ml/min)    400   400   400             | Turbidity (NTUs)                        | Temp<br>(°C) (<br><br>3.60<br>7.33                     | (mS/Cm) - 0.280 0.380                    | pH<br><br>6.62<br>6.94                                         | Depth to water (BTOC ) 15.99 16.02 16.03             | DO<br>(mg/l)<br>-<br>6.36                   | ORP                               | Total Gal<br>Pumped<br>————————————————————————————————————    | Comments  Development                    |
| Time 1550 (405) 1615                           | Flow Rate (ml/min)    400   400   400   400   800 | Turbidity (NTUs) OR 432                 | Temp<br>(°C) (<br>-<br>3・60<br>7・33<br>8・34            | (mS/Cm)<br>-<br>0.280<br>0.380<br>0.40/  | pH<br><br>6.62<br>6.94<br>7.00                                 | Depth to water (BTOC ) 15.99                         | DO<br>(mg/l)<br>-<br>6.36                   | ORP 267.1 /60.4 /29.5             | Total Gal<br>Pumped 0,55 0.87(4 9,0                            | Comments  Development                    |
| Time                                           | Flow Rate (ml/min)  1400 1400 1400 1400 1300 1300 | Turbidity (NTUs)  OR 432 494 169        | Temp<br>(°C) (<br><br>3.60<br>7.33<br>8.34<br>7.34     | (mS/Cm) - 0.230 0.380 0.401 0.423        | pH 6.62 6.94 7.00 7.03                                         | Depth to water (BTOC ) 15.99 16.02 16.04 16.04       | DO<br>(mg/l)<br>-<br>4.36<br>/.67<br>/.65   | ORP 267.1 160.9 129.5 78.4        | Total Gal<br>Pumped  0,55 0-8-7(4) 9.0 // // // // // // // // | Comments  Development                    |
| Time 1550 405 1415 1425 1430                   | Flow Rate (ml/min)  1400 1400 1400 1400 1300 1300 | Turbidity (NTUs) OR 432                 | Temp<br>(°C) (<br>3.60<br>7.33<br>8.34<br>8.34<br>7.34 | (mS/Cm)  - 0.230 0.380 0.401 0.423 0.422 | pH 6.62 6.94 7.00 7.03 7.02                                    | Depth to water (BTOC ) 15.99 16.02 16.04 16.04 16.04 | DO (mg/l)  - 6.36  /.67  /.65  /.37  /.32   | ORP - 267.1 160.9 129.5 98.4 97.0 | Total Gal<br>Pumped                                            | Comments Development                     |
| Time 1550 (405) 1615                           | Flow Rate (ml/min)  1400 1400 1400 1400 1300 1300 | Turbidity (NTUs)  OR 432 494 169        | Temp<br>(°C) (<br><br>3.60<br>7.33<br>8.34<br>7.34     | (mS/Cm) - 0.230 0.380 0.401 0.423        | pH 6.62 6.94 7.00 7.03                                         | Depth to water (BTOC ) 15.99 16.02 16.04 16.04       | DO (mg/l)  - 6.36  /.67  /.65  /.37  /.32   | ORP 267.1 160.9 129.5 78.4        | Total Gal<br>Pumped  0,55 0-8-7(4) 9.0 // // // // // // // // | Comments  Development                    |
| Time 1550 (605) 1615 1625 1635                 | Flow Rate (ml/min)  1400 1400 1400 1400 1300 1300 | Turbidity (NTUs)  OR 432 494 169        | Temp<br>(°C) (<br>3.60<br>7.33<br>8.34<br>8.34<br>7.34 | (mS/Cm)  - 0.230 0.380 0.401 0.423 0.422 | pH 6.62 6.94 7.00 7.03 7.02                                    | Depth to water (BTOC ) 15.99 16.02 16.04 16.04 16.04 | DO (mg/l)  - 6.36  /.67  /.65  /.37  /.32   | ORP - 267.1 160.9 129.5 98.4 97.0 | Total Gal<br>Pumped                                            | Comments Development                     |
| Time 1550 405 1415 1425 1430                   | Flow Rate (ml/min)  1400 1400 1400 1400 1300 1300 | Turbidity (NTUs)  OR 432 494 169        | Temp<br>(°C) (<br>3.60<br>7.33<br>8.34<br>8.34<br>7.34 | (mS/Cm)  - 0.230 0.380 0.401 0.423 0.422 | pH 6.62 6.94 7.00 7.03 7.02                                    | Depth to water (BTOC ) 15.99 16.02 16.04 16.04 16.04 | DO (mg/l)  - 6.36  /.67  /.65  /.37  /.32   | ORP - 267.1 160.9 129.5 98.4 97.0 | Total Gal<br>Pumped                                            | Comments Development                     |
| Time 1550 (405) 1415 1425 1435                 | Flow Rate (ml/min)  1400 1400 1400 1400 1800 1800 | Turbidity (NTUs)  OR 432 494 169        | Temp<br>(°C) (<br>3.60<br>7.33<br>8.34<br>8.34<br>7.34 | (mS/Cm)  - 0.230 0.380 0.401 0.423 0.422 | pH 6.62 6.94 7.00 7.03 7.02                                    | Depth to water (BTOC ) 15.99 16.02 16.04 16.04 16.04 | DO (mg/l)  - 6.36  /.67  /.65  /.37  /.32   | ORP - 267.1 160.9 129.5 98.4 97.0 | Total Gal<br>Pumped                                            | Comments Development                     |
| Time 1550 405 1415 1425 1430                   | Flow Rate (ml/min)  1400 1400 1400 1400 1800 1800 | Turbidity (NTUs)  OR 432 494 169        | Temp<br>(°C) (<br>3.60<br>7.33<br>8.34<br>8.34<br>7.34 | (mS/Cm)  - 0.230 0.380 0.401 0.423 0.422 | pH 6.62 6.94 7.00 7.03 7.02                                    | Depth to water (BTOC ) 15.99 16.02 16.04 16.04 16.04 | DO (mg/l)  - 6.36  /.67  /.65  /.37  /.32   | ORP - 267.1 160.9 129.5 98.4 97.0 | Total Gal<br>Pumped                                            | Comments Development                     |
| Time 1550 405 1415 1425 1430                   | Flow Rate (ml/min)  1400 1400 1400 1400 1800 1800 | Turbidity (NTUs)  OR 432 494 169        | Temp<br>(°C) (<br>3.60<br>7.33<br>8.34<br>8.34<br>7.34 | (mS/Cm)  - 0.230 0.380 0.401 0.423 0.422 | pH 6.62 6.94 7.00 7.03 7.02                                    | Depth to water (BTOC ) 15.99 16.02 16.04 16.04 16.04 | DO (mg/l)  - 6.36  /.67  /.65  /.37  /.32   | ORP - 267.1 160.9 129.5 98.4 97.0 | Total Gal<br>Pumped                                            | Comments Development                     |
| Time<br>550<br>605<br>615<br>625<br>630<br>635 | Flow Rate (ml/min)  1400 1400 1400 1400 1800 1800 | Turbidity (NTUs)  OR 432 494 169        | Temp<br>(°C) (<br>3.60<br>7.33<br>8.34<br>8.34<br>7.34 | (mS/Cm)  - 0.230 0.380 0.401 0.423 0.422 | pH 6.62 6.94 7.00 7.03 7.02                                    | Depth to water (BTOC ) 15.99 16.02 16.04 16.04 16.04 | DO (mg/l)  - 6.36  /.67  /.65  /.37  /.32   | ORP - 267.1 160.9 129.5 98.4 97.0 | Total Gal<br>Pumped                                            | Comments Development                     |
| Time 1550 (405) 1415 1425 1435                 | Flow Rate (ml/min)  1400 1400 1400 1400 1800 1800 | Turbidity (NTUs)  OR 432 494 169        | Temp<br>(°C) (<br>3.60<br>7.33<br>8.34<br>8.34<br>7.34 | (mS/Cm)  - 0.230 0.380 0.401 0.423 0.422 | pH 6.62 6.94 7.00 7.03 7.02                                    | Depth to water (BTOC ) 15.99 16.02 16.04 16.04 16.04 | DO (mg/l)  - 6.36  /.67  /.65  /.37  /.32   | ORP - 267.1 160.9 129.5 98.4 97.0 | Total Gal<br>Pumped                                            | Comments  Development  4.25  Development |
| Time 1550 405 1415 1425 1430                   | Flow Rate (ml/min)  1400 1400 1400 1400 1800 1800 | Turbidity (NTUs)  OR 432 494 169        | Temp<br>(°C) (<br>3.60<br>7.33<br>8.34<br>8.34<br>7.34 | (mS/Cm)  - 0.230 0.380 0.401 0.423 0.422 | pH 6.62 6.94 7.00 7.03 7.02                                    | Depth to water (BTOC ) 15.99 16.02 16.04 16.04 16.04 | DO (mg/l)  - 6.36  /.67  /.65  /.37  /.32   | ORP - 267.1 160.9 129.5 98.4 97.0 | Total Gal<br>Pumped                                            | Comments  Development  4.25  Development |
| Time 1550 405 1415 1425 1430                   | Flow Rate (ml/min)  1400 1400 1400 1400 1800 1800 | Turbidity (NTUs)  OR 432 494 169        | Temp<br>(°C) (<br>3.60<br>7.33<br>8.34<br>8.34<br>7.34 | (mS/cm) 0.230 0.380 0.40/ 0.423 0.422    | pH<br><br>6.62<br>6.94<br>7.00<br>7.03<br>7.03<br>7.03<br>7.05 | Depth to water (BTOC ) 15.99 16.02 16.04 16.04 16.04 | DO (mg/l)  - 6.36 /.17- /.65 /.37 /.32 /.30 | ORP - 267.1 160.9 129.5 98.4 97.0 | Total Gal<br>Pumped                                            | Comments  Development  4.25  Development |

Developed after purjing over 5 nell volumes Wy steele parameter.

X well not completed.

S/19 C-121



| ect No: on: echnician: do.: al Depth: 15. DLUME PURGE: 1 |                                                                                                                | - span<br>1110<br>S Neil<br>3PFC II                                                                                                    | Son (<br>03                    | ASL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )                                       | T ARE                                   | E/r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                    |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| Technician:<br>lo.:<br>al Depth: 25.                     | 5: reil.<br>5   19<br>Mile                                                                                     | - span<br>1110<br>S Neil<br>3PFC II                                                                                                    | 130n (<br>03                   | ASL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )                                       | T ARK                                   | E/Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                    |
| Io.:<br>Il Depth: 25.                                    | 5/9<br>Mile<br>MW19                                                                                            | 1/18.<br>Specil                                                                                                                        | 130n (<br>03                   | ASL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )                                       | T ARE                                   | <u>EN</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |
| Io.:<br>Il Depth: 25.                                    | 5/9<br>Mile<br>MW19                                                                                            | 1/18.<br>Specil                                                                                                                        | 130n (<br>03                   | ASL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |
| Io.:<br>Il Depth: 25.                                    |                                                                                                                | BPFC II                                                                                                                                | ৩3                             | ASL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |
| al Depth: 仏ら.                                            |                                                                                                                | BPFC II                                                                                                                                | ৩3                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>'</i>                                | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |
| ·····                                                    | Ц                                                                                                              | lni                                                                                                                                    | itial Mes                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |
| ·····                                                    | Ц                                                                                                              | In                                                                                                                                     | itial Mes                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |
| ·····                                                    | Ч                                                                                                              |                                                                                                                                        | 1                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |
| DLUME PURGE: 1                                           |                                                                                                                | ft BTOC                                                                                                                                | Water Le                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.62                                    |                                         | ft BTOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                    |
|                                                          | WELL VOLUM                                                                                                     | e= (101AL<br>(26.4                                                                                                                     | . WELL DE<br>Ft - <b>15.62</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | X WELL CAPACIT     |
| ut if applicable)<br>d Well Volume:                      | 1,59                                                                                                           | Gallons                                                                                                                                | Ft - 13.02                     | -F1) X C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>ده، ر</u><br>Well Dia                |                                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gal                | lashan             |
| a vven volume.                                           |                                                                                                                |                                                                                                                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VVeii Dia                               | ineter.                                 | ×. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | inches             |
| Calculations:                                            | 1" diameter =                                                                                                  | 0.041 gal/ft                                                                                                                           |                                | 2" diam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eter = 0.1                              | 163 gai/ft                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4" diamete         | er = 0.653 gal/ft  |
|                                                          |                                                                                                                | 187-                                                                                                                                   | u b                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |
|                                                          | 01.                                                                                                            |                                                                                                                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                         | Ц                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | التي ده            |                    |
| Method (pump type):                                      | Keclain                                                                                                        | ek_                                                                                                                                    |                                | . F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | low rate (i                             | incl. units):                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J C MPI            | <b>W. U</b>        |
| 1                                                        |                                                                                                                |                                                                                                                                        | 1                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Denth                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  |                    |
| Flow Rate                                                | Turbidity                                                                                                      | Temp                                                                                                                                   | Cond.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | to                                      | DO                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Gal          |                    |
| (ml/min)                                                 | (NTUs)                                                                                                         | (°C)                                                                                                                                   | (mS/Cm)                        | pН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | (mg/l)                                  | ORP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pumped             | Comments           |
|                                                          |                                                                                                                | <u> </u>                                                                                                                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | `)                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |
|                                                          | \ \(\frac{1}{2}\)                                                                                              | 7.0                                                                                                                                    | 002                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | -                                       | 140. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                | Ban Dudopin        |
| 1 100                                                    | 101                                                                                                            | ·                                                                                                                                      | 0.07                           | 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                         | 10.50<br>10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                    |
| 19 <u>7</u>                                              | 0.15                                                                                                           |                                                                                                                                        |                                | 7 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                         | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4                |                    |
| 405                                                      | - B                                                                                                            |                                                                                                                                        | 20 21                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 5 86                                    | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |
| 492                                                      |                                                                                                                |                                                                                                                                        | 1                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.75                                   | 5,90                                    | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |
| 492                                                      | OR'                                                                                                            |                                                                                                                                        | 0.87                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.85                                   | 5.99                                    | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | End Pavaopme       |
|                                                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                        |                                                                                                                                        |                                | , <b>64</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10-0-                                   |                                         | 1185/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00               |                    |
|                                                          |                                                                                                                |                                                                                                                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |
| ***************************************                  |                                                                                                                |                                                                                                                                        |                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |
|                                                          |                                                                                                                |                                                                                                                                        |                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |
|                                                          |                                                                                                                |                                                                                                                                        | -/                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |
|                                                          | 7111100-111100-111100-111100-111100-111100-111100-111100-111100-111100-111100-111100-111100-111100-111100-1111 |                                                                                                                                        | u                              | <b>7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *************************************** |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | W0.0010            |
|                                                          |                                                                                                                |                                                                                                                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |
|                                                          |                                                                                                                |                                                                                                                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |
|                                                          |                                                                                                                |                                                                                                                                        | 00                             | 2 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | -2.00                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                    |
| At End Of Purging:                                       | OK                                                                                                             | 10.0                                                                                                                                   | 1086                           | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.85                                   | 6,99                                    | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.00               |                    |
|                                                          | Flow Rate (ml/min)                                                                                             | Flow Rate (ml/min)  Flow Rate (ml/min)  Flow Rate (ml/min)  Flow Rate (ml/min)  Flow Rate (not only only only only only only only only | Flow Rate (ml/min)             | Well Purging   Reclaimer   Cond. (ms/cm)     Purging   Cond. (ms/cm)   Purging   Cond. (ms/cm)   Purging   Flow Rate (ml/min)                      | Flow Rate (ml/min)                      | Flow Rate (ml/min)   Temp (°C)   Cond. (mS/Cm)   pH   Depth to water (BTOC )   (mg/l)   (ms/Cm)   (ms/Cm | Flow Rate (ml/min) | Flow Rate (ml/min) |

C=122 5/22



|                 | Project N    | ame:                                   | SI AFFF MUI                           | TIPLE SITE   | S                                            |                    |                                        |                  |          |                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|-----------------|--------------|----------------------------------------|---------------------------------------|--------------|----------------------------------------------|--------------------|----------------------------------------|------------------|----------|------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                 | ASL Proje    | ect No:                                | M2027.0003                            |              |                                              |                    |                                        | · ·              |          |                        | •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
|                 | Installatio  | on:                                    | Elisworth Al                          | -в 🖁         |                                              |                    | ······································ |                  |          |                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|                 | Site:        |                                        | Buildie                               | 10 872       | 7-04                                         | i te 12            | 21.4                                   | COF              | AKEK     | -/ a.)                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|                 | Date:        |                                        | 4-20-1                                |              |                                              |                    | •                                      |                  | 1.1-0:   |                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
|                 | Sample T     | echnician:                             |                                       | \$ / M.      | Neilsb                                       | n                  |                                        |                  |          |                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|                 | Well ID N    | lo.:                                   | MWIS                                  | PFCIA        | 101                                          |                    | ***                                    |                  |          | •                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |
|                 |              |                                        |                                       |              |                                              |                    |                                        |                  |          | 14. P.,                |              | W الامت.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>Ulbanechas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                 |              |                                        |                                       | In           | itial Me                                     | asurem             | ents                                   | (M) Ran          | dry to   | 733                    | Differ       | runin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | il lo recha<br>y dry an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | λ<br>λ                 |
| R               | Well Tota    | ll Depth: 🧣                            | 7.30                                  | ft BTOC      | Water Le                                     | vel: 🗡             | 3.80                                   |                  | ft BTOC  | -                      | <i></i>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rechan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ge .                   |
| 6.              | WELL VO      | DLUME PURGE: 1                         | WELL VOLUM                            | IE = (TOTA   | L WELL DE                                    | PTH BT             |                                        | STATIC D         | EPTH TO  | ) WATER                | ) X WEL      | L CAPACI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | derille                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ۶۶ ستلور<br>۲۰ ۱۸۶/ط ( |
|                 | (only fill o | ut if applicable)                      | _                                     | (37-36       | Ft -3.21                                     | Ft) x              | 0.163                                  | gal/ft = /       | 4.1      | Gal                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - From                 |
|                 | Calculate    | d Well Volume:                         |                                       | Gallons      | 130                                          | 3                  | Well Dia                               | ameter:          | 2        |                        | inches       | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| ¥               |              | Calculations:                          | 1" diameter =                         | 0 041 cal#   |                                              | 2" diamo           | tor = 0 1                              | 163 gal/ft       | •        | 4 <sup>th</sup> diamat | er = 0.653 g | -01/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|                 |              | AZIOGIAGOTAS.                          | Tr diameter -                         | U.U41 gallit |                                              | /2 drame           | 101 - U,                               | tos gaint        |          | 14 diamet              | ei – 0.653 g | jairit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
|                 |              |                                        |                                       | W            | ell Purgi                                    | na Acti            | ivites                                 |                  |          |                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
|                 | Donalis a N  | isai 4 / 4                             | M                                     |              | on ru <sub>i</sub> gi                        |                    |                                        |                  | 294      | -7 Vai                 | n m 1.       | ~}^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|                 | Purging iv   | lethod (pump type):                    | 1/0V200V                              | mayer_       |                                              | - Fi               | ow rate (                              | incl. units):    | <u> </u> | יטדופ                  | D ML/1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|                 |              |                                        | [                                     |              | <u>,                                    </u> |                    | Depth                                  |                  | T        |                        | <u> </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
| 0               |              | Flow Rate                              | Turbidity                             | Temp         | Cond                                         |                    | to                                     | DO               |          | Total Gal              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
|                 | Time         | (ml/min)                               | (NTUs)                                | (°C)         | (mS/Cm)                                      | $\mathcal{I}_{PH}$ | water<br>(BTOC                         | (mg/l)           | ORP      | Pumped                 | Com          | ments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
|                 |              |                                        |                                       |              |                                              |                    | )                                      |                  |          |                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                      |
|                 | 1100         | 1700                                   |                                       | °            |                                              | ,                  | 2.35                                   |                  |          | _                      | Devely       | menti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
|                 | 1105         | 2800                                   | DURY PARK                             | 10.9         | 0.92                                         | 8.94               | 37.0                                   |                  | 219.2    | 3.70                   | well         | dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
| Q -1: Wast.     | [[20         | 3,400                                  | OVERTHING                             | 12.3         | 0.99                                         | 8.98               | 29.8                                   | 5,62             | 242.8    | 4159                   | sevelo       | pres 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1011                   |
| Daling 4/04/18  | 1456         | to get                                 | sedimel                               | fout t       | nen p                                        | whin               | <u>بر</u> بر                           | و ۵ د ۸ ت        | م لحد    | k 12                   | Boulel       | Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Wellir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y @ 112y               |
| Bailing 4/24/18 | 1118         | 200                                    |                                       | 0 7          | 1 to 100 Jr                                  |                    | 34                                     |                  |          | 14,59                  | Resuma       | · I)evelop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monson + w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | By lec                 |
|                 | 1115         | 3 <i>80</i><br>3 <i>8</i> 0            | 148                                   | 7,3          | 5,70                                         | 8.41               | 18,2                                   | 8.36             | 120,5    | 1310                   |              | ~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (AC. 12-1)             |
|                 | 1130         | 360                                    | 08                                    | 9.3          | 0 (1)                                        | 7.60               | <u> </u>                               | <u>, 5, 5, 4</u> | 118.1    | 15.0                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
|                 | 1150         | 300                                    | OR                                    | 4.5          | 6.53                                         | 7.00               | 27.83<br>20.38                         | 7.11             | 114.5    | 16.0                   | W/           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
|                 | 1200         | 300                                    | OR                                    | 9 7          | 7.09                                         | 7 57               | 37 27                                  | (2) 19           | 114.6    | 1 4 6                  |              | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
| <b>4</b> ·      | 1210         | 380<br>380<br>380<br>380<br>380<br>380 | ÓR                                    | 9.5          | 7,37                                         |                    | 34.48                                  | × 29             | 115.3    | 19.0                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
|                 | 1220         | 380                                    | OR                                    | 421          | ·   - · · · · · · · · · · · · · · · · ·      | 7.65               | 35 88                                  | 3,34             | 117.5    | 14.75                  | well         | dow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ۰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|                 | 1310         | 380                                    | OR                                    | 1.6          | 7.33                                         | 7.66               | 35.3                                   | 1803             | 122.3    | 20,50                  | Resume       | beiling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ra 1300.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Drugotat               |
|                 |              |                                        |                                       |              |                                              |                    |                                        |                  |          |                        |              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | @ 1300, 1<br>End Double                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pinast                 |
| *               |              |                                        | · · · · · · · · · · · · · · · · · · · |              |                                              | The                |                                        |                  |          |                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
|                 | -            |                                        |                                       |              |                                              |                    | •                                      |                  |          |                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
|                 |              | :<br>N. 2 1982 - 1                     | <u> </u>                              | Δ,           | 7 22                                         | - d a d            | 2                                      | Λ                | - do     | A                      |              | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | TOTAL DESIGNATION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY |                        |
|                 | Results A    | At End Of Purging:                     | OR                                    | 9.6          | 7,33                                         | 7.60               | 55. <del>3</del> /                     | <i>5.6</i> 3_    | 160.7    | 2050                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
|                 |              |                                        |                                       |              |                                              |                    |                                        |                  |          |                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| · //4/          | COMME        | NTS: Y WL S                            | rspect                                | ل            | lriller's                                    | relex              | rolde.                                 | duc.             | 2 dril   | line -                 | Run          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |

dry and let recharge.

\*\*\* 20:4 % Tack volumes.

End Development: 20.50 gallons Purged

D 5/10



| ASL Proje                                                      |                                                            |                             |                              |           |                                                           |                                                                    |                                                                  |                                                                       |                                                             |                                            |                                        |          |
|----------------------------------------------------------------|------------------------------------------------------------|-----------------------------|------------------------------|-----------|-----------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|----------------------------------------|----------|
|                                                                | ect No:                                                    | M2027.0003                  |                              |           |                                                           |                                                                    |                                                                  |                                                                       |                                                             |                                            |                                        |          |
| Installatio                                                    | n:                                                         | Elisworth AFi               | В                            |           |                                                           |                                                                    |                                                                  |                                                                       |                                                             | ······                                     | ·····                                  |          |
| Site:                                                          |                                                            | Buildin                     | <u>. 335</u>                 | 4 - 51    | h 1                                                       | 2 (A                                                               | FFF 1                                                            | 4REN                                                                  | (2)                                                         |                                            |                                        |          |
| Date:                                                          |                                                            | 4-19-                       |                              | 1-20-19   |                                                           |                                                                    | <del>- , , , ,</del>                                             | <u>,                                    </u>                          | <u> </u>                                                    |                                            |                                        |          |
| Sample T                                                       | echnician:                                                 | 1. will's                   |                              | مرززءه    |                                                           |                                                                    |                                                                  |                                                                       |                                                             |                                            | <del></del>                            |          |
| Well ID N                                                      | lo.:                                                       | WMIS                        |                              |           |                                                           |                                                                    |                                                                  |                                                                       |                                                             |                                            |                                        |          |
|                                                                | 3.,<br>5.                                                  |                             |                              | 15.1      | ········                                                  |                                                                    |                                                                  |                                                                       |                                                             |                                            |                                        |          |
|                                                                |                                                            |                             | Ini                          | itial Mea | asurer                                                    | nents                                                              |                                                                  |                                                                       |                                                             |                                            |                                        |          |
| Well Tota                                                      | l Depth: 50                                                | .37                         | ft BTOC                      | Water Le  |                                                           | 7.737                                                              | ŧ                                                                | fl BTOC                                                               |                                                             |                                            |                                        |          |
|                                                                | DLUME PURGE: 1                                             |                             |                              |           |                                                           | TOC                                                                | STATIC D                                                         |                                                                       | ) WATER                                                     | X WELL CAP                                 | ······································ |          |
|                                                                | ut if applicable)                                          | =                           | (50.37                       |           |                                                           |                                                                    | gai/ft = (                                                       |                                                                       | Gal                                                         |                                            |                                        |          |
|                                                                | d Well Volume:                                             |                             | Gallons                      | ,         |                                                           | Well Dia                                                           |                                                                  | y. <b>V</b> .                                                         |                                                             | inches                                     |                                        |          |
|                                                                |                                                            | 1                           |                              | <u> </u>  | T                                                         |                                                                    |                                                                  |                                                                       |                                                             |                                            |                                        |          |
|                                                                | Calculations:                                              | 1" diameter = (             | ).041 gal/ft                 |           | 2" diam                                                   | eter = 0.                                                          | 163 gai/ft                                                       |                                                                       | 4" diamet                                                   | er = 0.653 gal/ft                          |                                        |          |
|                                                                |                                                            |                             |                              |           |                                                           |                                                                    |                                                                  |                                                                       |                                                             |                                            |                                        |          |
|                                                                |                                                            |                             | We                           | il Purgi  | ng Ac                                                     | tivites                                                            |                                                                  | 1                                                                     |                                                             | •                                          |                                        |          |
| Purging N                                                      | lethod (pump type):                                        | Monso                       | 701                          |           | F                                                         | ⁼low rate (                                                        | (incl. units):                                                   | :/ 600                                                                | 3.4                                                         | 00 ML/min                                  |                                        |          |
|                                                                |                                                            |                             | .1                           |           | •                                                         | ,                                                                  |                                                                  |                                                                       |                                                             |                                            |                                        |          |
|                                                                |                                                            |                             |                              |           |                                                           | Depth                                                              |                                                                  |                                                                       |                                                             |                                            |                                        |          |
| Time                                                           | Flow Rate                                                  | Turbidity                   | Temp                         | Cond.     | nЦ                                                        | to                                                                 | DO                                                               | ORP                                                                   | Total Gal                                                   | Commonto                                   | .   ,                                  |          |
| Time                                                           | (ml/min)                                                   | (NTUs)                      | (°C) <                       | (mS/Cm)   | $\sum_{b}$                                                | water<br>(BTOC                                                     | (mg/l)                                                           | ORP                                                                   | Pumped                                                      | Comments                                   | •                                      |          |
| A 200                                                          |                                                            |                             |                              |           | ·                                                         | )                                                                  |                                                                  |                                                                       |                                                             | -                                          |                                        | •        |
| 9 1534                                                         | 3,400                                                      |                             |                              |           |                                                           | 9.75                                                               |                                                                  |                                                                       |                                                             | Development                                | in tiale                               | <u> </u> |
| 1540                                                           |                                                            | OR                          | 13.2                         | 0.348     | 7,94                                                      | 39.1                                                               | 8,91                                                             |                                                                       | 4.50                                                        | ·                                          |                                        | •        |
| 1550                                                           | 3,400                                                      | LOR                         | 13.9                         | 0.402     | 7.7[                                                      |                                                                    | 8,06                                                             | 214.6                                                                 | 12.00                                                       |                                            |                                        |          |
| 1600                                                           | 1,000                                                      | OR                          | 14.7                         | 0.458     | 7,72                                                      | 49204                                                              |                                                                  | 194,3                                                                 | 14.20                                                       |                                            |                                        |          |
| 1610                                                           | 1,000                                                      | OK                          | 15.1                         | 0.540     | 7579                                                      |                                                                    | 0.0                                                              | 175.5                                                                 |                                                             | Stopped to Ch                              | 140KP _                                |          |
| 1625                                                           | 600                                                        |                             |                              |           |                                                           | 47,20                                                              |                                                                  |                                                                       | 17.50                                                       | Slopped to the                             | Res                                    | sme      |
| 10.77                                                          | 600                                                        | OR                          | 16.1                         | 0.1240    | 1,78                                                      | )49.9 <i>/</i>                                                     | 53                                                               | 1 11 フス                                                               |                                                             |                                            | - 1                                    |          |
| 1635                                                           |                                                            | 7.3                         |                              |           |                                                           |                                                                    |                                                                  | 10 7 67                                                               | 19.10                                                       |                                            |                                        |          |
| 1645                                                           | 600                                                        | OR.                         | 14.9                         | 0.67      | 7.84                                                      | 49,43                                                              | 4.50                                                             | 153,0                                                                 | 20.70                                                       |                                            |                                        |          |
| 1645                                                           | 000<br>000                                                 | OR                          |                              |           |                                                           | 49.6                                                               |                                                                  | 153,0                                                                 | 20,70                                                       | Well Ran D                                 |                                        |          |
| 1645                                                           | 600<br>600<br>1,000                                        | OR -                        |                              | 0.67      | 7.84                                                      | 49.42                                                              | 4.50<br>4.16                                                     | 153,0                                                                 | 20.70                                                       | Resume I                                   | SM Prd                                 | 519173   |
| 1645<br>1355<br>1730                                           | 600<br>600<br>1,000                                        | OR -                        | 14.9<br>14.9                 | 0.67      | 7.84                                                      | 49,42<br>49.6<br>44.37<br>46.90                                    | 4.50<br>4.16                                                     | 153,0                                                                 | 20,70                                                       | Resume,                                    |                                        | 519173   |
| 1645<br>1655<br>1730<br>1735                                   | 600<br>600<br>1,000<br>1,600<br>3,50                       | or<br>-                     | 14.9<br>14.9                 | 0.68      | 7.91                                                      | 49.43<br>49.6<br>44.37<br>46.90<br>32.56                           | 4.50<br>4.16                                                     | 153,6                                                                 | 20.70<br>22.30<br>24.70<br>28.60<br>28.86                   | Resume, I<br>Resume, I                     | SOMASSI C                              | 519173   |
| 1645<br>1655<br>1730<br>1735<br>0 0840                         | 600<br>600<br>1,000<br>1,600<br>350                        | 0R<br>-<br>831              | 14.9<br>14.9<br>             | 0.67      | 7.99                                                      | 49.43<br>49.6<br>44.37<br>46.90<br>32.56<br>41.02                  | 4.50<br>4.16<br>-<br>-<br>5.24                                   | 153,6<br>150.0<br>—<br>—<br>—<br>—<br>233,5                           | 20,70<br>22,30<br>24,70<br>28,60<br>28,86<br>3071           | RESUME, RESUME, RESUME                     | SOMASSI C                              | 519173   |
| 1645<br>1655<br>1730<br>1735<br>0 0840                         | 600<br>600<br>1,000<br>1,600<br>350                        | OR<br>-<br>831<br>overrange | 14.9<br>14.9<br>11.4         | 0.67      | 7.99                                                      | 49.43<br>49.6<br>44.37<br>46.90<br>32.56<br>41.02                  | 4.50<br>4.16<br>-<br>5.24<br>3.84                                | 153,6<br>150.0<br>-<br>-<br>233,5                                     | 20,70<br>24,70<br>28,60<br>28,60<br>28,86<br>30,71<br>34,73 | RESUME, RESUME, RESUME, RESUME             | SOMASSI C                              | 519173   |
| 1645<br>1130<br>1745<br>0 0840<br>0920<br>0936                 | 600<br>600<br>1,000<br>1,000<br>350<br>1,300<br>300<br>800 | B31<br>overrange            | 14.9<br>14.9<br>11.8         | 0.67      | 7.89<br>7.91<br>-<br>8.12<br>8.23<br>8.27                 | 49,42<br>49.6<br>44.37<br>46.90<br>32,56<br>41.02<br>44.0<br>45.40 | 4.50<br>4.16<br><br>5.24<br>3.94<br>4.06                         | 153,6<br>150.0<br>-<br>-<br>233,5<br>201.9                            | 20.70<br>24.70<br>24.70<br>28.60<br>28.86<br>30.71<br>34.93 | Resume, I<br>Resume<br>Resume<br>surgar PO | 2014/261 B                             | 519173   |
| 1645<br>1655<br>1730<br>1725<br>0 0840<br>0930<br>0936<br>0938 | 600<br>600<br>1,000<br>1,600<br>350<br>1,300<br>700<br>800 | B31<br>overrange<br>OR      | 14.9<br>14.9<br>11.8<br>11.8 | 0.67      | 7.89<br>7.91<br>-<br>8.12<br>8.23<br>8.27                 | 49,42<br>49.6<br>44.37<br>46.90<br>32,56<br>41.02<br>44.0<br>45.40 | 4.50<br>4.16<br><br>5.24<br>3.94<br>4.06                         | 153,6<br>150.0<br>-<br>-<br>233,5<br>201.9                            | 20.70<br>24.70<br>24.70<br>28.60<br>28.86<br>30.71<br>34.93 | Resume, I<br>Resume<br>Resume<br>surgar PO | 2014/261 B                             | 519173   |
| 1645<br>1730<br>1745<br>0 0840<br>0930<br>0930<br>0938<br>0938 | 600<br>600<br>1,000<br>1,000<br>350<br>1,300<br>300<br>800 | B31<br>overrange            | 14.9<br>14.9<br>11.8         | 0.67      | 7.89<br>7.91<br>-<br>8.12<br>3.23<br>8.22<br>8.22<br>8.22 | 49,42<br>49.6<br>44.37<br>46.90<br>32,56<br>41.02<br>44.0<br>45.40 | 4.50<br>4.16<br><br>5.24<br>3.94<br>3.94<br>4.08<br>4.08<br>4.08 | 153.6<br>150.0<br>-<br>-<br>233.5<br>201.9<br>184.1<br>183.2<br>182.6 | 20.70<br>24.70<br>24.70<br>28.60<br>28.86<br>30.71<br>34.93 | RESUME, RESUME, RESUME, RESUME             | 2014/261 B                             | 519173   |

C-124 A 4/22/17



|   | Project N   | ame:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SI AFFF MUL  | TIPLE SITE | s       |      |        |       |        |   |                                          |          |
|---|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|---------|------|--------|-------|--------|---|------------------------------------------|----------|
|   | ASL Proje   | ect No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M2027.0003   |            |         |      |        |       |        |   |                                          | _        |
|   | instaliatio | n;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elisworth AF | В          |         |      | •      |       |        |   |                                          | _        |
|   | Site:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Building     | 282        | 40 -5   | itel | 2/1    | FFF A | (ea (2 | 7 | ., ., ., ., ., ., ., ., ., ., ., ., ., . | mat .    |
|   | Date:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-21-        |            |         |      | V O 11 |       |        |   |                                          |          |
|   | Sample T    | echnician:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A. Willis    | / M.       | Neilson | n    |        |       |        |   |                                          | _        |
|   | Well ID N   | o.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MMIS         |            |         |      |        |       |        |   |                                          |          |
|   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |            |         |      |        |       |        | • |                                          | <u>.</u> |
| _ |             | B&#</td><td>on of sir</td><td>www.lni</td><td>itial Mea</td><td>surer</td><td>nents</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>(4)</td><td>Well-Tota</td><td>I-Depth: [7.8</td><td>30 K</td><td>ft BTOC</td><td>Water Le</td><td></td><td>9.52</td><td></td><td>ft BTOC</td><td></td><td></td><td>]</td></tr><tr><td></td><td>WELL VO</td><td>DLUME PURGE: 1</td><td>WELL VOLUM</td><td>E = (TOTAL</td><td>. WELL DE</td><td>РТН В</td><td>TOC -</td><td>STATIC E</td><td>EPTH_T</td><td>) WATER)</td><td>X WELL CAPACI</td><td>Ţ</td></tr><tr><td></td><td>(only fill o</td><td>ut if applicable)</td><td>=</td><td>(17.80</td><td>Ft -9.56</td><td>LFt) x</td><td>0./63</td><td>gal/ft = /</td><td>7, 30</td><td>Gal</td><td></td><td>-</td></tr><tr><td></td><td>Calculate</td><td>d Well Volume:</td><td>7</td><td>Gallons</td><td></td><td><b>T</b></td><td>Well Di</td><td>ameter:</td><td></td><td></td><td>inches</td><td></td></tr><tr><td></td><td></td><td>Calculations:</td><td>1" diameter = 0</td><td>0.041 gal/ft</td><td></td><td>2" diam</td><td>eter = 0.</td><td>163 gal/ft</td><td></td><td>4" diamet</td><td>er = 0.653 gal/ft</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td>_</td><td>We</td><td>il Purgi</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>Purging M</td><td>lethod (pump type):</td><td>Monsoon</td><td></td><td></td><td>_ F</td><td>Flow rate (</td><td>incl. units)</td><td>400</td><td>- 240</td><td>ome/min</td><td>•</td></tr><tr><td></td><td></td><td></td><td></td><td></td><td>T</td><td></td><td>Depth</td><td></td><td></td><td></td><td><u>                                     </u></td><td>]</td></tr><tr><td></td><td>Time</td><td>Flow Rate</td><td>Turbidity</td><td>Temp</td><td>Cond</td><td>-11</td><td>to</td><td>DO</td><td>ODB</td><td>Total Gal</td><td>Commonto</td><td>No. of the Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Principal Princ</td></tr><tr><td></td><td>Hille</td><td>(ml/min)</td><td>(NTUs)</td><td>(°C) (</td><td>(mS/Cm)</td><td>pН</td><td>water<br>(BTOC</td><td>(mg/l)</td><td>ORP</td><td>Pumped</td><td>Comments</td><td></td></tr><tr><td></td><td>1143</td><td>2000</td><td></td><td></td><td></td><td></td><td>9.52</td><td></td><td><b></b></td><td></td><td>0.6.6.</td><td>1600</td></tr><tr><td></td><td>450-</td><td>2000</td><td></td><td>13.4</td><td>1.006</td><td>644</td><td>11.71</td><td>1225</td><td>711-2</td><td></td><td>Development in</td><td>A VIT</td></tr><tr><td></td><td>1152</td><td>2000</td><td>DUEL LOUGE</td><td>7.2</td><td>0.52</td><td>7.79</td><td>14.2</td><td>11.87</td><td>235.8</td><td>2.08</td><td></td><td>AN YSI WO M. CHANGE / Surgel</td></tr><tr><td></td><td>1202</td><td>1000</td><td>over range</td><td>10.01</td><td>0.79</td><td>7.59</td><td>17.3</td><td>9.65</td><td>-</td><td>4.67</td><td>DRY-waiting for</td><td>recharge / survey</td></tr><tr><td></td><td>1355</td><td>600</td><td></td><td></td><td></td><td></td><td>14.52</td><td>1 *</td><td></td><td>4.48</td><td>NEW TITE</td><td></td></tr><tr><td></td><td>1400</td><td>\$00</td><td>overrange</td><td>10.010</td><td><del>} `≥</del>5</td><td></td><td>15.8</td><td></td><td>267.1</td><td>5,48</td><td>Well Pumped Dry</td><td>1405</td></tr><tr><td></td><td>1476</td><td>3400</td><td>Over Targe</td><td>[0.08]</td><td>1.15</td><td></td><td>17.0</td><td>3.30</td><td>2650</td><td>11.78</td><td>resumed. Th</td><td>an ony 145</td></tr><tr><td>_</td><td>1559</td><td>2400</td><td>Over range</td><td>10.03</td><td>1.13</td><td>7.30</td><td>15.4</td><td>7.43</td><td>1480</td><td>18.08</td><td>Resumed Rando</td><td>5 ( Well Volumen</td></tr><tr><td></td><td>1718</td><td>1400</td><td>Overrange</td><td>10.02</td><td>1.37</td><td>8.00</td><td>(341</td><td>7.90</td><td>194.8</td><td>18.88</td><td>Resured. Randry</td><td>+17222</td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>***************************************</td><td></td><td></td><td></td><td>2 Developed</td></tr><tr><td></td><td></td><td></td><td></td><td></td><td><b>₩</b></td><td></td><td></td><td></td><td></td><td>~~~~</td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>Ventur</td><td></td><td>~</td><td><math>\langle</math></td><td></td><td>~</td><td></td><td></td><td></td></tr><tr><td></td><td>~~~</td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td></td><td>- Constitution</td><td>and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th</td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>17</td><td></td><td></td><td></td><td>·</td><td></td><td>The state of the s</td><td></td><td></td></tr><tr><td>l</td><td>Populto</td><td>At End Of Burging</td><td>hi ieu ioc ioc</td><td>10.00</td><td>1 22</td><td>200</td><td>16 10</td><td>701</td><td>1047</td><td>17 27</td><td></td><td></td></tr><tr><td></td><td>Results</td><td>At End Of Purging:</td><td>out rang</td><td>10.0%</td><td>1,,0</td><td>8.00</td><td>112/17</td><td>7.70</td><td>177.0</td><td>10.00</td><td></td><td></td></tr><tr><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ĺ</td><td>COMME</td><td>NTS: 6.75</td><td>25 mell u</td><td>unes</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td>·</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td>1720 Da</td><td>veloped</td><td>after</td><td>purs</td><td>ins</td><td>214</td><td>wel</td><td>volu</td><td>mas v</td><td>u/skulle  </td><td></td></tr><tr><td></td><td></td><td>יים ביים ו</td><td>meders</td><td>Sirean</td><td>, i</td><td>ر اور</td><td>an cle</td><td>an -</td><td>nTu s</td><td>hish</td><td>due lo</td><td></td></tr><tr><td></td><td></td><td>por e</td><td>intural h</td><td>ما الداما يي.</td><td>المل من</td><td>ell .</td><td></td><td></td><td></td><td>•</td><td></td><td></td></tr><tr><td></td><td></td><td>n e</td><td>yuran 1</td><td>Y FIGURY</td><td>14- 24</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></tr></tbody></table> |              |            |         |      |        |       |        |   |                                          |          |

(An) 4/2/18



| Instatation: Eliswort                           | h AFB M202                    | 27.0003                   |                                 |                                               |                            | Site:               | Sife 1                        | ٠- '                                      | Carre                      | nt F                     | ire       | Train                    | in                                           |                            |                   |             |
|-------------------------------------------------|-------------------------------|---------------------------|---------------------------------|-----------------------------------------------|----------------------------|---------------------|-------------------------------|-------------------------------------------|----------------------------|--------------------------|-----------|--------------------------|----------------------------------------------|----------------------------|-------------------|-------------|
| WELL NO: MW                                     | 17PFC                         | 0101                      |                                 |                                               | S/                         | WPLE ID: EZ         | Sife 1<br>SWHOI               | -66/                                      | -600.                      | -015                     |           | DA                       | 25                                           | -20-1                      | 8                 |             |
|                                                 |                               |                           |                                 |                                               | <u> </u>                   |                     | RGING DA                      |                                           |                            |                          |           |                          |                                              |                            | <del></del>       |             |
| WELL DIAMETER (inches): WELL VOLUME PU          | 2.01                          | ı T                       | TUBING<br>DIAMETER (inch        | es): /\                                       | 1 00 WE                    | LL SCREEN INTI      | ERVAL DEPTH:<br>/0./0 Ft      |                                           | STATIC DEPT<br>TO WATER (% | H<br>eet BTOC):          | 15.4      | 16                       |                                              | RGE PUMP TYPE<br>BAILER:   | P                 |             |
| WELL VOLUME PU                                  | RGE: 1 WELL                   |                           |                                 |                                               |                            |                     |                               |                                           |                            |                          | -         |                          |                                              |                            |                   |             |
| (anly fill out if ap                            | pplicable)                    | •                         | · \ 20.7                        | 5                                             | FR - 15                    | . <b>Ч</b> (, F1) × | 0.163                         | Fileg                                     | ° 0.                       | 79                       | gal       |                          |                                              |                            |                   |             |
| EQUIPMENT VOLU                                  | ME PURGE: 1                   | EQUIPMENT                 | VOL. = PUM                      | IP VOLL                                       | JME + (TUBI                | NG CAPACIT          | Y X 1                         | UBING                                     | LENGTH) +                  | FLOW CE                  | L VOL     | JME                      |                                              |                            |                   |             |
| (only fill out if a                             | opicable)                     | 14 -                      |                                 |                                               | <del></del>                | ×                   |                               |                                           |                            |                          |           | 7 T                      |                                              |                            | Ф                 | .           |
| INITIAL PUMP OR TUBIN                           | G I                           | 5                         | FINAL PU                        |                                               |                            | 5                   | PURG                          |                                           | m) c                       | <u> </u>                 | ]:        | PURGING<br>ENDED AT:     | CVI'Z                                        | TOTAL VOLUME               |                   | 70 × 30     |
| DEPTH IN WELL (feet):                           | <del></del>                   | ⊃ cu <sub>M</sub> ui      | DEPTH IN                        | WELL (fe                                      | el):                       | )<br>pH             | INITIA<br>TEMP.               | TED AT:                                   | OF C                       | DISSOLV                  |           | ORP                      |                                              | PURGEO (gallon<br>JRBIDITY | s) محملا<br>COLOR | 8 0.7       |
| TIME                                            | VOLUME<br>PURGED<br>(gallons) | VOLUM<br>PURGE<br>(gallen | 1E<br>:D                        | RATE<br>(gpm)                                 | TO<br>WATER<br>(feet BTOC) | (slandarð<br>units) | (°C)                          | $\mathcal{A}^{\mathcal{A}^{\mathcal{A}}}$ | MS CIM                     | OXYGE<br>mg/L            |           | (mV)                     |                                              | (NTUS)                     | (describe)        | (describe)  |
| 0905                                            | 0.15                          | Q0.15                     | 0.00                            | 33                                            | 15,20                      | 7.40                | 10.9                          | 1.                                        | .12                        | 3021                     | 8         | MAA                      | 35                                           | .5                         | C                 | None        |
| <u> ୯</u> ୦୧୦                                   | ·67                           | 26.7                      | 4.39.0                          | 3                                             | 15.85                      | 7.43                | 10.8                          | ا                                         | 1                          | 3.0                      |           | 141.4                    | _29                                          | .5                         | C                 | Nono        |
| 9911                                            | 09 (                          | 10.30                     |                                 | <u>03</u>                                     | 15.85                      | 7.48                | 10.5                          | ٥                                         | 10                         | 3.00                     |           | 3,0                      | 20                                           | <del>]</del>               | C                 | Mone        |
| 901.4                                           | 00 10                         | 100,5                     |                                 | <u>3</u>                                      | 15,90                      | 7.50                | [0.5]                         | ها                                        | ĪĢ.                        | 7.95                     |           | 30,1                     | 70                                           | <u> 1년</u>                 | Č                 | Pore        |
| 0417                                            | <u>∘ €</u>                    | 0 6                       | 3 20 6                          | <u>იპ</u><br>იპ                               | 15.90<br>15.90             | 7.14<br>7.18        | 10.7                          | 10                                        | 15                         | 2.60                     |           | 968<br>898               | 20                                           | ). (D                      | 7                 | Nove        |
| 0900                                            | 100                           | 0.60                      |                                 |                                               | 15.90                      | 7.75                | 10.8                          |                                           | 17                         | 2.7                      |           | R8.7                     | 30                                           | 7                          | <u> </u>          | None        |
| U-11                                            | 1001                          | 200                       | 3067-1 •                        | <u>, , , , , , , , , , , , , , , , , , , </u> | 10.11                      | 1014)               | 10°0                          | 10                                        | 1                          | <u> </u>                 |           | D VIV.                   |                                              | o /                        |                   | 1           |
|                                                 |                               |                           |                                 |                                               |                            |                     |                               |                                           |                            |                          |           |                          |                                              |                            |                   |             |
|                                                 |                               |                           |                                 |                                               |                            |                     |                               |                                           |                            | `                        |           |                          |                                              |                            |                   |             |
|                                                 |                               |                           |                                 |                                               |                            |                     |                               | 1                                         | 110                        | /                        | _         |                          |                                              |                            |                   |             |
|                                                 |                               |                           |                                 |                                               |                            |                     |                               | [/ੁ                                       | (Irtix                     |                          |           |                          |                                              |                            |                   |             |
|                                                 |                               |                           |                                 |                                               |                            |                     | <del>  `</del>                | ~                                         |                            |                          |           |                          |                                              |                            |                   |             |
|                                                 |                               |                           |                                 |                                               |                            |                     |                               | <del></del>                               | $\overline{}$              |                          |           |                          | -                                            |                            | <b></b>           |             |
|                                                 |                               |                           |                                 |                                               |                            |                     |                               |                                           | $\overline{}$              |                          |           |                          |                                              |                            |                   |             |
|                                                 |                               |                           |                                 |                                               |                            |                     |                               |                                           |                            |                          |           |                          |                                              |                            |                   |             |
| WELL CAPACITY (G                                |                               | -                         |                                 |                                               |                            |                     | 3" = 0.37;                    |                                           |                            |                          | 1.47;     | 12" = 5.88<br>5/8" = 0.0 |                                              |                            |                   |             |
| TUBING INSIDE DIA<br>PURGING EQUIPME            |                               | B = Baller:               |                                 |                                               |                            | P = Electric S      | Submersible P                 | ump;                                      | 3/8" = 0.006<br>PP = Peri  | : 1/2" =<br>staltic Pump |           | 5/6 ≈ 0.0<br>Cher (S     |                                              |                            |                   |             |
| SAMPLEO BY (PRINT) / A                          | Au                            | دالته                     |                                 | Τ.                                            |                            |                     | MPLING DA                     | ATA                                       |                            |                          | Sampli    | NG αΩ΄                   | 26                                           | SAMPLING                   | Λ2                | 2           |
| SAMPLED BY (PRINT) / A PUMP OR TUBING           | M.                            | Neilson                   |                                 |                                               | ER(S) SIGNAT               | URE(S):             | <u>ku</u>                     |                                           | l prete                    | D-FILTERED:              |           | NG 097                   | <u>.                                    </u> | ENDED AT:                  | <u>M</u>          | <u></u>     |
| DEPTH IN WELL (feet):                           | 15                            |                           |                                 | TUBIN                                         | g<br>Rial code: Pe         |                     |                               | _                                         | i                          | Pitration Equipr         | nent Type |                          |                                              | FILE SIZE                  |                   | tura        |
| A.1                                             |                               | DECONTAMINATION           | on: PUM                         | PΥ                                            | $\bigcirc$                 | TUBING              | Y (N (replace                 |                                           |                            |                          | DUPLICA   | ATE: Y                   | ) N                                          |                            | les               | MPLE PUMP   |
|                                                 | LE CONTAINER S                |                           | 1                               | Р                                             | RESERVATIVE                | SAM                 | TOTAL VOL                     | on                                        |                            |                          | INTEND    | ED ANALYSIS<br>METHOD    | AND/OR                                       | SAMPLING EQU<br>CODE       |                   |             |
| SAMPLE ID CODE                                  | # CONTAINERS                  | MATERIAL CODE             | VOLUME (ml                      | .)                                            | USED                       | AD                  | DED IN FIELD (m               | Ł)                                        | FINAL pH (S                | tanard Units)            |           | MEINOO                   |                                              | CODE                       |                   | por mineto) |
| ECOWHOL-001-<br>6W-015<br>ECOWHOL-04-<br>GW-915 | λ                             | Рc                        | 125AC                           |                                               |                            |                     |                               |                                           |                            |                          |           | EPA 537M                 |                                              | APP                        |                   | 25          |
| ERMHYI-M-                                       | <u> </u>                      | Pe                        | each                            | 1                                             |                            | $\forall$           |                               |                                           |                            |                          | n.        | -N 67'                   | ۸۱۲                                          |                            |                   | <u></u>     |
| CM-915                                          | ર                             | יייי                      | Pach                            |                                               |                            | 7                   | SAN                           |                                           |                            |                          | Y.        | 7A65                     | (1 c                                         | APP                        |                   | 25          |
| MS/MSD                                          | 2/                            | 16                        | Pack                            |                                               |                            |                     |                               | $\subseteq$                               |                            |                          | EPA       | B31                      | hζ                                           | APP                        | ١                 | 25          |
| <u> </u>                                        |                               |                           |                                 |                                               |                            |                     |                               |                                           |                            |                          |           |                          |                                              |                            |                   |             |
|                                                 | 1                             | <u>\\</u>                 |                                 | _                                             |                            |                     |                               |                                           |                            | <u> </u>                 |           |                          |                                              |                            |                   |             |
| ncharve:                                        |                               |                           |                                 |                                               |                            |                     |                               |                                           |                            |                          |           |                          |                                              |                            |                   |             |
| REMARKS:                                        |                               |                           |                                 |                                               |                            |                     |                               |                                           |                            |                          |           |                          |                                              |                            |                   |             |
| MATERIAL CODES:                                 | AG = An                       | nber Glass;               | CG = Clear (                    | 3lass;                                        | PE = Polye                 | thylene; F          | P = Polyprop                  | ylene;                                    | S ≃ Silicone               | e; T = Tef               | lon; (    | O = Olher (              | Specify)                                     |                            |                   |             |
| SAMPLING EQUIPA                                 | ENT CODES:                    |                           | er Peristallic<br>everse Flow I |                                               | B = Baile<br>c Pump;       |                     | Bladder Pump<br>Method (Tubin |                                           | iP = Electric<br>y Drain); | Submersibl<br>O = Other  |           |                          |                                              |                            |                   |             |
| ·····                                           |                               |                           |                                 |                                               |                            |                     | of variation of la            |                                           |                            |                          |           |                          |                                              |                            |                   |             |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings < 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

05/20/18



| installation: Ellaworth | AFB M2027            | .0003                                            |                                       |                                                    | Site:                           | 1 (                             | wrr       | enst                    | FTA)                           |                           |                |                            |                         |                                                  |
|-------------------------|----------------------|--------------------------------------------------|---------------------------------------|----------------------------------------------------|---------------------------------|---------------------------------|-----------|-------------------------|--------------------------------|---------------------------|----------------|----------------------------|-------------------------|--------------------------------------------------|
|                         |                      | -                                                |                                       | SA                                                 | MPLE ID: E                      | LOWHO                           |           |                         |                                | 035 DA                    | E 0            | 5/21/                      | 118                     |                                                  |
| MELT NO: WW[            | OFFICE               | .0 /                                             |                                       |                                                    |                                 | RGING DAT                       |           |                         |                                |                           |                |                            |                         |                                                  |
| WELL                    | 2                    | TUBIN                                            | IG VAN                                | OD WEL                                             | L SCREEN INTE                   | RVAL DEPTH:                     |           | ATIC DEPTH              |                                | 22.76                     | 1              | SE PUMP TYPE<br>AILER:     | PP                      |                                                  |
| DIAMETER (inches):      | ,                    | DIAME<br>(TOT) = AMUJO/                          | ETER (Inches)                         | 1920                                               | STATIC DEP                      | TH TO WATE                      |           | WATER (fe               | ACITY                          | 121/6                     | OKB            | ALEX.                      | <u> </u>                |                                                  |
| WELL VOLUME PUR         |                      |                                                  |                                       | f n -27                                            |                                 |                                 | gal/ft    | _                       |                                | ı                         |                |                            |                         |                                                  |
| (only fill out if app   | (icable)             | = (                                              | 1013                                  | η -20                                              | A Liferia V                     | روروي                           | •         | ٠. ٠                    | , [                            |                           |                |                            |                         |                                                  |
| EQUIPMENT VOLUM         | E PURGE: 1           | QUIPMENT VO                                      | L. = PUMP VC                          | LUME + (TUBII                                      | NG CAPACIT                      | Y X T                           | JBING LE  | ENGTH) +                | FLOW CELL                      | VOLUME                    |                |                            |                         | 127                                              |
| - (Only till could app  |                      | ~                                                |                                       | (                                                  |                                 | FI )                            |           | ادو                     | =                              | lao                       | W              |                            | 5                       | 128/18                                           |
| INITIAL PUMP OR TUBING  | 279                  | -                                                | FINAL PUMP OF                         | TUBING                                             | 35                              | PURGI                           |           | 094                     | 5                              | PURGING<br>ENDED AT:      | 101            | TOTAL VOLUME               |                         | 1400                                             |
| DEPTH IN WELL (feet):   | 3 5                  | CUMUL                                            | DEPTH IN WELL                         |                                                    | <u>ララ</u>                       | INITIAT                         |           | U 1, V                  | DISSOLVED                      |                           |                | PURGED (galleri<br>RBIDITY | COLOR                   | ODOR                                             |
| TIME                    | VOLUME<br>PURGED     | VOLUME                                           | RATE                                  |                                                    | (standard<br>units)             | (°C)                            |           | iem .                   | OXYGEN                         | (MV)                      | (1             | NTUs)                      | (describ <del>e</del> ) | (describe)                                       |
|                         | (gallons)-           | PURGED                                           | 人 原門                                  | WATER<br>Treet BIOCI                               |                                 |                                 |           |                         | mg/L                           | 1-5-                      | 11             | 10                         | . 4.                    |                                                  |
| 0950                    | 750                  | 750                                              | 150                                   | 23.11                                              | 5.82                            | 14.3                            |           | 808                     | 0.80                           | -                         |                | 1.2                        | Olesa                   | none                                             |
| 0955                    | 750                  | 1500                                             | 150                                   | 23.21                                              | 5,81                            | 14.1                            |           | 34<br>-D                | 0.5                            | 1 117.4                   |                | 4.7                        |                         |                                                  |
| 1005                    | 1500                 | 3000                                             |                                       |                                                    | 5,69                            | 14.5                            | -         | 33                      | 0.3                            |                           |                | 3.8<br>0 7                 |                         |                                                  |
| 1010                    | 750                  | 3750                                             |                                       |                                                    |                                 | 14.5                            |           | ,70                     | 0.31                           | 20,6                      | <del>-  </del> | 6.3                        |                         | <del>                                     </del> |
| 1015                    | 750                  | 4500                                             | 150                                   |                                                    | 5,51                            | 14.7                            |           | 14                      | 0,30                           |                           | <u> </u>       | <u>0.2</u><br>4.4          | $\vdash$                |                                                  |
| 1026                    | ጊ 50                 | 5 250                                            | 150                                   |                                                    | 5,55                            | 14.9                            |           | 55<br>74                | 0.30                           |                           |                | 0.5                        | H                       |                                                  |
| 1025                    | 750                  | 6000                                             |                                       |                                                    | 5,58<br>5,50                    | 15.1                            | 30<br>31  | -                       | 0,29                           | 7                         |                | 26                         | $\vdash$                |                                                  |
| 1030                    | 750                  | 6750                                             |                                       |                                                    |                                 | 15,2                            | 31        | 14                      | 0.24                           |                           |                | 1,28                       |                         |                                                  |
| 1035                    | 750                  | 7500                                             |                                       |                                                    | 5,46                            | 15,3                            |           | 7.0                     | 0.30                           |                           |                | .82                        |                         |                                                  |
| 1045                    | ၂၄၀၀                 | 9000                                             | <del>- + -</del>                      |                                                    | <b>.</b>                        | 156                             |           | 16                      | 0.2                            |                           |                | 24                         |                         |                                                  |
| 1055                    | 1500<br>450          | 109500                                           |                                       |                                                    |                                 | <u> </u>                        |           | 24                      | 0.30                           |                           |                | 32                         |                         |                                                  |
|                         | 250                  | linoc                                            |                                       |                                                    | -                               | 15.4                            |           | 10                      | 0.3                            | 1 -140.2                  |                | ιδ                         |                         |                                                  |
| 1101                    | 1000                 | 70 00-                                           | 100                                   | 07.                                                | 3, 23                           |                                 | -         |                         |                                |                           |                |                            |                         |                                                  |
|                         |                      |                                                  |                                       |                                                    |                                 |                                 |           |                         |                                |                           |                |                            |                         |                                                  |
|                         |                      |                                                  | 1/4                                   |                                                    | 17.0                            |                                 |           |                         |                                |                           |                |                            |                         |                                                  |
|                         |                      |                                                  |                                       | 5/2                                                | 11/10                           |                                 |           |                         |                                |                           | <u> </u>       |                            |                         |                                                  |
| WELL CAPACITY (G        | Salions Per Foo      | i): 0,75" = 0.02;                                |                                       | 1,25" = 0,06;                                      |                                 |                                 | 4" = 0.6  | •                       | 1.02; 6" = 1                   |                           |                |                            |                         |                                                  |
| TUBING INSIDE DIA       |                      | B = Bailer;                                      | 0.0006; 3/10<br>BP = Bladde           |                                                    | 1/4" = 0.0026;<br>SP = Electric | 5/16" = 0.<br>Submersible P     |           | /8" = 0.000<br>PP = Per | ô; 1/2" = 0<br>ristaltic Pump; |                           |                |                            |                         |                                                  |
| PORGING EQUIPME         | ENT CODEO.           | D Denoi,                                         |                                       |                                                    |                                 | MPLING DA                       |           |                         |                                | SAMPLING .                |                | SAMPLING                   | 7                       |                                                  |
| SAMPLED BY (PRINT) /    | AFFILIATION:         | rek Tun                                          | ich s                                 | AMPLER(S) SIGNAT                                   | rure(s):                        | Fel                             | 1/4       | NB.                     | / 1                            | NITIATED AT:              | 02             | ENDED AT:                  | 110                     | <u> </u>                                         |
| PUMP OR TUBING          | 3                    |                                                  | T                                     | JBING                                              |                                 |                                 |           | FIEL                    | D-FILTERED;                    |                           |                | Filter Size                |                         | munt                                             |
| DEPTH IN WELL (feet):   |                      | DECONTAMINATION                                  |                                       | ATERIAL CODE: PE                                   | TUBING                          | Y (repin                        | ed        |                         | Filtretion Equipm              |                           | Y (N           | 3                          |                         |                                                  |
| SAMI                    | LE CONTAINER S       |                                                  | 1 10111                               | <u>· (-)                                      </u> |                                 | MPLE PRESERVA                   |           |                         |                                |                           |                |                            |                         | SAMPLE PUMP                                      |
|                         | & CONTAINERS         | MAYERIAL CODE                                    | VOLUME (m) \                          | PRESERVATIV                                        | E                               | TOTAL VOL                       |           | FINAL pH (              | Stanard Units)                 | INTENDED ANALYS<br>METHOD | IS AND/OR      | SAMPLING EQ<br>CODE        | UIPMENT I               | per minute)                                      |
| SAMPLE ID COO€          | # CONTAINERS         | MATERIAL CODE                                    | VOLUME (IIIL)                         | USED                                               | A                               | DDED IN FIELD (r                | nL)       |                         |                                |                           |                |                            |                         |                                                  |
| BLSWHOI-                | 5 2                  | PΒ                                               | 125                                   |                                                    |                                 |                                 | j         |                         |                                | EPA 637                   | M              | APP                        |                         | 150                                              |
| 003-6-W-0               | 35 L                 | 10                                               | 105                                   |                                                    | $\overline{}$                   |                                 |           |                         |                                |                           |                | <u> </u>                   | -+                      |                                                  |
|                         |                      | _ /                                              |                                       |                                                    | -   >                           | Sow                             | .         |                         |                                |                           |                | )                          | İ                       |                                                  |
|                         | $\vdash \rightarrow$ |                                                  |                                       |                                                    |                                 |                                 | ${} =$    |                         |                                |                           | 7              | AZ                         |                         |                                                  |
|                         |                      | <del>                                     </del> | <del>-  </del>                        |                                                    |                                 |                                 | 一         | $\overline{}$           |                                |                           |                |                            |                         |                                                  |
|                         |                      |                                                  | $\rightarrow$                         | _                                                  |                                 |                                 |           |                         |                                |                           |                |                            |                         | _                                                |
|                         | 1011 -               | <u> </u>                                         | ـــــــــــــــــــــــــــــــــــــ |                                                    |                                 |                                 | 1         |                         |                                |                           |                |                            |                         |                                                  |
| REMARKS:                | im pr                | d comp                                           | wre,                                  |                                                    |                                 |                                 |           |                         |                                |                           |                |                            |                         |                                                  |
|                         |                      |                                                  |                                       |                                                    |                                 |                                 |           |                         |                                |                           |                |                            |                         |                                                  |
| MATERIAL CODES          |                      |                                                  | G = Clear Gla                         |                                                    | yethylene;                      | PP = Polypro                    |           | S = Silico              |                                |                           | (Specify)      |                            |                         |                                                  |
| SAMPLING EQUIP          | MENT CODES           |                                                  | Peristaltic Pur<br>Ferse Flow Per     | istaltic Pump;                                     | SM = Strav                      | = Bladder Pum<br>v Method (Tubi | ng Gravit | y Drain);               | ic Submersibl<br>O == Other    |                           |                |                            |                         |                                                  |
|                         |                      |                                                  |                                       |                                                    |                                 | e of variation of               | 1 145     | oanaouth.               | readings                       |                           |                |                            |                         |                                                  |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

M2027.0003

@ 05/24

C-127



| nstallation: Ellsworth                  | AFB M2027                     | ,0003            |                                   |                     |                           | Site                | 1 (6                                               | Mr                  | ent                      | FTA)                              |                                        |                                        | , , , , , , , , , , , , , , , , , , ,   |                                                  |                            |
|-----------------------------------------|-------------------------------|------------------|-----------------------------------|---------------------|---------------------------|---------------------|----------------------------------------------------|---------------------|--------------------------|-----------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|--------------------------------------------------|----------------------------|
| WELL NO: MW                             | IRDE(                         | 010              | ζ                                 | -                   | SAM                       | WPLE ID:            | LWS                                                | 5LSW                | HO1-                     | 004 - G                           | W-0 18AT                               | <u> 5</u>                              | 1211                                    | 8                                                |                            |
|                                         | <u> </u>                      |                  |                                   |                     |                           | PU                  | RGING DAT                                          |                     |                          |                                   |                                        |                                        |                                         |                                                  |                            |
| DIAMETER (Inches):                      | da                            | TUB              | ING 94                            | inc                 | D WELL                    | L SCREEN INT        | ERVAL DEPTH:                                       | S1                  | TATIC DEPTH<br>WATER (fe | H BTOCK 1                         | 5.02                                   | PURG<br>OR BA                          | E PUMP TYPE<br>VILER:                   | P                                                |                            |
| WELL DIAMETER (Inches): WELL VOLUME PUR | 3F: 1 WELL \                  | OLUME = (TC      | VETER (inches):                   | EPTH                | BTOC -                    | STATIC DE           | TH TO WATE                                         | R) X Y              | WELL CAP                 | ACITY                             |                                        |                                        |                                         |                                                  |                            |
| (only fill out if appl                  |                               | = (              | 20.3                              | 6 F                 | -15/                      | 02f1) x             | 0.163                                              | gal/it              | - O                      | <b>.</b> 87,                      | d                                      |                                        |                                         |                                                  |                            |
| EQUIPMENT VOLUM                         | E PURGE: 1 E                  | QUIPMENT V       | OL. = PUMP                        | /OLUM!              | E + (TUBIN                | IG CAPACI           | Y X T                                              | JBING L             | ENGTH) +                 | FLOW CELL                         | VOLUME                                 |                                        |                                         | 1                                                | ī                          |
| - (only fill out if app                 |                               |                  |                                   |                     | = (                       | ×                   | F+)-                                               |                     | gai                      |                                   | gal                                    | ······································ | ļ                                       | 5/21/                                            | 18                         |
| INITIAL PUMP OR TUBING                  | 3 62                          | ,                | FINAL PUMP                        | OR TUBIA            | VG                        | <u> </u>            | PURG                                               |                     | 1 10                     | 50                                | PURGING<br>ENDED AT:                   | 500                                    | OTAL VOLUME<br>URGED (معادم             | mL L                                             | 1000                       |
| DEPTH IN WELL (feel):                   | 18                            | CUMUL            | DEPTH IN WI                       |                     | DEPTH                     | Ď<br>pH             | INITIA                                             | ED AT:              | ND.                      | DISSOLVE                          |                                        |                                        | BIDITY                                  | COLOR                                            | COOR                       |
| TIME                                    | VOLUME<br>PURGED<br>(Gallons) | VOLUME<br>PURGED | RA                                | TE N                | TO<br>WATER<br>(set BTOC) | (standard<br>un(ls) | (°C)                                               | μ                   | Sicm                     | OXYGEN<br>mg/L                    | (mV)                                   | (1)                                    | TUs}                                    | (describe)                                       | (describe)                 |
| 1455                                    | 1000                          | 100              |                                   | _                   | 15.2                      | 7.27                | 13.2                                               | 7                   | 46                       | 8.5                               | 14.6                                   | 1                                      | 9.0                                     | cleus                                            | none                       |
| 1500                                    | 1000                          | 2.00             |                                   | ic                  | 15.2                      | 7,37                | 12.7                                               | 7                   | υ5                       | 8.10                              |                                        |                                        | 1.7                                     |                                                  |                            |
| 1505                                    | 1000                          | 3000             |                                   | O                   | 15.2                      | 7,39                | 12.4                                               | コ                   | เชี                      | 8,8                               |                                        |                                        | (,3                                     | 1                                                |                            |
| 1510                                    | 1000                          | 400€             | 3 20                              | Ü                   | 15.2                      | 7,42                | 12.4                                               | ٦.                  | 17_                      | 8,4                               | 73,9                                   | 9                                      | .74                                     | <del>                                     </del> |                            |
|                                         |                               |                  |                                   |                     |                           |                     |                                                    |                     |                          |                                   |                                        |                                        |                                         |                                                  |                            |
|                                         |                               | ,                |                                   | _                   |                           |                     |                                                    |                     |                          |                                   |                                        |                                        |                                         |                                                  |                            |
|                                         |                               |                  |                                   | _                   |                           |                     |                                                    |                     |                          |                                   |                                        |                                        |                                         |                                                  |                            |
|                                         |                               |                  |                                   | <del> </del> -      |                           |                     | <u> </u>                                           |                     |                          |                                   |                                        |                                        |                                         | 1                                                |                            |
|                                         |                               |                  |                                   | -                   |                           |                     | <del>                                       </del> |                     |                          |                                   |                                        |                                        |                                         |                                                  |                            |
|                                         |                               |                  |                                   | $\dashv$            |                           |                     | <del>                                     </del>   |                     |                          |                                   |                                        |                                        | *************************************** |                                                  |                            |
|                                         |                               |                  |                                   | _                   |                           |                     | 1                                                  | $\vdash$            |                          | <u> </u>                          |                                        |                                        |                                         |                                                  |                            |
|                                         |                               |                  |                                   | RL)                 | - TU                      | 8                   | 1                                                  | <u> </u>            |                          | <u> </u>                          |                                        |                                        |                                         |                                                  |                            |
|                                         |                               |                  |                                   | 5                   | <del>}-, .</del>          |                     |                                                    |                     |                          |                                   |                                        |                                        |                                         |                                                  |                            |
|                                         |                               |                  |                                   |                     | _,,                       |                     |                                                    |                     |                          |                                   |                                        |                                        |                                         |                                                  |                            |
|                                         |                               |                  |                                   |                     |                           |                     |                                                    |                     |                          |                                   |                                        |                                        |                                         | ļ                                                |                            |
|                                         |                               |                  |                                   |                     |                           |                     |                                                    | <u> </u>            |                          |                                   |                                        |                                        |                                         |                                                  |                            |
| WELL CAPACITY (G                        | allons Per Foo                | t): 0.75" = 0.02 | 2; 1" = 0,0                       | ; 1.2               | .5" = 0.0B;               | 2" = 0.16           | 3" = 0.37;                                         | 4" = 0,6            | 35; 5°≃<br>2/0°~0.00     | 1,02; 6" =<br>6; 1/2" = 0         | 1.47; $12" = 5.8$<br>1.010; $5/8" = 0$ |                                        |                                         |                                                  |                            |
| TUBING INSIDE DIA                       | . CAPACITY (C<br>NT CODES:    | B = Baller;      | : 0.0006; 3<br>8P ≈ Blac          | /16" = 0<br>der Pun | .0014; 1<br>np; ES        | SP = Electino       | Submersible r                                      | ump;                | PP = Pe                  | ristaltic Pump                    |                                        |                                        |                                         |                                                  |                            |
|                                         |                               |                  |                                   |                     |                           | S/                  | MPLING DA                                          | ATA                 |                          | , 1                               | SAMPLING                               | - 11                                   | SAMPLING                                | 1.5                                              | 10                         |
| SAMPLED BY (PRINT) / A                  | FFILIATION:                   | Frell Tu         | obler                             | SAMPLE              | R(S) SIGNAT               | TURE(S):            | Brek                                               | 1 w                 | Blest                    |                                   | INITIATED AT:                          |                                        | ENDED AT:                               | 15                                               | mm L                       |
| PUMP OR TUBING                          |                               | 1.8              |                                   | TUBING              | AL CODE: PE               |                     |                                                    |                     | FIE                      | LD-FILTEREO:<br>Filtration Equipm |                                        | <b>⊚</b> _                             | FIRM SIZE                               |                                                  | HUI                        |
| DEPTH IN WELL (feel):                   | FIELD                         | DECONTAMINATIO   | IN: PUMP                          | <u> </u>            | <b>(</b> )                | TUBING              |                                                    |                     |                          |                                   | OUPLICATE: \                           | (N                                     | }                                       |                                                  | ALIBI E PURE               |
| SAME                                    | LE CONTAINER S                | PECIFICATION     |                                   |                     |                           |                     | MPLE PRESERV                                       | MOITA               |                          |                                   | INTENDED ANALYS                        | S AND/OR                               | SAMPLING EG                             | QUIPMENT F                                       | AMPLE PUMP<br>LOW RATE (mL |
| SAMPLE ID CODE                          | # CONTAINERS                  | MAYERIAL CODE    | VOLUME (mL)                       |                     | USED                      | 1                   | TOTAL VOL                                          | nL)                 | FINAL pH i               | (Stanard Units)                   | METHOD                                 |                                        | COD                                     | E                                                | per minute)                |
| EUSWHO1-<br>004-GW-0                    | 18 2                          | PE               | 125                               |                     | \                         |                     |                                                    |                     |                          |                                   | EPA 537)                               | 4                                      | API                                     |                                                  | 200                        |
|                                         |                               |                  |                                   |                     |                           |                     | Son)                                               |                     |                          |                                   |                                        |                                        |                                         | 1                                                |                            |
|                                         | <u></u>                       |                  |                                   | <u> </u>            |                           | `                   |                                                    | $\leftarrow \vdash$ |                          |                                   |                                        | <del></del>                            | Sta                                     | <del>,  </del>                                   |                            |
|                                         |                               |                  |                                   |                     |                           |                     |                                                    | $\rightarrow$       | _                        |                                   |                                        |                                        |                                         |                                                  |                            |
|                                         | <u> </u>                      |                  |                                   |                     |                           |                     |                                                    |                     |                          | <del>\</del>                      |                                        | -                                      |                                         |                                                  |                            |
|                                         | <u> </u>                      | L                | 1.00                              | <u> </u>            |                           |                     |                                                    |                     |                          |                                   |                                        |                                        |                                         |                                                  |                            |
| Lacrona W                               | ell pu                        | d con            | well !                            | •                   |                           |                     |                                                    |                     |                          |                                   |                                        |                                        |                                         |                                                  |                            |
| REMARKS:                                |                               |                  |                                   |                     |                           |                     |                                                    |                     |                          |                                   |                                        |                                        |                                         |                                                  |                            |
| MATERIAL CODES                          | ; AG = A                      | mber Glass;      | CG = Clear G                      | iass;               | PE = Poly                 | yethylene;          | PP = Polypro                                       |                     |                          |                                   |                                        | (Specify)                              |                                         |                                                  |                            |
| SAMPLING EQUIP                          |                               | APP = Afte       | er Peristaltic I<br>overse Flow F |                     | B = Ba<br>c Pump:         |                     | = Bladder Purr<br>w Melhod (Tub                    |                     |                          | ric Submersib<br>O = Other        |                                        |                                        |                                         |                                                  |                            |
|                                         |                               | METE - RE        | Agrae Closs C                     |                     | 1/11-11-0                 |                     | ne of variation of                                 |                     |                          | e readings                        |                                        |                                        |                                         |                                                  |                            |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016



| Installation: Elisworth                         | AFB M202                      | 7.0003                    |                                    |                           | Site:                           | Sife                                 | 1- Cui                                     | rent                                | FIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |             | =          |           |
|-------------------------------------------------|-------------------------------|---------------------------|------------------------------------|---------------------------|---------------------------------|--------------------------------------|--------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|------------|-----------|
| WELL NO: MW                                     | 93010                         | 7                         |                                    | S                         | AMPLE ID: EL                    | 4-10 الملك                           | 1W930107                                   | - 6W- 0                             | 34 DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · 5-15               | 12          | (N)        | -         |
|                                                 | •                             |                           |                                    |                           |                                 | RGING DAT                            |                                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PURGE PUMP TYP       | <u> </u>    |            |           |
| WELL DIAMETER (inches): WELL VOLUME PUR         | 30                            | DIA                       | BING<br>METER (inches):            | 3/8" 3                    | (15 ft -                        | ERVAL DEPTH:                         | TO WATER (%                                | H<br>net BTOC):                     | 31.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OR BAILER:           |             | m          |           |
|                                                 |                               |                           |                                    |                           |                                 |                                      |                                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |            |           |
| (only (1) out if app                            |                               |                           |                                    |                           |                                 |                                      | galditi = O·                               | . •                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |            |           |
| EQUIPMENT VOLUM                                 |                               |                           |                                    |                           | ING CAPACIT                     |                                      |                                            | FLOW CELL V                         | VOLUME<br>gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |             |            |           |
| (only fill out if ap                            | plicable)                     | NIA                       | - =                                | gal = (                   | x                               | Ft )                                 | 7 gas                                      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - A                  |             |            |           |
| INITIAL PUMP OR TUBING<br>DEPTH IN WELL (feet): | G Z                           | 30                        | FINAL PUMP O<br>DEPTH IN WEL       |                           | <u>2</u> 72                     | PURGI<br>INITIAT                     | ED AT:                                     | 34                                  | PURGING<br>ENDED AT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOTAL VOLUM          |             | 14<br>oper |           |
| TIME                                            | VOLUME<br>PURGED<br>(gallons) | CUMUL<br>VOLUME<br>PURGED |                                    | то                        | pH<br>(slandard<br>units)       | TEMP.                                | COND.  μ8/cm                               | DISSOLVED OXYGEN mg/l.              | ORP<br>(mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TURBIDITY<br>(NTUs)  | (describe)  |            |           |
| 1534                                            |                               | feations).                |                                    | Heet BTOC                 |                                 |                                      |                                            |                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | Tuttic      | 7          |           |
| 1533                                            | 0.43                          | 0.43                      | 10.0<br>3 0.0                      | V                         | 8.21                            | 17.7                                 | 0.128                                      | 3.38                                | 68.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 379                  | 1           |            |           |
| 1540                                            | 0-12                          | ناما.0                    |                                    |                           | +*                              | 16.9                                 | 0.124                                      | 3.13                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 228                  |             |            |           |
| 1542                                            | 0.12                          | 0.7                       | 2 0.0                              |                           | 8.25                            | 16.7                                 | 0.119                                      | 3.60                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | -           |            |           |
| 1545                                            |                               | 0.9                       |                                    |                           | 3.23                            | 16.6                                 | 0.115                                      | 2.89                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83,5<br>57.2         | Clouds      |            |           |
| 1550                                            | 0 - 30                        | <u>। ८२</u><br>।. ५५      |                                    | 6 32.5<br>6 31.90         | 3.24<br>3.21                    | 163                                  | 0.119                                      | 2.7                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 164                  | clair       | none       |           |
| 1537                                            | 6.24                          | 1, 45                     | 0.0                                | \$ 01.10                  | 1,                              | 1 48.1                               | <u> </u>                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |            |           |
|                                                 |                               | ****                      |                                    |                           |                                 |                                      |                                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |            |           |
|                                                 |                               |                           | -                                  |                           |                                 |                                      |                                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |            | İ         |
|                                                 |                               |                           |                                    |                           |                                 |                                      |                                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |            | ı         |
|                                                 |                               |                           |                                    |                           | (                               | 772                                  |                                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |            | ı         |
|                                                 |                               |                           |                                    |                           |                                 |                                      | ***************************************    | -                                   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                      |             |            | ĺ         |
|                                                 |                               |                           |                                    |                           |                                 |                                      |                                            | ļ                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |            |           |
|                                                 |                               |                           |                                    |                           |                                 |                                      |                                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             | <b>3</b>   |           |
| WELL CAPACITY (G                                | allons Per Foo                | t): 0.75" = 0.02          | 2; 1' = 0,04;                      | 1.25" = 0.06              | ; 2" = 0.16;                    | 3" = 0.37;                           | 4" = 0.65; 5" =                            | 1,02; 6 = 1                         | .47; 12° = 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                    |             |            |           |
| TUBING INSIDE DIA                               | A, CAPACITY (G                | Sal./Ft.): 1/8" =         | 0.0006; 3/1<br>BP = Bladde         | 6" = 0,0014;              | 1/4" = 0,0026;                  | ; 5/16" = 0.0<br>Submersible Po      | 004; 3/8" = 0.00                           | 6; 1/2" = 0.0<br>ristallic Pump;    | 010; 5/8" = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 016                  |             |            |           |
|                                                 |                               |                           |                                    |                           |                                 | MPLING DA                            |                                            | ls.                                 | AMPLING ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLING             | 1.00        | -,         | [         |
| SAMPLED BY (PRINT) //                           | AFFILIATION: A                | willis/a                  | 1. neibon s                        | AMPLER(S) SIGN            | TURE(S):                        | fr.                                  | >                                          | 41                                  | NITIATED AT: 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54 ENDED AT:         | 155         |            |           |
| PUMP OR TUBING<br>DEPTH IN WELL (feet):         | 39                            | 1                         | ľ                                  | UBING<br>IATERIAL CODE: F | PE .                            |                                      | FIEL                                       | LD-FILTERED:<br>Filtration Equipmen | Y (<br>int Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Filter Size          |             | mm         |           |
|                                                 |                               | DECONTAMINATIO            | N: PUMP                            | <u> ү</u>                 | DNIBUT                          |                                      |                                            | Đ                                   | UPLICATE: Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>             | 84          | MPLE PUMP  |           |
| SAME                                            | PLE CONTAINER S               | PECIFICATION              |                                    | PRESERVATIV               |                                 | MPLE PRESERVA<br>TOTAL VOL           |                                            |                                     | NTENDED ANALYSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S AND/OR SAMPLING EC | QUIPMENT FI |            |           |
| SAMPLE ID CODE                                  | # CONTAINERS                  | MATERIAL CODE             | VOLUME (mL)                        | USED                      |                                 | DDED IN FIELD (m                     |                                            | Stanard Units)                      | METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |             | ,          |           |
| ELSN/101-                                       | 24 2                          | PE                        | 125mg                              |                           |                                 |                                      |                                            |                                     | EPA 537N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * O                  |             | D-06 g     | ul ~ 250n |
| 7.3.3.                                          | <u> </u>                      |                           | rano (                             |                           | 1                               | ×1.                                  |                                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |            |           |
|                                                 |                               |                           |                                    |                           | <u> </u>                        | 74CW                                 |                                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |            |           |
|                                                 | $\rightarrow$                 | <b>&amp;</b>              |                                    |                           |                                 |                                      | $\rightarrow$                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 34          |            |           |
|                                                 |                               | 3                         |                                    |                           |                                 |                                      |                                            | $\overline{}$                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |            |           |
|                                                 | <u> </u>                      |                           |                                    | 1 -                       |                                 |                                      |                                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             | .,         |           |
| REMARKS:                                        | オル                            | lon5001                   | due 10                             | aepr                      | المتارا ج                       | er                                   |                                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |            |           |
|                                                 |                               |                           |                                    |                           |                                 |                                      |                                            |                                     | - A A*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Canalia)            |             |            |           |
| MATERIAL CODES<br>SAMPLING EQUIP                |                               |                           | CG ≃ Clear Gia<br>r Peristaltic Pu |                           |                                 | Bladder Pump                         |                                            | ic Submersible                      | Pump;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (opedity)            |             |            |           |
|                                                 |                               |                           |                                    | istaltic Pump;            | SM = Straw<br>Criteria for rang | Method (Tubin<br>e of variation of t | g Gravity Drain);<br>ast three consecutive | O = Other (5<br>readings            | Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |             |            | ı         |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

C-129 05/16



| Installation: Ellisworti                                                                                          | DUDGING DATA                                                                                                                                                                                                                                                                                 |                   |                       |              |                      |                               |                                       |             |                  |                        |                   |                                                |          |                               |                     |                                           |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|--------------|----------------------|-------------------------------|---------------------------------------|-------------|------------------|------------------------|-------------------|------------------------------------------------|----------|-------------------------------|---------------------|-------------------------------------------|
| WELL NO: MW                                                                                                       | PURGING DATA  PURGING DATA  TUBING 1/4 IN OD WELL SCREEN INTERVAL DEPTH 16 49 PURGE PUMP TYPE  O TUBING 1/4 IN OD WELL SCREEN INTERVAL DEPTH 16 49 PURGE PUMP TYPE  O TUBING 1/4 IN OD WELL SCREEN INTERVAL DEPTH 16 49 PURGE PUMP TYPE  O TUBING 1/4 IN OD WELL SCREEN INTERVAL DEPTH 16 49 |                   |                       |              |                      |                               |                                       |             |                  |                        |                   |                                                |          |                               |                     |                                           |
|                                                                                                                   |                                                                                                                                                                                                                                                                                              |                   |                       |              |                      |                               |                                       | TA          |                  |                        |                   |                                                |          |                               |                     |                                           |
| WELL<br>DIAMETER (Inches):                                                                                        |                                                                                                                                                                                                                                                                                              | D                 | IAMETER (inch         | es):         | 14                   | 0,/3 <sub>Ft</sub>            | 30,13 Ft                              | то          | WATER (fo        | oet BTOC);             | 15,               | યવ                                             | PU<br>OR | RGE PUMP TYP<br>BAILER:       | PP                  |                                           |
|                                                                                                                   |                                                                                                                                                                                                                                                                                              | •                 |                       |              |                      |                               |                                       | -           |                  |                        |                   |                                                |          |                               |                     |                                           |
| (only 59 out if ap                                                                                                | plicable}                                                                                                                                                                                                                                                                                    | =                 | ٠40.                  | 38           | r - i5               | , <b>Կ</b> զ <sup>Ft)</sup> × | 0.163                                 | gal/1t ≖    | · 4,(            | 36                     | gal               |                                                |          |                               |                     |                                           |
| EQUIPMENT VOLUM                                                                                                   |                                                                                                                                                                                                                                                                                              | EQUIPMENT         | VOL. = PUM            | P VOLU       | ME + (TUBII          | NG CAPACI                     | ry x r                                | UBING LE    | NGTH) +          | FLOW CE                | LL VOL            | JME                                            |          |                               |                     | AT                                        |
|                                                                                                                   | plicable)                                                                                                                                                                                                                                                                                    |                   | <u></u> <u></u>       |              | gal (                | х                             |                                       | À           | go!              |                        |                   | gal                                            |          |                               | 5                   | 4/18                                      |
| INITIAL PUMP OR TUBING<br>DEPTH IN WELL (feel):                                                                   | 3 5                                                                                                                                                                                                                                                                                          | ,                 | FINAL PUI<br>DEPTH IN | WELL (fee    |                      | 35                            | PURG<br>INITIA                        | TED AT:     | 113              | <del></del>            |                   | PURGING<br>ENDED AT:                           |          | TOTAL VOLUM<br>PURGED (galler |                     | 21,000                                    |
| TIME                                                                                                              | VOLUME<br>PURGED                                                                                                                                                                                                                                                                             | CUMUL             |                       | URGE<br>RATE | DEPTH<br>TO          | pli<br>(standard              | TEMP.                                 | CON<br>Sug  |                  | DISSOLV                |                   | ORP<br>(mV)                                    | l        | URBIDITY<br>(NTUs)            | COLOR<br>(describe) | ODOR<br>(describe)                        |
|                                                                                                                   | (gallone)<br>• (gallone)                                                                                                                                                                                                                                                                     | PURGE<br>(sellert | imh i                 | ar)m         | WATER<br>Treet BTOCH | unitr)                        |                                       | ,           |                  | mg/L                   |                   |                                                |          |                               |                     |                                           |
| 1140                                                                                                              | 3 <i>50</i> 0                                                                                                                                                                                                                                                                                | 3,50              |                       | 50           | 18.18                | 7.38                          | 13.3                                  | 293         |                  | 0.8                    | -                 | 24.1                                           | 2        | 95                            | Cloud               | none                                      |
| 1150                                                                                                              | 3500                                                                                                                                                                                                                                                                                         | 7,00              |                       | 350          | 19,03                | 7,34                          | 13.9                                  | 312         |                  | 0.4                    | ~                 | 209                                            |          | 14                            | cle                 | 4 /                                       |
| 1200                                                                                                              | 3500                                                                                                                                                                                                                                                                                         | 10,50             |                       |              | 19,85                | 7,39                          |                                       | 317         | _                | 0.3                    | $\overline{}$     | 18.7                                           |          | 3.4<br>20                     | $\vdash$            | $\vdash$                                  |
| 1210 3500 14,000 350 20,41 7.49 13.0 3334 0,24 16.6 22.9 1215 1750 15,750 350 20,30 7.55 13.5 3468 0.28 14.0 31.4 |                                                                                                                                                                                                                                                                                              |                   |                       |              |                      |                               |                                       |             |                  |                        |                   |                                                |          |                               |                     |                                           |
| 1220 1750 17,500 350 20.21 7.57 13.8 3537 0.32 12.1 8.45                                                          |                                                                                                                                                                                                                                                                                              |                   |                       |              |                      |                               |                                       |             |                  |                        |                   |                                                |          |                               |                     |                                           |
| 1225 1750 19,250 356 20,12 7.57 13.7 3578 0.26 10.0 10.4                                                          |                                                                                                                                                                                                                                                                                              |                   |                       |              |                      |                               |                                       |             |                  |                        |                   |                                                |          |                               | 17-                 |                                           |
| 1230 1750 21,000 350 20,07 7,58 13.5 3565 0.18 7.1 5.57                                                           |                                                                                                                                                                                                                                                                                              |                   |                       |              |                      |                               |                                       |             |                  |                        |                   |                                                |          |                               | 1                   |                                           |
| 1230 1130 21,000 830 20,01 1,58 13.5 3565 0.18 1.1 3.57                                                           |                                                                                                                                                                                                                                                                                              |                   |                       |              |                      |                               |                                       |             |                  |                        |                   |                                                |          |                               |                     |                                           |
|                                                                                                                   |                                                                                                                                                                                                                                                                                              |                   |                       |              |                      |                               |                                       |             |                  |                        |                   |                                                |          |                               |                     |                                           |
|                                                                                                                   |                                                                                                                                                                                                                                                                                              |                   |                       |              |                      |                               |                                       |             |                  |                        |                   |                                                |          |                               |                     |                                           |
|                                                                                                                   |                                                                                                                                                                                                                                                                                              |                   |                       |              |                      |                               |                                       |             |                  |                        |                   |                                                |          | ·····                         | <u> </u>            | <b> </b>                                  |
|                                                                                                                   | ^                                                                                                                                                                                                                                                                                            | ·                 |                       |              |                      |                               |                                       |             |                  |                        | $\dashv$          |                                                |          |                               | <u> </u>            | <b></b>                                   |
|                                                                                                                   | J.                                                                                                                                                                                                                                                                                           | 110               |                       | İ            |                      |                               |                                       |             |                  |                        |                   |                                                |          | <del> </del>                  |                     |                                           |
|                                                                                                                   | 51                                                                                                                                                                                                                                                                                           | ulto              |                       |              |                      |                               |                                       |             |                  |                        |                   |                                                |          |                               |                     |                                           |
| ,                                                                                                                 |                                                                                                                                                                                                                                                                                              |                   |                       |              |                      |                               |                                       |             |                  |                        |                   |                                                |          |                               |                     | L                                         |
| WELL CAPACITY (G:<br>TUBING INSIDE DIA.                                                                           |                                                                                                                                                                                                                                                                                              | •                 |                       |              |                      | 2" = 0.16;<br>4" = 0.0026;    | 3" = 0.37;<br>5/16" = 0.0             |             | 5" = 1<br>0.006; | · ·                    | : 1,47;<br>0.010: | 12" = 5.86<br>5/8" = 0.6                       |          |                               |                     |                                           |
| PURGING EQUIPME                                                                                                   |                                                                                                                                                                                                                                                                                              | B = Bailer        | BP = Bla              |              |                      | = Electric S                  | Submersible Pu                        | ump; F      |                  | stallic Pump           |                   | ) = Other (S                                   |          |                               |                     |                                           |
| SAMPLED BY (PRINT) / AI                                                                                           | EEN VATION: 1                                                                                                                                                                                                                                                                                | سيت ا             |                       | SAME         | ER(8) SIGNATU        |                               | MPLING DA<br>RUK VI                   |             | 1                |                        | SAMPLI            | NG 12 2                                        | 2 1      | SAMPLING                      | 123                 | 7                                         |
| PUMP OR TUBING                                                                                                    | -                                                                                                                                                                                                                                                                                            | rek /u            | <u>wlski</u>          | TUBING       |                      | AC(0), //                     | nu vi                                 | u Blri      |                  | -FILTERED:             | INITIATE          | NG 123                                         | <b>3</b> | ENDED AT:                     | 123                 | mm                                        |
| DEPTH IN WELL (feet):                                                                                             | -                                                                                                                                                                                                                                                                                            | <u> </u>          |                       | MATER        | IAL CODE: PE         |                               |                                       |             | ſ                | itration Equipo        |                   |                                                |          |                               |                     |                                           |
| SAMPI                                                                                                             | FIELD D                                                                                                                                                                                                                                                                                      | ECONTAMINATION    | ON; PUMP              | T            | <u> </u>             | TUBING                        | Y (N (replace                         | ***         |                  |                        | DUPLICA           | ATE: Y                                         | <u>@</u> | 3                             | Isa                 | MPLE PUMP                                 |
|                                                                                                                   |                                                                                                                                                                                                                                                                                              |                   |                       | PF           | RESERVATIVE          | 5,0,                          | TOTAL VOL                             | T           |                  |                        | INTEND            | ED ANALYSIS<br>METHOD                          | AND/OR   | SAMPLING EQU<br>CODE          | - 1                 |                                           |
| SAMPLE ID CODE                                                                                                    | # CONTAINERS                                                                                                                                                                                                                                                                                 | MATERIAL CODE     | VOLUME (mL)           |              | USEO                 | Alb                           | DED IN FIELD (m)                      |             | NAL PH (St       | tanard Units)          |                   | METHOD                                         |          |                               |                     | pw. 1. 14 . 14 . 14 . 14 . 14 . 14 . 14 . |
| ELSWH 02.                                                                                                         | 2                                                                                                                                                                                                                                                                                            | PE                | 125                   |              | <u>\</u>             |                               |                                       |             |                  |                        |                   | EPA 537M                                       |          | APF                           | ,                   | 350                                       |
|                                                                                                                   |                                                                                                                                                                                                                                                                                              |                   |                       |              |                      | >                             | Sow                                   |             |                  |                        |                   |                                                | ×        | 1                             |                     |                                           |
|                                                                                                                   |                                                                                                                                                                                                                                                                                              |                   |                       |              |                      |                               |                                       | //          |                  |                        |                   |                                                |          | 7                             |                     |                                           |
|                                                                                                                   | /02                                                                                                                                                                                                                                                                                          |                   |                       | <u> </u>     |                      |                               |                                       |             | \                |                        |                   |                                                |          |                               | $\rightarrow$       |                                           |
|                                                                                                                   | Well put not complete. TOC is 0.4' ags.                                                                                                                                                                                                                                                      |                   |                       |              |                      |                               |                                       |             |                  |                        |                   |                                                |          |                               |                     |                                           |
| REMARKS:                                                                                                          | U pad                                                                                                                                                                                                                                                                                        | nat c             | omple                 | ≯e,          | IOC.                 | 13 01                         | 4' a                                  | <b>3</b> 5, |                  |                        |                   |                                                |          |                               |                     |                                           |
| MATERIAL CODES:                                                                                                   | AG = Am                                                                                                                                                                                                                                                                                      | ber Glass; C      | G ≃ Clear G           | llass:       | PE == Polye          | hvlene:                       | PP = Polypropy                        | dene s      | : Silicono       | ; T=Te8                | on, t             | D = Other (8                                   | Speciful |                               |                     |                                           |
| SAMPLING EQUIPME                                                                                                  |                                                                                                                                                                                                                                                                                              | APP = Afte        | r Peristaltic I       | ump;         | B = Baile            | r; BP=                        | Bladder Pump;                         | ESP =       | Electric         | Submersibl             | e Pump            | 1                                              | -Povily) |                               |                     |                                           |
|                                                                                                                   |                                                                                                                                                                                                                                                                                              | RFPP = Re         | verse Flow P          |              |                      |                               | viethod (Tubing<br>of variation of la |             |                  | O = Other  <br>eadings | Specify           | <u>,                                      </u> |          |                               |                     |                                           |

pH; ± 0.2 unils Temperature; ± 0.2 °C Specific Conductance; ± 5% Dissolved Oxygen; all readings < 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity; all readings < 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016





| Installation: Elfswort             | Sale A Re 2 ( p on L # 3 )   Sale A Re 2 ( p on L # 3 )     WELL NO: MW18 PFC 0 2 02   SAMPLE 10: ELS W11 0 2 - 00 2 - Gw - 035   DATE: 05 10 4/18     PURGING DATA |                          |             |                  |                        |                     |                               |              |              |                  |          |              |                                               |                          |          |              |        |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|------------------|------------------------|---------------------|-------------------------------|--------------|--------------|------------------|----------|--------------|-----------------------------------------------|--------------------------|----------|--------------|--------|
| WELL NO: MW (                      | 8 PFC                                                                                                                                                               | 5202                     |             |                  | s                      | AMPLE ID: E         | LSWHO                         | 92           | -002         | - Gu             | , ~(     | 35 0         | ATE: (                                        | 5 lou                    | lis      |              |        |
|                                    |                                                                                                                                                                     |                          |             |                  |                        | P(                  | JRGING DA                     | TA           |              |                  |          |              |                                               |                          |          |              |        |
| WELL                               | 2                                                                                                                                                                   | ī                        | UBING       | lu in            | OD WE                  | LL SCREEN IN        | TERVAL DEPTH:                 |              | STATIC DEPT  | Н                | 16.      | 49           | PÜ                                            | RGE PUMP TYF<br>BAILER:  | EDD      |              |        |
| DIAMETER (Inches): WELL VOLUME PUI | RGE: 1 WELL                                                                                                                                                         | . VOLUME = (             | TOTAL WE    | hes):<br>LL DEP1 | TH BTOC -              | STATIC DE           | PTH TO WAT                    | ER) X        | WELL CA      | PACITY           | . • .    | •            | UK                                            | BAILER:                  | 1.       |              |        |
| (only fill out if ap               |                                                                                                                                                                     | **                       | , 40.       | 39               | Ft - (6                | ,49 F1) ×           | 0.163                         | gaVñ         | - 3,0        | l                | gal      |              |                                               |                          |          |              |        |
| EQUIPMENT VOLU                     | ME PURGE: 1                                                                                                                                                         | EQUIPMENT                | VOL. = PU   | MP VOL           | UME + (TUBI            | ING CAPACI          | TY X                          | LUBING       | LENGTH) 4    | FLOW CE          | LL VOI   | LUME         |                                               |                          |          | 40           | ~      |
| 4 Conly 68 out if ap               | расаме)                                                                                                                                                             |                          | #           |                  | gal = (                | ×                   | ft )                          | +            | gal          |                  |          | gal .        |                                               |                          | ς        | lulis        | _      |
| INITIAL PUMP OR TUBIN              | 6 9 E                                                                                                                                                               | •                        | FINAL PI    | лир ок т         | UBING                  | 35                  | PURG                          |              | 084          | . T              |          | PURGING C    | ነባ ኛው                                         | TOTAL VOLUM              | · -      | 5,79         |        |
| DEPTH IN WELL (feet):              | <u> </u>                                                                                                                                                            | )<br>Симиі               | <del></del> | N WELL (f        | eel):<br>DEPTH         | درد                 | TEMP.                         |              | COND.        | Dissor           | /FN      | ENDED AT:    | П                                             | PURGEO (colle            | COLO     | <del></del>  | яж     |
| TIME                               | VOLUME<br>PURGED<br>(pallens)                                                                                                                                       | VOLUM                    | IE          | RATE             | TO<br>WATER            | (standard<br>units) | (°c)                          |              | µS/cm        | ОХҮСІ<br>гадл    | EN       | (mV)         |                                               | (NTUs)                   | (describ |              | cribe) |
| 0850                               | 1750                                                                                                                                                                | 1,75                     | 0           | 350              | 18.61                  | 7.09                | 12.9                          | 4            | 127          | 4,6              | 3        | 1719         | 3                                             | 4.4                      | Ue       | et n         | onl    |
| <b>⊘\$</b> 06                      | 3500                                                                                                                                                                | 5,25                     | 0           | 350              | 19.95                  | 7.04                | 12.9                          | 30           | i33          | 4.1              | フ        | 155.6        | 20                                            | ś. O                     |          |              |        |
| 0910                               | 3500                                                                                                                                                                | 8,79                     |             |                  | 22,32                  | 7.04                | 12.8                          | 38           | 369          | 4.1              | 0        | 142.1        |                                               | .4                       |          |              |        |
| 0920                               | 3500                                                                                                                                                                | 12,2                     | 0           | 350              | 23.42                  | 7.08                | 12.7                          |              | 101          | 3,0              | 7        | 130,6        |                                               | .6                       |          |              |        |
| 0930                               | 3500                                                                                                                                                                | 15.79                    | 0 2         | 350              | 24,15                  | 7.09                | 13,1                          | 38           | -36          | 2.0              | 10       | 108,1        | 1:3                                           | .0                       | )        | Т,           | ,      |
|                                    |                                                                                                                                                                     |                          |             |                  |                        |                     |                               |              |              |                  |          |              |                                               |                          |          |              |        |
|                                    |                                                                                                                                                                     |                          |             |                  |                        |                     |                               |              |              |                  |          |              |                                               |                          |          |              |        |
|                                    |                                                                                                                                                                     |                          |             |                  |                        |                     |                               |              |              |                  |          |              |                                               |                          |          |              |        |
|                                    |                                                                                                                                                                     |                          |             |                  |                        |                     |                               |              |              |                  |          |              |                                               |                          |          |              |        |
|                                    |                                                                                                                                                                     |                          |             |                  |                        |                     |                               |              |              |                  |          |              |                                               |                          |          |              |        |
|                                    |                                                                                                                                                                     |                          |             |                  |                        |                     |                               |              |              |                  |          |              |                                               |                          |          |              |        |
|                                    |                                                                                                                                                                     | <u> </u>                 |             |                  |                        |                     | <u> </u>                      | ļ            |              |                  |          |              |                                               |                          | <b>_</b> |              |        |
|                                    |                                                                                                                                                                     |                          | _           |                  | -                      | <u> </u>            |                               | <b> </b>     |              |                  |          |              |                                               |                          | <u> </u> |              |        |
|                                    |                                                                                                                                                                     |                          | -           |                  |                        |                     |                               | <del> </del> |              |                  |          |              | -                                             |                          | -        | <del> </del> |        |
| A                                  | 13-                                                                                                                                                                 | <u> </u>                 | -           |                  |                        | <u> </u>            | -                             | <del> </del> |              |                  |          |              |                                               |                          |          | -            |        |
| 50                                 | `                                                                                                                                                                   |                          |             |                  |                        | <u> </u>            |                               | <b></b>      |              |                  |          | <b>-</b>     | $\vdash$                                      |                          |          | -            |        |
| WELL CAPACITY (G                   | allons Per Foo                                                                                                                                                      | n. 0.75° = 0.0           | )2° 1" = 0  | 04. 1            | 1 25° = 0.06:          | 2° = 0.16:          | 3" = 0.37:                    | 4' = 0       | .65: 5"=     | 1.02; 6°=        | = 1.47;  | 12" = 5.8    | <u>{                                     </u> |                          | <u> </u> |              |        |
| TUBING INSIDE DIA                  | . CAPACITY (                                                                                                                                                        | Gal./Ft.); 1/8"          |             |                  | 0,0014; 1              | /4" = 0.0026;       | 5/16" = 0.0                   | 004;         | 3/8" = 0.006 | 3; 1/2" =        | 0.010;   | 5/8" = 0,    | 016                                           |                          |          |              |        |
| PURGING EQUIPME                    | NT CODES:                                                                                                                                                           | B = Bailer;              | 8P = 8      | ladder Po        | ump; ES                |                     | Submersible P<br>MPLING DA    |              | PP ≃ Per     | istaltic Purn    | p;       | O = Other (  | Specify)                                      |                          |          |              |        |
| SAMPLED BY (PRINT) / A             | FFILIATION: [                                                                                                                                                       | LAL T                    | . Inte t    | SAMP             | LER(S) SIGNAT          |                     | hele-                         |              | 102 4        |                  | SAMPI    | (') -        | 13 i                                          | SAMPLING                 | 01       | 3 7          |        |
| PUMP OR TUBING                     |                                                                                                                                                                     | bell Tu<br>5             | w SW        | TUBIN            |                        |                     | neg-                          | 100          |              | D-FILTERED;      | INITIA   | IED A1:      | N)                                            | ENDED AT:<br>Filter Size |          | mm -         |        |
| DEPTH IN WELL (feet):              | 5                                                                                                                                                                   | 5                        |             | MATE             | RIAL CODE: PE          |                     |                               |              |              | Filtration Equip | ment Typ | -            |                                               |                          |          |              |        |
|                                    |                                                                                                                                                                     | DECONTAMINATION          | ON; PUN     | (PY              | (N)                    | TUBING              | Y (N (replac                  |              |              |                  | DUPLE    | CATE: Y      | (A                                            | )                        |          | SAMPLE P     | IIII'S |
| SAMP                               | LE CONTAINER S                                                                                                                                                      | PECIFICATION             | <u> </u>    | -                | RESERVATIVE            |                     | TOTAL VOL                     | HON          |              |                  | INTEN    | DED ANALYSI: | S AND/OR                                      | SAMPLING EQ              | UIPMENT  | FLOW RA      | TE (mŁ |
| SAMPLE TO CODE                     | # CONTAINERS                                                                                                                                                        | MATERIAL CODE            | AOTOWE (44  | i.)              | USED                   | 1                   | DDED IN FIELD (m              | ıL)          | FINAL pH (S  | Stanard Units)   |          | METHOD       |                                               | CODE                     |          | per min      | ute)   |
| BLSW#02-<br>602-6W-635             | 2                                                                                                                                                                   | PE                       | 125         | $\perp$          | <u> </u>               |                     |                               |              |              |                  | L        | EPA 537M     |                                               | APP                      |          | 35           | 0      |
|                                    | _                                                                                                                                                                   |                          |             |                  |                        | $\sim$              | San                           |              |              |                  |          |              | \                                             |                          |          |              |        |
|                                    | ¥                                                                                                                                                                   |                          |             |                  |                        |                     | ``                            |              |              |                  |          |              |                                               |                          |          |              |        |
|                                    | ν                                                                                                                                                                   |                          |             |                  |                        |                     |                               |              |              |                  |          |              |                                               |                          |          | _            |        |
|                                    |                                                                                                                                                                     |                          |             |                  |                        |                     |                               |              |              |                  |          |              |                                               |                          |          |              | >      |
| REMARKS:                           | hod                                                                                                                                                                 | not co                   | mplet       | 'e, '            | TOC =                  | = 2.4°              | ags                           |              |              |                  |          |              |                                               |                          |          |              |        |
| MATERIAL CODES:<br>SAMPLING EQUIPM |                                                                                                                                                                     | nber Glass; • APP = Afte |             |                  | PE ≈ Polys<br>B = Ball |                     | PP = Polyprop<br>Bladder Pump |              | S = Silicon  |                  |          | O = Other (  | Specify)                                      |                          |          |              |        |
|                                    |                                                                                                                                                                     | RFPP = Re                |             | Peristall        | ic Pump;               | SM = Straw          | Method (Tubin                 | g Gravit     | y Drain);    | O = Other        |          |              |                                               |                          |          |              |        |
|                                    |                                                                                                                                                                     |                          |             | <u>s</u>         | tapilization Cri       | teria for range     | of variation of l             | asi mise     | consecutive  | readings         | ,        |              | L 1 ·                                         |                          |          | 11           | 00     |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

JO 05/07



| Installation: Elisworti                 | AFB M202                             | 7,0003           |                                         |                    |                           | Site:               | 2                          |               |             |                               |                    |                      |          |                               |                                                  |                                                  |
|-----------------------------------------|--------------------------------------|------------------|-----------------------------------------|--------------------|---------------------------|---------------------|----------------------------|---------------|-------------|-------------------------------|--------------------|----------------------|----------|-------------------------------|--------------------------------------------------|--------------------------------------------------|
| WELL NO: NW                             | 18PPC                                | <i>0</i> 2.63    | I                                       |                    | S/                        | WPLE ID: El         | -SW H                      | Ø 2           | - <i>OC</i> | 3-G1                          | WO                 | L 3 DAT              | re: U    | 1261                          | 18                                               |                                                  |
|                                         |                                      |                  |                                         |                    |                           | PU                  | RGING DA                   | TA            |             |                               |                    |                      | X        | 7                             |                                                  |                                                  |
| WELL DIAMETER (inches): WELL VOLUME PUI | 2                                    | R                | JBING                                   | 1/4 1              | VOD WEI                   | LL SCREEN INT       | ERVAL DEPTH:               |               | STATIC DEP  | TH<br>(feet BTOC):            | 4,-                | 7.6                  |          | RGE PUMP TYP<br>BAILER:       | APP                                              |                                                  |
| WELL VOLUME PUR                         | RGE: 1 WELL                          | VOLUME = (1      | OTAL WEL                                | L DEPT             | н втос -                  | STATIC DEI          | PTH TO WATE                | R) X          | WELL CA     | APACITY                       |                    |                      | Į-v,     |                               |                                                  |                                                  |
| (only fill out if sp                    |                                      |                  |                                         |                    |                           |                     | 0,163                      |               |             |                               | gal                |                      |          |                               |                                                  |                                                  |
| EQUIPMENT VOLU                          | ME PURGE: 1                          | EQUIPMENT 1      | /OE. ≅ PUM                              | <del>P VOL</del> L | ME + (TUB)                | NG CAPACIT          | r X 1                      | UBING         | LENGTH)     | + FLOW CEL                    | L VOLU             | ЭМЕ                  |          |                               |                                                  | 1.t                                              |
| (oru) fill out if ap                    | plicable)                            |                  | =                                       |                    | gal ≃ (                   | X                   |                            | <del></del> - | gal         |                               |                    | al                   |          |                               | 9                                                | 1/26/18                                          |
| INITIAL PUMP OR TUBIN                   | в<br>13                              |                  | FINAL PU                                |                    |                           | 13                  | PURG                       |               |             | 515                           |                    | PURGING<br>ENDED AT: | 540      | TOTAL VOLUM<br>PURGED (pulled | E                                                | 8750                                             |
| DEPTH IN WELL (feet):                   | <del>- ' '</del>                     | CUMUL            | DEPTH IN                                | WELL (fe           | et):<br>DEPTH             | pĦ                  | TEMP.                      | TED AT:       | COND.       | DISSOLV                       | _                  | ORP                  |          | RBIDITY                       | COLOR                                            | ODOR                                             |
| TIME                                    | VOLUME<br>PURGED<br>(gallons)<br>PAL | VOLUMI<br>PURGEI |                                         | RATE               | TO<br>WATER<br>Meet BIOCL | (standard<br>units) | (°C)                       |               | μS/cm       | OXYGE<br>mg/L                 |                    | (mV)                 |          | (NTUs)                        | (describe)                                       | (describe)                                       |
| 1520                                    | 1750                                 | 175              |                                         | 50                 | 4.78                      | 7.02                | 8.5                        | 41            | 478         | 1.60                          |                    | -106                 | 2        | 4.2                           | clean                                            | none                                             |
| 1525                                    | 1750                                 | 350              | 0 3                                     | 50                 | 4.80                      | 7.01                | 8,1                        |               | 117         | 0.4                           |                    | -106.1               | į.       | 0.6                           | $oxed{oxed}$                                     |                                                  |
| 1530                                    | 1750                                 | 5 25             |                                         | 50                 | 4.80                      | 7.06                | 7.8                        |               | 277         | 0.2                           |                    | -109.8               |          | 0.7                           | <del>                                     </del> | $\sqcup \!\!\! \perp \!\!\! \perp$               |
| 1535                                    | 1750                                 | 700              | <del>, T</del> ,                        | 3 <u>50</u>        | 4.80                      | 7,05                | <del></del>                |               | 301         | 0.20                          |                    | -115.0               |          | 3.57                          | <del>                                     </del> | <del>                                     </del> |
| 1540                                    | 1750                                 | 87               | <u> 50   3</u>                          | 50                 | 4.80                      | 7.07                | 7.80                       | 42            | 8           | 0.16                          | 4                  | -119,2               | u        | .0                            |                                                  |                                                  |
| *************************************** |                                      |                  | <del></del>                             |                    |                           |                     |                            |               |             |                               |                    |                      |          |                               |                                                  |                                                  |
|                                         |                                      |                  |                                         |                    |                           |                     |                            |               |             |                               |                    |                      |          |                               |                                                  |                                                  |
|                                         |                                      |                  | -+                                      |                    |                           | <u> </u>            |                            |               |             |                               |                    |                      |          |                               |                                                  |                                                  |
|                                         |                                      |                  |                                         |                    |                           |                     |                            |               |             |                               |                    |                      |          |                               |                                                  |                                                  |
|                                         |                                      |                  |                                         |                    |                           |                     |                            |               |             |                               |                    |                      |          |                               |                                                  |                                                  |
|                                         |                                      |                  |                                         |                    |                           |                     |                            |               |             |                               |                    |                      |          |                               |                                                  |                                                  |
|                                         |                                      |                  |                                         |                    |                           |                     |                            |               |             |                               |                    |                      |          |                               | ļ                                                |                                                  |
|                                         | A-5                                  |                  | 18                                      |                    |                           |                     |                            |               |             |                               |                    |                      |          |                               |                                                  |                                                  |
|                                         |                                      | 1261             | 1                                       |                    | <u></u>                   | 1                   |                            |               |             |                               |                    |                      |          |                               |                                                  |                                                  |
|                                         | _                                    |                  | -                                       |                    |                           |                     |                            |               |             |                               |                    |                      |          |                               |                                                  |                                                  |
| WELL CAPACITY (G                        | L<br>Ballons Per Foo                 | l); 0.75° ≈ 0.0  | <del>}</del><br>2; 1° = 0.              | 04; 1              | .25" = 0.06;              | 2" = 0.16;          | 3° = 0.37;                 | 4" = 0.       | .65; 5*=    | = 1,02; 6" =                  | = 1.47;            | 12" = 5.88           | 3        | ,                             | 1                                                |                                                  |
| TUBING INSIDE DIA                       | . CAPACITY (C                        | 3al/Ft.): 1/8"   | = 0.0006;                               | 3/16" =            | 0.0014; 1                 | /4" = 0,0026;       | 5/16" = 0.                 | 004;          | 3/8" = 0.00 | 06; 1/2" =<br>eristaltic Pumi |                    | 5/8" = 0.0           |          |                               |                                                  |                                                  |
| PURGING EQUIPMI                         | ENT CODES:                           | B = Bailer;      | BP = Bla                                | adder Pi           | ump; ES                   |                     | Submersible P<br>MPLING DA |               | PP = PE     | enstanic Punij                | p; (               | O = Other (S         | pacity)  |                               |                                                  |                                                  |
| SAMPLED BY (PRINT) / /                  | AFFILIATION:                         | rek Tu           | ر بادار د                               | SAMP               | Ler(s) signat             | URE(S):             | Rull.                      | 1             | usk         | المدا                         | SAMPLI<br>INITIATE | NG<br>ED AT: 15      | 41       | SAMPLING<br>ENDED AT:         | 15                                               | 42                                               |
| PUMP OR TUBING                          |                                      | 2                | POLIT                                   | TUBIN              | G .                       |                     | , 50(2                     |               |             | LD-FILTERED:                  |                    | , (                  | ί        | Filler Size                   |                                                  | mm                                               |
| DEPTH IN WELL (feet):                   | FIE1 0.1                             | DECONTAMINATIO   | ON; PU)A                                |                    | RIAL CODE: PE             | TUBING              | Y ( N (replac              | edi           | L_          | Filtration Equips             | DUPLIC             |                      | Ć        | <del>-</del>                  |                                                  |                                                  |
| SAME                                    | LE CONTAINER S                       |                  | J.4. (-Ci)ii                            | T                  | <u> </u>                  |                     | IPLE PRESERVA              |               |             |                               | <b>†</b>           |                      |          |                               | t t                                              | MPLE PUMP                                        |
| SAMPLE TO CODE                          | # CONTAINERS                         | MATERIAL CODE    | VOLUME (mi                              | .) F               | RESERVATIVE               |                     | TOTAL VOL                  |               | FINAL pH    | (Stanard Units)               | INTENE             | METHOD               | AND/OR   | SAMPLING EQ<br>CODE           | UIPMENT FI                                       | OW RATE (ml.<br>per minute)                      |
|                                         |                                      |                  | , , , , , , , , , , , , , , , , , , , , |                    | USED                      | AC                  | DDED (N FIELD (n           | ıL)           |             |                               | ļ                  |                      |          |                               |                                                  |                                                  |
| 603-6W-                                 | 2                                    | PE               | 125                                     |                    |                           |                     |                            |               |             |                               |                    | EPA 537M             |          | APF                           | '                                                | 350                                              |
| 013                                     |                                      | ' V              | -                                       | -                  |                           | $\overline{}$       |                            |               |             |                               | -                  |                      |          |                               |                                                  |                                                  |
|                                         |                                      |                  |                                         |                    |                           |                     | SAW                        |               |             |                               |                    |                      |          | ~                             |                                                  |                                                  |
|                                         |                                      |                  | -                                       |                    |                           | .42                 |                            |               |             |                               |                    |                      |          |                               | 7                                                |                                                  |
|                                         |                                      |                  |                                         |                    |                           |                     |                            |               |             |                               |                    |                      |          |                               |                                                  |                                                  |
|                                         |                                      |                  |                                         |                    |                           |                     |                            |               |             |                               | <u> </u>           |                      |          |                               |                                                  |                                                  |
|                                         |                                      |                  |                                         |                    |                           |                     |                            |               |             |                               |                    |                      |          |                               |                                                  |                                                  |
| REMARKS:                                |                                      |                  |                                         |                    |                           |                     |                            |               |             |                               |                    |                      |          |                               |                                                  |                                                  |
| MATERIAL CODES                          | . Ac A                               | nber Glass;      | CG = Clear (                            | Jace.              | PE = Poly                 | athviana.           | PP = Polyprop              | vlene:        | S = Silico  | ıne: T≖Tel                    | flon:              | O = Other (\$        | Specify) |                               |                                                  |                                                  |
| SAMPLING EQUIPA                         |                                      | APP = Afte       | er Peristaltic                          | Pump;              | B ≃ Bail                  | er, BP≕             | Bladder Pump               | ; E           | SP = Elect  | ric Submersib                 | le Pum             | );                   |          |                               |                                                  |                                                  |
|                                         |                                      | RFPP = Re        | verse Flow                              |                    |                           |                     | Method (Tubir              |               |             | O = Other                     | (opec)             | y <i>)</i>           |          |                               |                                                  |                                                  |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016





|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 |                      | I                           | 0 /                                              | -                                                | 70.5          | 20 O A                     | . 1                           |             |                                         |                                                  | - 1                        |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|-----------------|----------------------|-----------------------------|--------------------------------------------------|--------------------------------------------------|---------------|----------------------------|-------------------------------|-------------|-----------------------------------------|--------------------------------------------------|----------------------------|
| Installation: Ellsworth                                                                                     | PURGING DATA  Static DEPTH  TO WATER (Inches):  ELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH BTOC - STATIC DEPTH TO WATER)  (only fill out if applicable)  Static DEPTH TO WATER (Inches):  2 (VOW 70 80, 90)  SAMPLE ID: ELSWHO2-005-GW-040 DATE: 5/23/18  PURGING DATA  STATIC DEPTH  TO WATER (Inches): 35, 14 PRIVATER (Inches): 35, 14 OR BAILER: Maga Monson  TOTAL WELL DEPTH BTOC - STATIC DEPTH TO WATER) X WELL CAPACITY  4 (918 fill out if applicable)  4 (95, 26 R - 35, 14 FI) × 0, 163 subt. 4 1, 65 sub. |                                  |                                 |                 |                      |                             |                                                  |                                                  |               |                            |                               |             |                                         |                                                  |                            |
| WELL NO: Mu/l                                                                                               | 8PFC 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 204                              |                                 |                 | SAZ                  | APLE ID: EL                 | SWHO!                                            | 2-00                                             | <u> 25-0</u>  | 7W-0                       | 40 M                          | re: と       | 123/1                                   | Ö                                                |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - <del></del>                    |                                 |                 |                      | PUI                         | RGING DAT                                        |                                                  |               |                            |                               |             |                                         |                                                  |                            |
| WELL                                                                                                        | ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TUB                              | NG 1/2                          | ih              | OD MEI               | L SCREEN INTE               | RVAL DEPTH:                                      | \$1                                              | TATIC DEPTH   | - 2                        | 5114                          |             |                                         |                                                  | N 5 (12)-0                 |
| DIAMETER (Inches):                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DIAL                             | METER (inches):                 |                 | 45                   | ,O [FI -                    | 35,01 Ft                                         | TO                                               | WATER (fee    | (STOC):                    | 7614                          | OR BA       | ICER: 1 (4)                             | ya 1.10                                          | 1(2007)                    |
| WELL VOLUME PUR                                                                                             | GE: 1 WELL V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OLUME = (TO                      | TAL WELL I                      | EPT             | BTOC -               | STATIC DEP                  | TH TO WATE                                       | R) X '                                           | WELL CAP      | ACHY                       |                               |             |                                         |                                                  |                            |
| (only fill out if app                                                                                       | Scable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = (                              | 45.2                            | -6              | r - 35               | ,/4 FO X                    | 0,163                                            | gal/ft                                           | * [.          | 65 °                       | ı                             |             |                                         |                                                  |                            |
| EQUIPMENT VOLUM                                                                                             | E PURGE: 1 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QUIPMENT VO                      | OL. = PUMP                      | VOLU            | ME+(TUBIN            | IG CAPACIT                  | Y X T                                            | JBING L                                          | ENGTH) +      | FLOW CELL                  | VOLUME                        |             |                                         | F                                                | 17                         |
| (only fill out it app                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | =                               |                 | yal (                | ×                           | —— řt)                                           |                                                  | gal           |                            |                               |             |                                         | 5/2                                              |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 |                      |                             | PURG                                             | NG                                               |               |                            | PURGING .                     | 110         | OTAL VOLUME                             |                                                  |                            |
| INITIAL PUMP OR TUBING<br>DEPTH IN WELL (feet):                                                             | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                | FINAL PUMP<br>DEPTH IN W        |                 |                      | <u>ں</u>                    | INITIAI                                          | ED AT:                                           | 140           |                            |                               |             | OTAL VOLUME<br>URGED (gallist<br>BIDITY | COLOR                                            | ODOR                       |
|                                                                                                             | VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CUMUL                            | PUS                             | - 1             | DEPTH                | pH<br>(standard             | TEMP.                                            |                                                  | OND.<br>S/cm  | DISSOLVED                  | (mV)                          |             | TUs)                                    | (describe)                                       |                            |
| ПМЕ                                                                                                         | PURGED<br>(gallons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VOLUME                           | 1                               | TE              | TO<br>WATER          | units)                      | (°C)                                             | μ                                                | ыст           | mg/L                       | ,,,,,,                        | ,           | •                                       |                                                  | , ,                        |
|                                                                                                             | (gallons)<br>ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PURGED<br>[gallons]              |                                 |                 | (feet BTOC)          | *1 ~7                       | 19.6                                             | 42                                               | 5.7           | 5,76                       | 22.1                          | IV          | 13                                      | Clear                                            | none                       |
| 1410                                                                                                        | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150                              |                                 |                 | 35,95                | 7.53                        |                                                  |                                                  |               |                            |                               | -           |                                         | ,,                                               | 1                          |
| 1445                                                                                                        | <b>150</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 225                              |                                 |                 | <b>3</b> 6.15        | 7.39                        | 20.3                                             |                                                  | 8.7           | <u> 5.41,</u>              | 26.1                          |             | <u> &gt; Կ</u>                          | <del>                                     </del> |                            |
| 1420                                                                                                        | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                              | o 18                            | b               | 36.45                | 7.33                        | 18.5                                             | 4                                                | 10.7          | 6,56                       |                               |             | 18                                      | <del>                                     </del> |                            |
| 1425 750 3750 150 37.00 7.35 17.0 394.3 5.30 31.7 150 1428 750 4500 150 37.14 7.38 17.4 397.4 4.92 30,1 190 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 |                      |                             |                                                  |                                                  |               |                            |                               |             |                                         |                                                  |                            |
| 1428 750 4500 150 37.14 7.38 17.4 397.4 4.92 30.1 190                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 |                      |                             |                                                  |                                                  |               |                            |                               |             |                                         |                                                  |                            |
| (431 130 4950 150 37.25 7.37 18.3 404.7 5.58 30.6 206                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 |                      |                             |                                                  |                                                  |               |                            |                               |             |                                         |                                                  |                            |
| (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 |                      |                             |                                                  |                                                  |               |                            |                               |             |                                         |                                                  | 1                          |
| 1434 450 5400 150 37,30 7,38 18,6 407.5 4.46 30.2 232                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 |                      |                             |                                                  |                                                  |               |                            |                               |             |                                         |                                                  |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 |                      |                             |                                                  |                                                  |               |                            |                               |             |                                         |                                                  |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 |                      |                             |                                                  |                                                  |               |                            |                               |             |                                         |                                                  |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 |                      |                             |                                                  |                                                  |               |                            |                               |             |                                         |                                                  |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 |                      |                             |                                                  |                                                  |               |                            |                               | <u> </u>    |                                         | <del> </del>                                     |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 |                      | _                           |                                                  | Ĺ                                                |               |                            |                               | <b></b>     |                                         |                                                  |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 |                      |                             |                                                  |                                                  |               |                            |                               |             |                                         |                                                  |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                | 4                               |                 |                      |                             |                                                  |                                                  |               |                            |                               |             |                                         | 1                                                |                            |
| <u> </u>                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | 733Tt                           | <del>6</del> –  |                      |                             | <del>                                     </del> | <del>                                     </del> |               |                            |                               |             |                                         |                                                  |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del>-5</del>                    |                                 |                 |                      |                             |                                                  |                                                  |               |                            |                               | 1           |                                         |                                                  |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 | 1                    |                             |                                                  | ┢─┈                                              |               |                            | <del>-  </del>                | 1           |                                         |                                                  |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 |                      |                             |                                                  | <u> </u>                                         |               | 1.02; 6'=                  | 1.47; 12°≈5.                  | RA.         |                                         |                                                  | .1                         |
| WELL CAPACITY (G                                                                                            | allons Per Foo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t): 0.75' = 0.02                 | 2; 1"=0.0                       |                 |                      | 2" = 0.16;<br>1/4" = 0,0026 | 3" = 0,37;<br>: 5/16" = 0.                       |                                                  | 3/8" = 0.006  | •                          | •                             |             |                                         |                                                  |                            |
| TUBING INSIDE DIA                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bal./Ft.): 1/8" =<br>B = Bailer. | BP = Blac                       | w16‴≕<br>Ider P | : 0,0014;<br>ump; ES |                             | Submersible F                                    |                                                  |               | istaltic Pump;             |                               |             |                                         |                                                  |                            |
| 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | <u>-</u>                        |                 |                      |                             | MPLING DA                                        |                                                  |               |                            | 0.440.010                     |             | SAMPLING                                |                                                  |                            |
| SAMPLED BY (PRINT) / /                                                                                      | AFFILIATION: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0 V T.                          | باداد                           | SAMP            | LER(S) SIGNAT        | TURE(S):                    | Troll !                                          | 7                                                | . 6 km        | - [                        | SAMPLING<br>INITIATED AT:   L | 135         | ENDED AT:                               | 143                                              | 36                         |
|                                                                                                             | ^//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CAL ID                           | JUIJA                           | TUBIN           | 10                   |                             | 7-60-0                                           | · carr                                           | FIEL          | D-FILTERED:                |                               | ➂           | Filter Size                             |                                                  | mm                         |
| PUMP OR TUBING<br>DEPTH IN WELL (feet):                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                |                                 |                 | RIAL CODE: PE        | <u> </u>                    |                                                  |                                                  |               | Filtration Equipm          |                               |             |                                         |                                                  |                            |
| DEF III III FILLE (1994)                                                                                    | FIELD I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DECONTAMINATIO                   | N: PUMP                         | <u>'(~</u>      | ) N                  | TUBING                      | Y (N (replac                                     | ed) >                                            |               |                            | DUPLICATE:                    | Y (N        | <u> </u>                                | - Ia                                             | ALIDI E BUMD               |
| SAME                                                                                                        | LE CONTAINER S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PECIFICATION                     |                                 |                 |                      | SA                          | MPLE PRESERVA                                    | ATION                                            |               |                            | INTENDED ANALYS               | IS AND/OR   | SAMPLING EC                             |                                                  | AMPLE PUMP<br>LOW RATE (mL |
|                                                                                                             | # CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MATERIAL CODE                    | VOLUME (mL)                     |                 | PRESERVATIV          | E                           | TOTAL VOL                                        |                                                  | FINAL pH (    | Stanard Units)             | METHO                         | )           | CODE                                    | E                                                | per minute)                |
| SAMPLE ID CODE                                                                                              | # CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MATERIAL CODE                    | VOLUME (III.)                   |                 | USED                 | A                           | DOED IN FIELD (i                                 | nL)                                              |               |                            |                               |             |                                         |                                                  |                            |
| ELSWHO2-                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                |                                 | abla            |                      |                             |                                                  |                                                  |               |                            | EPA 537                       | м           | ES                                      | ρl                                               | 150                        |
| 005-GW-04                                                                                                   | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PÔ                               | 125                             | ١               |                      |                             |                                                  |                                                  |               |                            |                               |             |                                         | <u>'</u>                                         | .,,,,                      |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 |                 |                      |                             |                                                  |                                                  |               |                            |                               | _           |                                         | l                                                |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _/                               |                                 | 1               |                      |                             | Sew                                              | -                                                |               |                            |                               |             |                                         |                                                  |                            |
|                                                                                                             | · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                                 | $\vdash$        |                      |                             |                                                  |                                                  |               |                            |                               |             | $\searrow$                              |                                                  |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · ·                              |                                 | $\vdash$        |                      |                             |                                                  |                                                  | $\overline{}$ |                            |                               |             |                                         | $ \overline{} $                                  |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                 | ╊               |                      |                             |                                                  |                                                  |               | $\overline{}$              |                               |             |                                         |                                                  |                            |
|                                                                                                             | well pad not complete. Strukup; 1.0° ags  EMARKS: Took sample due to increasing turbidity and dropping water level.                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                 |                 |                      |                             |                                                  |                                                  |               |                            |                               |             |                                         |                                                  |                            |
| \ w                                                                                                         | ell po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | & not                            | com                             | بعار            | H, 5                 | HUKU                        | p; 1,0                                           | ) ` a ;                                          | <b>९</b> 5    |                            |                               | i           |                                         |                                                  |                            |
| REMARKS:                                                                                                    | -مة المد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | بداء الد                         | e to i                          | 'nL             | reas.L               | ما مداح ه                   | 1214-                                            | and                                              | موديات        | hy wa                      | uter level                    |             |                                         |                                                  |                            |
| 1                                                                                                           | you sav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | - 10 (                          |                 | , ~                  | 2 ,                         | γ'''                                             |                                                  |               |                            |                               |             |                                         |                                                  |                            |
| MATERIAL CODES                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | CG = Clear C                    |                 |                      | yethylene;                  | PP = Polypro                                     |                                                  |               |                            | ion; O = Othe                 | r (Specify) |                                         |                                                  |                            |
| SAMPLING EQUIP                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | er Peristaltic<br>overse Flow I |                 |                      |                             | = Bladder Pum<br>v Method (Tubi                  |                                                  |               | ic Submersibl<br>O = Other |                               |             |                                         |                                                  |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KFPP = Re                        | verse Flow I                    | ฮเซเล           | Stabilization C      | riteria for ran             | e of variation of                                | last three                                       | consecutive   |                            |                               |             |                                         |                                                  |                            |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

5/24



| Installation: Eliswort                         | h AFB M202                   | 27,0003        | R                           |             |                     | Site              | 2                                                | Cros           | ~ 7                    | 6)                        |        |                         |          |                          |            |                                                  |
|------------------------------------------------|------------------------------|----------------|-----------------------------|-------------|---------------------|-------------------|--------------------------------------------------|----------------|------------------------|---------------------------|--------|-------------------------|----------|--------------------------|------------|--------------------------------------------------|
| WELL NO: Mu                                    | JLBPFC                       | 020/           | <b>5</b>                    |             | \$/                 | WPLEID: E         | LSWHO                                            | 2-00           | 16-                    | 6w-                       | 036    | ) DA                    | ITE: S   | 5/4/1                    | 8          |                                                  |
|                                                |                              |                |                             |             |                     |                   | IRGING DA                                        |                |                        |                           |        |                         |          |                          |            |                                                  |
| WELL<br>DIAMETER (Inches):                     | 2                            | T<br>D         | UBING //<br>HAMETER (inches | 4 l¼<br>s): | OD WEI              | LL SCREEN INT     | ERVAL DEPTH:                                     | sı<br>To       | TATIC DEPT<br>WATER (F | H<br>eet BTOC): (         | 25     | .54                     |          | RGE PUMP TYPE<br>BAILER: | PP         |                                                  |
| WELL VOLUME PU                                 | RGE: 1 WELL                  | .VOLUME≃ (     | TOTAL WELL                  | DEPT        | Н ВТОС -            | STATIC DE         | TH TO WATE                                       | R) X 1         | WELL CA                | PACITY                    |        |                         |          |                          |            |                                                  |
| (only fill out if ep                           | oficable)                    | -              | 4 35.3                      | 5           | R - 25              | .54. ₽) ×         | 0.163                                            | gal/ft         | - L.                   | 9                         | gal    |                         |          |                          |            |                                                  |
| EQUIPMENT VOLU                                 | ME PURGE: 1                  | EQUIPMENT      | VOL. ≈ PUMF                 | VOLU        | JME + (TUBI         | NG CAPACIT        | Y X ]                                            | UBING LE       | NGTH) +                | FLOW CE                   | L VOL  | UME                     |          |                          |            | AT                                               |
| (only fill out if ap                           | plicable)                    |                |                             |             | gal = (             | х                 | Ft )                                             | +              | gal                    |                           |        | gal                     |          |                          | 5          | 14/18                                            |
| INITIAL PUMP OR TUBIN<br>DEPTH IN WELL (feat): | ° 3                          | 0              | FINAL PUM<br>DEPTH IN V     |             |                     | 3.0               | PURG                                             | ING<br>TED AT: | 325                    |                           |        | PURGING<br>ENDED AT: V  | 349      | TOTAL VOLUME             | ML         | 8400                                             |
|                                                | VOLUME                       | CUMUL          | _ PL                        | IRGE        | ОЕРТН               | pH<br>(standard   | темр.                                            | CO             | ND.                    | DISSOLV                   | ED     | ORP                     | ŢI       | IRBIOTTY                 | COLOR      | ODOR                                             |
| TIME                                           | PURGEO<br>(gallons).<br>M.L. | VOLUM<br>PURGE | f                           | ATE<br>TOLA | TO<br>WATER         | (es)iun           | (°C)                                             | μS             | ifem                   | OXYGE<br>mg/L             | :N     | (mV)                    | i        | (NTUs)                   | (describe) | (describe)                                       |
| 1330                                           | 1750                         | 175            |                             | 50          | 25,55               | 7.30              | 15.8                                             | 3(1            | 3                      | 5.0                       | Ч      | ۲،2                     | ¥.       | 46                       | dea        | none                                             |
| 1340                                           | 3500                         | 525            |                             | 50          | 25,54               | 7.20              | 14,4                                             | 29-            |                        | 5.1                       | 7      | 2.5                     | ľ        | 2.8                      |            |                                                  |
| 1343                                           | 1050                         | 630            |                             | 50          | 25,55               | 7.20              | <del>                                     </del> | 29             |                        | 4.98                      |        | 3.7                     | ۶        | 7.89                     |            |                                                  |
| 1346                                           | 1050                         | 735            |                             | 50          | <del> </del>        | 7.19              | 14,6                                             | 29.            |                        | 5,4<br>5,7                | _      | 4,4                     |          | .01                      |            | <del>                                     </del> |
| 1349                                           | 1050                         | 840            | 5                           | 50          | 25.53               | 7,19              | 14,6                                             | 21             | 32                     | ا ير                      | ۳_     | 5,4                     |          | 1,12                     | <u> </u>   |                                                  |
|                                                |                              |                |                             |             | <u> </u>            |                   |                                                  |                |                        |                           |        |                         |          |                          |            | T                                                |
|                                                |                              |                |                             |             |                     |                   |                                                  |                |                        |                           |        |                         |          |                          |            |                                                  |
|                                                |                              |                |                             |             |                     |                   |                                                  |                |                        |                           |        |                         |          |                          |            |                                                  |
|                                                |                              |                |                             |             |                     |                   |                                                  |                |                        |                           |        |                         |          |                          |            | ļ                                                |
|                                                |                              |                |                             |             |                     |                   |                                                  |                |                        |                           |        |                         |          |                          |            | 1                                                |
|                                                |                              |                |                             |             |                     |                   |                                                  |                |                        |                           |        |                         |          |                          |            |                                                  |
|                                                | P.                           |                |                             |             |                     |                   | <del> </del>                                     |                |                        |                           |        |                         |          | •                        |            |                                                  |
|                                                |                              | र्गाङ          |                             |             |                     |                   |                                                  |                |                        |                           |        |                         |          |                          |            |                                                  |
|                                                | 51                           |                |                             |             |                     |                   |                                                  |                |                        |                           | *****  |                         |          |                          |            |                                                  |
|                                                |                              |                |                             |             |                     |                   | L                                                | L              |                        |                           |        |                         |          |                          |            | <u> </u>                                         |
| WELL CAPACITY (G<br>TUBING INSIDE DIA          |                              | •              |                             |             |                     |                   |                                                  |                | i; 5" =<br>8" = 0.00€  | 1.02; 6" =<br>6; 1/2" = 1 |        | 12" = 5.81<br>5/8" = 0. |          |                          |            |                                                  |
| PURGING EQUIPME                                |                              |                |                             |             |                     | P = Electric S    | Submersible P                                    | ımp;           | PÞ ≃ Per               | istaltic Pum              |        | O = Other (S            | Specify) |                          |            |                                                  |
| SAMPLED BY (PRINT) / A                         | FFILIATION: 🗘                | Irek Tu        | 1                           | SAMPL       | LER(S) SIGNATI      |                   | Bels "                                           | <u> </u>       | 12.2                   |                           | SAMPL  | ING<br>ED AT: 13        | 50       | SAMPUNG<br>ENDED AT:     | 135        | ì                                                |
| PUMP OR TUBING                                 |                              |                | willow                      | TUBIN       | G                   |                   | mes.                                             | mo             |                        | D-FILTEREO:               |        |                         | NB<br>NB | Filter Size              | ())        | mm                                               |
| DEPTH IN WELL (feet):                          | <u></u>                      | DECONTAMINATIO | ON: PUMP                    |             | RIAL CODE: PE       | TUBING            | Y N (replace                                     | <u> </u>       |                        | Filtration Equipr         | DUPLIC |                         | (N       | 5                        |            |                                                  |
| SAMP                                           | LE CONTAINER S               |                | OIL, TOM                    | Ė           | <u>~</u>            |                   | PLE PRESERVA                                     |                |                        |                           |        |                         |          |                          | 1          | MPLE PUMP                                        |
| SAMPLE ID CODE                                 | # CONTAINERS                 | MATERIAL CODE  | VOLUME (mL)                 | Р           | RESERVATIVE<br>USED |                   | TOTAL VOL<br>DED IN FIELD (m                     |                | FINAL pH (5            | itanard Units)            | INTEN  | DED ANALYSIS<br>METHOD  | S AND/OR | SAMPLING EQU<br>CODE     | NPMENT F   | DOW RATE (ml.<br>per minute)                     |
| ELSWHO'L-<br>006-GW-030                        | 2                            | PE             | 125                         |             |                     |                   |                                                  |                |                        |                           |        | EPA 537M                |          | APF                      | 2          | 350                                              |
|                                                |                              | ,              |                             |             |                     | ~                 | San                                              |                |                        |                           | 1      |                         | ,        |                          |            |                                                  |
|                                                | 78                           |                |                             |             |                     |                   |                                                  | ightharpoons   |                        |                           |        |                         | A        | $\mathcal{I}$            | 一十         |                                                  |
|                                                |                              |                |                             |             |                     |                   |                                                  |                | $\leq$                 |                           |        |                         |          |                          |            |                                                  |
|                                                |                              |                |                             |             |                     |                   | <del></del>                                      |                |                        |                           |        |                         |          |                          | <u> </u>   |                                                  |
| remarks: 1                                     | Lynot c                      | emplet         | e. To                       | ر ار        | 5 1.2               | 9, <sub>e.3</sub> | ,5                                               |                |                        |                           |        |                         |          |                          |            |                                                  |
| MATERIAL CODES:                                | AG = An                      | nber Glass; (  | CG = Clear G                | ass;        | PE = Polye          | thylene; I        | P = Polyprop                                     | /lene; S       | = Silicon              | e; T≕Tef                  | lon;   | O = Other (             | Specify) |                          |            |                                                  |
| SAMPLING EQUIPM                                |                              | APP = Afte     | er Peristaltic P            |             | B = Baile           | er, BP=           | Bladder Pump<br>Method (Tubin                    | ESP            |                        | Submersib<br>O = Other    |        |                         | i        |                          |            |                                                  |
| ·                                              |                              |                |                             |             |                     |                   | of variation of t                                |                |                        |                           |        |                         |          |                          |            |                                                  |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 rng/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

05/07 3/6/19



| Installation: Ellsworth                                | SMAIL 2 (10~560, 70, 80, 20)  SAMPLE ID: BL5WH02-007-CW-018 DATE: 5/18/18  PURGING DATA                                                                         |                                         |                                  |              |                      |                     |                               |                                                  |                |                             |                           |                                                  |                       |                                                  |                             |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|--------------|----------------------|---------------------|-------------------------------|--------------------------------------------------|----------------|-----------------------------|---------------------------|--------------------------------------------------|-----------------------|--------------------------------------------------|-----------------------------|
|                                                        | SAMPLE ID: BLSWHOZ-CO7-CW-018 DATE: 5/18/18  PURGING DATA  TUBING 1/4 in 6D WELL SCREEN INTERVAL DEPTH: STATIC DEPTH TOWNSTER (Full PLOCK): 16.20 OR BALLER: PP |                                         |                                  |              |                      |                     |                               |                                                  |                |                             |                           |                                                  |                       |                                                  |                             |
|                                                        | VFCO                                                                                                                                                            | 206                                     |                                  |              |                      |                     |                               |                                                  |                | <del></del>                 |                           |                                                  |                       |                                                  |                             |
| WELL                                                   | 0                                                                                                                                                               | TUE                                     | ing //u                          | in           | OD, WEL              | L SCREEN INTE       | RVAL DEPTH:                   |                                                  |                |                             | 16.20                     |                                                  |                       | 00                                               |                             |
| DIAMETER (inches):                                     | مل ملاقا ا                                                                                                                                                      | DIA                                     | METER (inches)                   | SEPT!        | I BTOC =             | STATIC DEF          | TH TO WATE                    |                                                  |                |                             | 10.20                     | OK                                               | ALEK.                 | <u> </u>                                         |                             |
|                                                        |                                                                                                                                                                 |                                         |                                  |              |                      |                     | 0.163                         |                                                  |                |                             | al                        |                                                  |                       |                                                  |                             |
| (only fill out if app                                  | (Cable)                                                                                                                                                         | = 1                                     | १५.५५                            |              | (6                   | , 20.4 -            | 0,163                         | •                                                | 0,             | 24 -                        |                           |                                                  |                       |                                                  |                             |
| EQUIPMENT VOLUM                                        | E PURGE: 11                                                                                                                                                     | QUIPMENT V                              | OL. = PUMP                       | VOLU         | ME + (TUBI           | VG CAPACIT          | ү х т                         | UBING L                                          | ENGTH) +       | FLOW CELL                   | VOLUME                    |                                                  |                       |                                                  |                             |
| (only fill out if app                                  |                                                                                                                                                                 |                                         | <u> </u>                         |              | gal _ = -(           |                     | Ft-)-                         | _+                                               |                |                             | <u></u>                   |                                                  |                       |                                                  |                             |
| INITIAL PUMP OR TUBING                                 |                                                                                                                                                                 |                                         | FINAL PUMP                       | OR TU        | BING                 | 10                  | PURG                          |                                                  | 1 1            | . 2                         | PURGING                   | 17/                                              | OTAL VOLUMI           | mL                                               | 1400                        |
| DEPTH IN WELL (feet):                                  | <u> </u>                                                                                                                                                        | S CUMUL.                                | DEPTH IN W                       | ELL (fe      | et):<br>DEPTH        | 18<br>PH            | INITIA<br>TEMP.               | TED AT:                                          | OND.           | DISSOLVE                    |                           |                                                  | RBIDITY               | coLar                                            | ODOR                        |
| TIME                                                   | VOLUME<br>PURGED                                                                                                                                                | VOLUME                                  |                                  | TE           | то                   | (standard<br>units) | (°C)                          |                                                  | S/cm           | OXYGEN                      | (mV)                      | t                                                | NTUs}                 | (describe)                                       | (describe)                  |
|                                                        | -(gallons)                                                                                                                                                      | PURGED                                  | امل امر                          | TI.          | WATER<br>Preet BTOC1 |                     |                               |                                                  |                | mg/L                        |                           |                                                  |                       |                                                  |                             |
| 1117                                                   | 500                                                                                                                                                             | 500                                     |                                  | O            | 17.0                 | 8,27                |                               |                                                  | 28.(           | 8.75                        |                           |                                                  | ,84                   | Cler                                             | none                        |
| 1120                                                   | 300                                                                                                                                                             | 800                                     | 10                               | o            | 17.3                 | 8,00                |                               |                                                  | 20,7           | 8,46                        |                           | 10                                               |                       | $\vdash\vdash$                                   |                             |
| 1123                                                   | 300                                                                                                                                                             | 1100                                    | 0) (0                            | 6            | 17.5                 | 7,85                |                               |                                                  | 79.0           | 7,17                        |                           |                                                  | 151                   | $\vdash$                                         | ┼┼┤                         |
| 1126 300 1460 106 17.75 7.43 13.3 187.2 7.28 6.9 10.00 |                                                                                                                                                                 |                                         |                                  |              |                      |                     |                               |                                                  |                |                             |                           |                                                  |                       |                                                  |                             |
|                                                        |                                                                                                                                                                 |                                         |                                  |              |                      |                     |                               |                                                  |                |                             |                           |                                                  |                       |                                                  |                             |
|                                                        |                                                                                                                                                                 |                                         |                                  |              |                      |                     |                               |                                                  |                |                             |                           |                                                  |                       |                                                  |                             |
|                                                        |                                                                                                                                                                 |                                         |                                  |              |                      |                     |                               |                                                  |                |                             |                           |                                                  |                       |                                                  |                             |
|                                                        |                                                                                                                                                                 |                                         |                                  |              |                      |                     |                               |                                                  |                |                             |                           |                                                  |                       |                                                  |                             |
|                                                        |                                                                                                                                                                 |                                         |                                  |              |                      |                     |                               |                                                  |                |                             |                           |                                                  |                       |                                                  |                             |
|                                                        |                                                                                                                                                                 |                                         |                                  |              |                      |                     |                               |                                                  |                |                             |                           |                                                  |                       |                                                  |                             |
|                                                        |                                                                                                                                                                 |                                         |                                  |              |                      |                     |                               |                                                  |                |                             |                           |                                                  |                       |                                                  |                             |
|                                                        |                                                                                                                                                                 |                                         |                                  |              |                      |                     | <u> </u>                      | <del>                                     </del> |                |                             |                           |                                                  |                       | <u> </u>                                         |                             |
|                                                        |                                                                                                                                                                 |                                         | 118                              |              |                      |                     |                               | -                                                |                |                             |                           |                                                  |                       | <del>                                     </del> |                             |
|                                                        |                                                                                                                                                                 | 118                                     | (0)                              |              |                      |                     | <u> </u>                      | $\vdash$                                         |                |                             |                           | <del>                                     </del> |                       |                                                  |                             |
| <del></del>                                            |                                                                                                                                                                 |                                         |                                  |              |                      |                     |                               |                                                  |                |                             |                           |                                                  |                       |                                                  |                             |
|                                                        |                                                                                                                                                                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                  |              |                      |                     | <u> </u>                      |                                                  |                |                             |                           |                                                  |                       |                                                  |                             |
| WELL CAPACITY (G                                       | alions Per Foo                                                                                                                                                  | t): 0.75" = 0.03                        | 2; 1° = 0.0                      | 4; 1         | .25° = 0.06;         | 2" = 0.16;          | 3" = 0.37;                    | 4" ≈ 0.1                                         | 65; 5°=        | 1.02; 6" =                  | 1.47; 12* = 5.8           | В                                                |                       |                                                  |                             |
| TUBING INSIDE DIA                                      | , CAPACITY (                                                                                                                                                    | Gai./Ft.): 1/8" =                       | ± 0,0006; 3                      | /16" =       | 0.0014;              | 1/4" = 0,0026       | ; 5/16" = 0.                  | 004;                                             | 3/8" = 0.00    | 6; 1/2" = 0                 |                           |                                                  |                       |                                                  |                             |
| PURGING EQUIPME                                        | ENT CODES:                                                                                                                                                      | B = Baller;                             | BP ≃ Blac                        | der P        | ump; Es              |                     | Submersible P<br>MPLING DA    |                                                  | FF - F61       |                             |                           | opeon <sub>3</sub> )                             |                       |                                                  |                             |
| SAMDLED BY (PRINT) / A                                 | AFFILIATION: A                                                                                                                                                  | . 1                                     | .4                               | SAMP         | LER(S) SIGNAT        | rure(s):            | Dell                          | 1                                                | ml56           | 'es                         | SAMPLING<br>INITIATED AT: | 27                                               | SAMPLING<br>ENDED AT: | 112                                              | વ                           |
| SAMPLED BY (PRINT) / A                                 | /\r                                                                                                                                                             | ek Iu                                   | 615161                           | TUBIN        |                      | 1                   | ma                            |                                                  |                | D-FILTERED:                 |                           | (N)                                              | Filter Size           |                                                  | mm                          |
| DEPTH IN WELL (feet):                                  | ١                                                                                                                                                               | 8                                       |                                  | ı            | RIAL CODE: PE        |                     |                               |                                                  |                | Filtration Equipm           |                           | -<br>- 25                                        |                       |                                                  |                             |
|                                                        |                                                                                                                                                                 | DECONTAMINATIO                          | ON: PUMP                         | Y            | (P)                  |                     | Y N (replace                  |                                                  |                |                             | DUPLICATE:                |                                                  | ,                     | 5                                                | AMPLE PUMP                  |
| SAME                                                   | LE CONTAINER S                                                                                                                                                  | PECIFICATION                            |                                  | <del> </del> | PRESERVATIVE         |                     | TOTAL VOL                     | I                                                |                |                             | INTENDED ANALYS           | S AND/OR                                         | SAMPLING EC           | UIPMENT I                                        | LOW RATE (mL<br>per minute) |
| SAMPLE ID CODE                                         | # CONTAINERS                                                                                                                                                    | MATERIAL CODE                           | VOLUME (mL)                      | '            | USED                 | - 1                 | DDED IN FIELD (r              | nL)                                              | FINAL pH (     | Stanard Units)              | WELHOD                    |                                                  | 505                   |                                                  | p                           |
| SIC HAZ-                                               |                                                                                                                                                                 |                                         |                                  | $\vdash$     |                      |                     | <u>,</u>                      |                                                  |                |                             | EPA 5371                  |                                                  | 10                    | 0                                                | 100                         |
| BLSW402-<br>007-GW-018                                 | 12                                                                                                                                                              | PÉ                                      | 125                              |              |                      | _                   |                               |                                                  |                |                             | EFROST                    | 1                                                | AP                    | ſ                                                | 100                         |
|                                                        |                                                                                                                                                                 |                                         |                                  |              |                      |                     |                               |                                                  |                |                             |                           |                                                  |                       |                                                  |                             |
|                                                        |                                                                                                                                                                 |                                         |                                  |              |                      |                     | Sew                           |                                                  |                |                             | -                         | $\geq$                                           | S-2                   |                                                  |                             |
|                                                        | ->>                                                                                                                                                             |                                         |                                  |              |                      |                     |                               | $\geq$                                           |                |                             |                           |                                                  | 20                    |                                                  |                             |
|                                                        |                                                                                                                                                                 |                                         |                                  | $oxed{oxed}$ |                      |                     |                               |                                                  | _              |                             |                           |                                                  |                       |                                                  | <u> </u>                    |
|                                                        |                                                                                                                                                                 |                                         |                                  |              |                      |                     |                               |                                                  |                |                             |                           |                                                  |                       |                                                  | <u> </u>                    |
| we                                                     | U out                                                                                                                                                           | compl                                   | ete                              | San          | noted .              | سولما ب             | twout;                        | لعمعا                                            | لمهزامها       | ble ;                       | twas dr                   | y on                                             | 518/1                 | 8. La                                            | ser                         |
| REMARKS:                                               | , ,                                                                                                                                                             | ·· · · · ·                              | •                                | اوسا         | el araga             | rel qui             | ally toda                     | ey er                                            | my s           | ompling &                   | twas dr                   | jag d                                            | .Her wo               | +ds, ∨                                           | ell site                    |
|                                                        |                                                                                                                                                                 |                                         |                                  | 13 a         | tso M                | 15th school         | Low-en ?                      | بحصان                                            | <u>s (5 1a</u> | mited.                      |                           |                                                  |                       |                                                  |                             |
| MATERIAL CODES                                         |                                                                                                                                                                 |                                         | CG = Clear G<br>er Peristaltic I |              |                      |                     | PP ≈ Polypro<br>= Bladder Pum | p; E                                             | SP = Electr    | ne; I≕ tet<br>ic Submersibl |                           | (obacity)                                        |                       |                                                  |                             |
| JAM ENTO EXCIT                                         |                                                                                                                                                                 |                                         | verse Flow F                     | erista       | ltic Pump;           | SM = Stray          | Method (Tubi                  | ng Gravi                                         |                | O = Other<br>readings       | (Specify)                 |                                                  |                       |                                                  |                             |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Dale: March 14, 2016

C-135 05/19



| Installation: El(sworth                                | SAM: S/ the 2 (row 70, 80, 90)  ELL NO: MW18PFC 0207  SAMPLE ID: ELSWHO2-008 - Grw-029  DATE: 05/18/18 |                                       |                     |                                                |                               |                 |                                      |                        |                            |                       |           |                      |               |                              |                     |                    |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------|------------------------------------------------|-------------------------------|-----------------|--------------------------------------|------------------------|----------------------------|-----------------------|-----------|----------------------|---------------|------------------------------|---------------------|--------------------|
| WELL NO: MIAIL                                         | 8 DEC 10                                                                                               | 707                                   |                     |                                                | SA                            | MPLEIO: E       | LSWHO2                               | -008                   | 3 - Cr                     | w-0                   | 29        | DAT                  | e: <i>(</i> ) | 5/18                         | /18                 |                    |
| h                                                      |                                                                                                        |                                       |                     |                                                | <u> </u>                      | PU              | RGING DA                             | ΤΆ                     |                            |                       |           |                      |               |                              |                     |                    |
| WELL DIAMETER (Inches): WELL VOLUME PUR                | 2                                                                                                      | TUE<br>DIA                            | BING<br>METER (Incl | Vy ih                                          | οD 333                        | L SCREEN INT    | ERVAL DEPTH:<br>23,68 Ft             | . T                    | TATIC DEPTH<br>O WATER (fa | مر<br>(et BTOC): کار  | <i>⊘.</i> | 97                   |               | BE PUMP TYPE<br>AILER:       | PP                  |                    |
| WELL VOLUME PUR                                        | RGE: 1 WELL                                                                                            | VOLUME = (TO                          | ÖTAL WEI            | LL DEPT                                        | H BTOC                        | STATIC DE       | TH TO WATE                           | :R) X                  | WELL CAP                   | PACITY                |           |                      |               |                              |                     |                    |
| (only ဩ out if app                                     | pšcable)                                                                                               | = (                                   | 33,                 | 43                                             | Ft - 20                       | ,4   ₽0 ×       | 0.163                                | gaVit                  | = X;                       | , [] •                | gal       |                      |               |                              |                     |                    |
| EQUIPMENT VOLUM                                        | NE PURGE: 1                                                                                            | QUIPMENT V                            | OL, = Pህእ           | MP VOLU                                        | ME + (TUBI                    | NG CAPACI       | Y X T                                | UBING L                | ENGTH) +                   | FLOW CELL             | VOLU      | ME                   |               |                              | A                   | $\tau$             |
| (only fill out if ap                                   | p/cable)                                                                                               |                                       | <del></del>         | ····                                           | - <del></del>                 | X               | - 'Ft')                              | *                      | Js!                        |                       | u         | 1                    |               |                              |                     | 118                |
| INITIAL PUMP OR TUBING<br>DEPTH IN WELL (feet):        | 29                                                                                                     |                                       |                     | IMP OR TU                                      |                               | 29 <sup>\</sup> | PURG                                 | ING<br>TED AT:         | 090                        | 0                     | PI<br>Ei  | URGING<br>NDED AT:   | oi 5          | OTAL VOLUME<br>PURGED (00200 | mt -                | 1000               |
| DEF ITTH TYCE (1500).                                  | VOLUME                                                                                                 | CUMUL                                 |                     | PURGE                                          | DEPTH                         | pH<br>{standard | TEMP.                                | 1                      | OND,                       | DISSOLVE              | 1         | ORP<br>(mV)          |               | RBIDITY<br>YTUs)             | COLOR<br>(describe) | ODOR<br>(describe) |
| TIME                                                   | PURCED<br>(gellons)<br>VA                                                                              | VOLUME<br>PURGED                      |                     | RATE<br>(apm),<br>mL/m                         | WATER                         | units)          | (°C)                                 | ,                      | :S/em                      | mg/L                  |           | (al¥)                |               | 11037                        | (2233132)           | (cestine)          |
| 0945                                                   | 1,000                                                                                                  | 1,000                                 |                     |                                                | 26.43                         | 7.32            | 13.1                                 | 6                      | 94                         | 1.01                  |           | 93.8                 | 8             | ૪.૧                          | clear               | none               |
| 6950                                                   | 1000                                                                                                   | 2000                                  |                     | 200                                            | 20,93                         | 7.42            | 12.9                                 | 6                      | 82                         | 0.4                   |           | 54.1                 |               | 3.7                          |                     |                    |
| 0955                                                   | 1000                                                                                                   | 3 <i>0</i> 00                         | ) 2                 | 200                                            | 20,43                         | 7.48            | 12.9                                 | 6                      | 18                         | 0.3                   |           | 2.2                  |               | <u>8, 2</u>                  | $\vdash$            | +                  |
| 1000                                                   | 005 1000 5000 200 2093 7.58 13.0 672 0.27 -51.1 11.4                                                   |                                       |                     |                                                |                               |                 |                                      |                        |                            |                       |           |                      |               |                              |                     |                    |
| 1005                                                   | 1010 1000 6000 200 20.43 7,60 13,1 672 0.23 -68,8 16,2                                                 |                                       |                     |                                                |                               |                 |                                      |                        |                            |                       |           |                      |               |                              |                     | <del>     </del>   |
|                                                        | 1010 1000 6000 200 20.43 7.60 13.1 672 0.23 -68.8 16.2                                                 |                                       |                     |                                                |                               |                 |                                      |                        |                            |                       |           |                      |               |                              |                     |                    |
| 1015 1000 7000 200 20,43 7.60 13,1 673 0.26 -84,9 13.2 |                                                                                                        |                                       |                     |                                                |                               |                 |                                      |                        |                            |                       |           |                      |               |                              |                     |                    |
|                                                        |                                                                                                        |                                       |                     |                                                |                               |                 |                                      |                        |                            |                       |           |                      |               |                              |                     |                    |
|                                                        |                                                                                                        |                                       |                     |                                                |                               |                 |                                      |                        |                            |                       |           |                      |               |                              |                     |                    |
|                                                        |                                                                                                        |                                       |                     |                                                |                               |                 |                                      |                        |                            |                       |           |                      |               |                              |                     |                    |
|                                                        |                                                                                                        |                                       |                     |                                                |                               |                 |                                      |                        |                            |                       |           |                      |               |                              |                     |                    |
|                                                        |                                                                                                        |                                       |                     |                                                |                               |                 |                                      |                        |                            |                       |           |                      |               |                              |                     |                    |
|                                                        |                                                                                                        | NΣ                                    |                     |                                                |                               |                 |                                      | ļ                      |                            |                       |           |                      |               |                              |                     |                    |
|                                                        |                                                                                                        | -                                     | 18/18               | <u>.                                      </u> |                               |                 |                                      |                        |                            |                       |           |                      |               |                              |                     |                    |
|                                                        |                                                                                                        | ٠٠.                                   |                     |                                                |                               | ļ               |                                      | -                      |                            |                       | $\dashv$  |                      |               |                              | -                   |                    |
|                                                        |                                                                                                        | N 0751 - 00                           | . 15-1              | 204.                                           | 1.25" = 0.06;                 | 2" = 0.16:      | 3" = 0.37;                           | 4" = 0.0               | 85: 5"=                    | 1.02; 6'=             | 1.47;     | 12* = 5.88           | <br>3         |                              |                     | /                  |
| WELL CAPACITY (G                                       |                                                                                                        |                                       |                     |                                                | 0.0014;                       | 1/4" = 0.0026   | ; 5/16" = 0.                         | 004;                   | 3/8" = 0.00                | 6; 1/2" = 0           | 3.010;    | 5/8" = 0.            | 016           |                              |                     |                    |
| PURGING EQUIPM                                         |                                                                                                        | B = Bailer,                           |                     | iadder P                                       | ump; ES                       |                 | Submersible F<br>MPLING DA           |                        | PP ≍ Pei                   | ristattic Pump        | ); C      | ) = Other (5         | Specify)      |                              |                     |                    |
| SAMPLED BY (PRINT) / /                                 | AFFILIATION: A                                                                                         | 01. T.                                |                     | SAME                                           | LER(S) SIGNAT                 |                 | Rek                                  | _                      | A K                        | _                     | SAMPLI    | DAT: 10              | 16            | SAMPLING<br>ENDED AT:        | 10                  | 17                 |
| PUMP OR TUBING                                         |                                                                                                        |                                       | 0314                | т∪в⊯                                           |                               |                 | 1001                                 | 100                    |                            | D-FILTEREO:           | ,         |                      | N)            | Filter Size                  |                     | mm                 |
| DEPTH IN WELL (feel):                                  | <u>2</u>                                                                                               | · · · · · · · · · · · · · · · · · · · |                     |                                                | RIAL CODE: PE                 |                 |                                      |                        |                            | Filtration Equipm     | nent Type |                      | , и           |                              |                     |                    |
| SAM                                                    | FIELD (                                                                                                | PECONTAINATION                        | N: PU               | MP Y                                           | <u>(b)</u>                    | TUBING          | Y N (replai                          |                        |                            |                       | <u> </u>  |                      | _             |                              |                     | AMPLE PUMP         |
| SAVPLE ID CODE                                         | # CONTAINERS                                                                                           | MATERIAL CODE                         | VOLUME (i           | mL)                                            | PRESERVATIVE                  |                 | TOTAL VOL                            |                        | FINAL pH (                 | Stanard Units)        | INTEND    | ED ANALYSK<br>METHOD | S AND/OR      | SAMPLING EQ<br>CODI          | UIPMENT F           | Per minute)        |
|                                                        |                                                                                                        | 0.0                                   |                     | +                                              | USED                          |                 | DDED IN FIELD (                      | mL)                    |                            |                       | $\vdash$  | FDA 50711            |               | ^ ^                          | $\overline{}$       | 700                |
| ELSW HO2-<br>508-GW-02                                 |                                                                                                        | ₽Ê                                    | 125                 | $\perp$                                        |                               | <u> </u>        |                                      |                        |                            |                       | <u> </u>  | EPA 537M             |               | API                          | 1                   | 200                |
| ESW 102-<br>008-GW-92                                  | 2                                                                                                      | PĒ                                    | 125                 |                                                |                               |                 | Son !                                |                        |                            |                       | E         | PA 5                 | 37 M          | API                          | }                   | 200                |
|                                                        |                                                                                                        | /                                     |                     |                                                |                               |                 |                                      | $ egin{array}{c} $     |                            |                       |           |                      |               |                              |                     |                    |
|                                                        | 1                                                                                                      | *                                     |                     | 1                                              |                               |                 |                                      |                        |                            |                       |           |                      |               |                              |                     |                    |
|                                                        | 1 1                                                                                                    |                                       |                     | <u> </u>                                       |                               |                 |                                      |                        |                            |                       | <u> </u>  |                      | $\mathcal{L}$ |                              |                     |                    |
| we                                                     | ell pud                                                                                                | compl                                 | ere.                |                                                |                               |                 |                                      |                        |                            |                       |           |                      |               | -                            |                     |                    |
| REMARKS:                                               | •                                                                                                      | 4                                     |                     |                                                |                               |                 |                                      |                        |                            |                       |           |                      |               |                              |                     |                    |
| WATERIA STATE                                          |                                                                                                        | nhas Classes                          | CO - Cir-           | r Gless:                                       | PE = Pob                      | rethylener      | PP = Polypro                         | ovlene:                | S = Silico                 | ne; T=Tef             | flon:     | O = Other            | (Specify)     |                              |                     |                    |
| MATERIAL CODES                                         |                                                                                                        | APP = Afte                            |                     | ic Pump;                                       | B≃Ba                          | ler, BP         | = Bladder Pum                        | p; E                   | SP = Electr                | ic Submerslb          | le Pum    | р;                   | . , ,,        |                              |                     |                    |
|                                                        |                                                                                                        | RFPP = Re                             | verse Flor          | w Perista                                      | itic Pump;<br>Stabilization C | SM = Strav      | r Method (Tubi<br>je of variation of | ng Gravi<br>last three | y Orain);<br>consecutive   | O = Other<br>readings | (ahecii   | ¥)                   |               |                              |                     |                    |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen; all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

C-136/19



| Installation: Elisworth                                  | SAMPLE ID:   BLS W H 03-001- GW-015   DATE: 5/24/18 |                                    |                          |                   |                 |                     |                                 |               |                            |                           |            |                |               |                             |                                                  |              |
|----------------------------------------------------------|-----------------------------------------------------|------------------------------------|--------------------------|-------------------|-----------------|---------------------|---------------------------------|---------------|----------------------------|---------------------------|------------|----------------|---------------|-----------------------------|--------------------------------------------------|--------------|
| WELL NO: MW                                              | 8PFC                                                | 0301                               |                          |                   | SA              | MPLE ID: E          | LSWHO                           | 3-0C          | 11-6                       | W-01                      | 5          | DAT            | E 5,          | 124/18                      | 3                                                |              |
|                                                          |                                                     |                                    |                          |                   | 1               |                     |                                 |               |                            |                           |            |                |               |                             |                                                  |              |
| MELL DIAMETER (Inches): 2 ** WELL VOLUME PUR             | <del>/4 1/~ 4</del>                                 | DE AT TUE                          | BING Vu<br>METER (incher | *):<br>!\> ().    | D WEL<br>20     | L SCREEN IN         | TERVAL DEPTH:                   | 8<br>T        | TATIC DEPTI<br>O WATER (fe | н<br>ыылос): Ч            | 10,1       |                | - 1           | E PUMP TYPE<br>AILER:       | PP                                               |              |
| WELL VOLUME PUR                                          | GE: 1 WELL                                          | VOLUME ≈ (To                       | OTAL WELL                | DEPT              | H BTOC -        |                     |                                 |               |                            |                           |            |                |               |                             |                                                  |              |
| (only fill out if app                                    | licable)                                            | = (                                | 20.3                     | 8                 | Ft -9.6         | ) ( Fi)             | 0.163                           | galfil        | = 1, 8                     | 85 4                      | gal        |                |               |                             |                                                  |              |
| EQUIPMENT VOLUM                                          |                                                     | QUIPMENTV                          | OL. = PUMI               | VOLU              | ME + (TUBII     | NG CAPAC            | T X YTI                         | UBING L       | ENGTH) +                   | FLOW CELL                 | . VOLUME   |                |               |                             |                                                  | AT           |
| (orly to out if app                                      | Seeble)                                             |                                    |                          |                   | Q3)(-           |                     | ,                               |               |                            |                           |            |                |               |                             |                                                  | 124/18       |
| INITIAL PUMP OR TUBING                                   | 15                                                  | -                                  | FINAL PUN                |                   | ,               | 5                   | PURG                            | NG<br>FED AT: | 114                        | 5                         | PUR        | GING<br>ED AT: | 208 F         | OTAL VOLUME<br>URGED (URGED | m L 3't                                          | 150          |
| DEPTH IN WELL (feet):                                    |                                                     | CUMUL.                             | DEPTH IN 1               | URGE              | DEPTH           | pН                  | TEMP.                           |               | OND.                       | DISSOLVE                  |            | ORP            | TU            | RBIDITY                     | COLOR                                            | CDOR         |
| TIMÉ                                                     | VOLUME<br>PURGED<br>*(galloos)                      | VOLUME<br>PURGED<br>∾IonibuSi      |                          | ATE               | TO<br>WATER     | (slandard<br>Unils) | (°C)                            | 1             | i\$/cm                     | OXYGEN<br>mg/l.           |            | (mV)           | 0             | YTUs}                       | (describe)                                       | (describe)   |
| 1150                                                     | 750                                                 | 750                                |                          | 50                | 9.39            | 7.7                 | 14,5                            | ધ             | 61.6                       | 1,8"                      | -          | 181            | _ 7           | 77                          | cleu                                             | none         |
| 1153                                                     | 450                                                 | 120                                | 0 1                      | 56                | 9.45            | 7,51                | 1 14.2                          | ૫             | 58,6                       | 1,0                       |            | 7,5            |               | <u>5,7</u>                  |                                                  |              |
| 1156                                                     | h50                                                 | 1650                               | 0 1                      | 5 b               | 9.51            | 7,57                |                                 | મા            | 19,3                       | 0.80                      |            | 20,1           |               | 5.2                         |                                                  |              |
| 1159 450 2100 150 9.55 7.63 13.6 442, 4 0,77 -24.4 136.0 |                                                     |                                    |                          |                   |                 |                     |                                 |               |                            |                           |            |                |               |                             |                                                  |              |
| 1207 450 2550 150 957 7.84 13,2 439.2 0.76 -27.9 134.0   |                                                     |                                    |                          |                   |                 |                     |                                 |               |                            |                           |            |                |               |                             |                                                  |              |
| 1205 NSO 3000 150 1,60 7,73 13,7 438,0 0,83 -40,5 195    |                                                     |                                    |                          |                   |                 |                     |                                 |               |                            |                           |            |                |               |                             |                                                  |              |
|                                                          |                                                     |                                    |                          |                   |                 |                     |                                 |               |                            |                           |            |                |               |                             | 1                                                |              |
| 1208 750 3400 150 7,60 1,01 15.1 451,5 0100 5.1 21       |                                                     |                                    |                          |                   |                 |                     |                                 |               |                            |                           |            |                |               |                             |                                                  |              |
|                                                          |                                                     |                                    |                          |                   |                 |                     |                                 |               |                            |                           |            |                |               |                             |                                                  |              |
|                                                          |                                                     |                                    |                          |                   |                 |                     |                                 |               |                            |                           |            |                |               |                             |                                                  |              |
|                                                          |                                                     |                                    |                          |                   |                 |                     |                                 |               |                            |                           |            |                |               |                             |                                                  |              |
|                                                          |                                                     |                                    |                          |                   |                 |                     |                                 |               |                            |                           |            |                |               |                             |                                                  |              |
|                                                          |                                                     |                                    |                          |                   |                 | 8                   |                                 |               |                            |                           |            |                |               |                             | <del> </del>                                     |              |
|                                                          |                                                     |                                    |                          | 5                 | 24/             |                     |                                 | <u> </u>      |                            |                           | _          |                |               |                             | ├─                                               |              |
|                                                          |                                                     |                                    |                          | 1/                |                 | <u> </u>            |                                 | ├             |                            |                           |            |                |               |                             | <u> </u>                                         |              |
|                                                          |                                                     |                                    |                          |                   |                 |                     |                                 | <del> </del>  |                            | <u></u>                   | _          |                |               |                             | <del>                                     </del> |              |
|                                                          |                                                     |                                    |                          |                   | 057 - 0.05      | 27 - 0.11           | 3° = 0.37;                      | 4° = 0 i      | 65; 5° =                   | 1.02; 6"=                 | 1 47: 1    | 2" = 5.86      | L<br>8        |                             | <u> </u>                                         | <u> </u>     |
| WELL CAPACITY (G<br>TUBING INSIDE DIA                    | CAPACITY (C                                         | t): 0.75"= 0.0:<br>Sal/Ft.): 1/8"= | z;                       |                   |                 |                     |                                 |               | 3/8" = 0.000               |                           | 0,010;     | 5/8" = 0,      | 016           |                             |                                                  |              |
| PURGING EQUIPME                                          | NT CODES;                                           | B = Bailer,                        | BP = Bla                 | idder Po          | ump; ES         | SP = Electr         | c Submersible P<br>AMPLING DA   |               | PP = Per                   | ristaltic Pump            | r, 0=      | Other (S       | Specify)      |                             |                                                  |              |
|                                                          |                                                     |                                    |                          | T <sub>DAMB</sub> | EDIOL CICINAT   |                     | Bik                             |               | 61.                        | ,                         | SAMPLING   |                | 09            | SAMPLING                    | 12                                               | ' /n         |
| SAMPLED BY (PRINT) / A                                   | FFILIATION: A                                       | rek Tu                             | rolsky                   |                   |                 | one(o). A           | nea_                            | 14            |                            | D-FILTERED:               | INITIATED  |                | (N)           | ENDEO AT:<br>Filter Size    | 121                                              | mn           |
| PUMP OR TUBING<br>DEPTH IN WELL (feet):                  | 15                                                  |                                    |                          | TUBIN             | rial code: Pe   |                     |                                 |               |                            | Filtration Equipo         | nent Type: |                |               |                             |                                                  |              |
|                                                          | FIELD                                               | DECONTAMINATIO                     | ON: PUM                  | PΥ                | (I)             | MEUT                |                                 |               |                            |                           | DUPLICATI  | E: Y           | Ń             | )                           | I.                                               | AMPLE PUMP   |
| SAMP                                                     | LE CONTAINER S                                      | PECIFICATION                       |                          |                   |                 |                     | TOTAL VOL                       | MOIT          |                            |                           |            |                | S AND/OR      | SAMPLING EQ                 | UIPMENT F                                        | LOW RATE (mL |
| SAMPLE ID CODE                                           | # CONTAINERS                                        | MATERIAL CODE                      | VOLUME (ml               | ->                | USED            |                     | ADDED IN FIELD (r               | nL)           | FINAL pH (                 | Stanard Units)            |            | METHOD         |               | CODE                        |                                                  | per minuto)  |
| ELSW403-                                                 | 2                                                   | PE                                 | 125                      |                   |                 |                     |                                 |               |                            |                           | E          | EPA 537M       | ı             | APF                         | <u> </u>                                         | 150          |
|                                                          |                                                     |                                    |                          |                   |                 |                     | Xw.                             |               |                            |                           | -          |                |               |                             |                                                  |              |
|                                                          |                                                     |                                    |                          | +-                |                 |                     |                                 |               |                            |                           |            |                | $\overline{}$ | 7                           |                                                  |              |
|                                                          |                                                     |                                    |                          | +                 |                 |                     |                                 |               | $\overline{}$              |                           | ļ          |                |               |                             | $\overline{}$                                    | _            |
|                                                          | <u> </u>                                            |                                    | 1                        | +                 |                 |                     |                                 |               |                            |                           |            |                |               |                             |                                                  |              |
| We                                                       | U pad                                               | comple                             | £8.                      |                   |                 | L                   |                                 |               |                            |                           |            |                |               |                             |                                                  |              |
| REMARKS:                                                 | 60K 5                                               | ample                              | due te                   | m                 | creas A         | ~g &r               | rbidity                         | ,             |                            |                           |            |                |               |                             |                                                  |              |
| MATERIAL CODES                                           |                                                     |                                    | CG = Clear               |                   | PE ≈ Poly       |                     | PP = Polypro                    | pylene;       | S = Silico                 |                           |            | = Other        | (Specify)     |                             |                                                  |              |
| SAMPLING EQUIPA                                          |                                                     | APP = Afte                         | er Peristallic           | Pump;             | B = Bai         | ler, Br             | ⇒ Bladder Pum<br>w Method (Tubi |               |                            | ic Submersib<br>O = Olher |            |                |               |                             |                                                  |              |
|                                                          |                                                     | KFPP = R€                          | verse rrow               | Forista           | Stabilization C | iteria for ra       | nge of variation of             | last three    | consecutive                |                           | 7 1        |                |               |                             |                                                  |              |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 rng/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

C-137 5/24



| Installation: Elisworti                        | h AFB M202                                                                                                                                                                                                                    | 27.0003                                 |                        |               |                             | Situ:               | -S14                          | e 3 .                 | (bu                     | ildan             | 6             | (B)                      |           |                                |                                        |               |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------|---------------|-----------------------------|---------------------|-------------------------------|-----------------------|-------------------------|-------------------|---------------|--------------------------|-----------|--------------------------------|----------------------------------------|---------------|
| WELL NO: MV                                    | /18PF                                                                                                                                                                                                                         | C 030                                   | 2                      |               | SA                          | MPLEID: E           | LSWH                          | 03-0                  | ύ0 Z ·                  | - Cz W            | O             | (7) DA                   | TE:       | 5/10/                          | ı8                                     |               |
|                                                |                                                                                                                                                                                                                               |                                         |                        |               |                             |                     | RGING DA                      |                       |                         | - •               |               |                          |           |                                |                                        |               |
| WELL<br>DIAMETER (inches):<br>WELL VOLUME PUS  | 2                                                                                                                                                                                                                             | Ti<br>D                                 | UBING<br>IAMETER (Incl | (/U<br>hes):  | `` OD WEL<br>2€             | L SCREEN INTE       | ERVAL DEPTH:<br>O, 08 Ft      | ST<br>TO              | ATIC DEPTH<br>WATER (fe | H<br>set BTOC):   | 12            | .89                      | PUI<br>OR | RGE PUMP TYPE<br>BAILER:       | PP                                     |               |
| WELL VOLUME PU                                 | RGE: 1 WELL                                                                                                                                                                                                                   |                                         |                        |               |                             |                     |                               |                       |                         |                   |               |                          |           |                                |                                        |               |
| (only 10) out if ap                            | pēcable)                                                                                                                                                                                                                      | =                                       | 20,                    | 33            | Ft - 17                     | (S) (Ft) X          | 0.163                         | ga⊍ft                 | - },                    | 22                | gal           |                          |           |                                |                                        |               |
| EQUIPMENT VOLU                                 | ME PURGE: 1                                                                                                                                                                                                                   | EQUIPMENT                               | VOL. = PU              | MP VOLU       | JME + (TUB)                 | NG CAPACIT          | Y X T                         | UBING LE              | NGTH) +                 | FLOW CEL          | T AOF         | UME                      |           |                                |                                        |               |
| (only fill out if ap                           | pscable)                                                                                                                                                                                                                      |                                         |                        |               | <u> </u>                    | ×                   | +( )                          | +                     | gai                     | 8                 |               | yai                      |           |                                | ······································ |               |
| INITIAL PUMP OR TUBIN<br>DEPTH IN WELL (feet): | G \                                                                                                                                                                                                                           | 7                                       | 1                      | JMP OR TU     |                             | ۱٦                  | PURG                          | ING<br>TED AT:        | 134                     | 15                |               | PURGING                  | 420       | TOTAL VOLUME<br>PURGED (galler | mb 8                                   | 3 500         |
| Del Triff Week,                                | VOLUME                                                                                                                                                                                                                        | CUMUL                                   | <del>-</del>           | PURGE         | DEPTH                       | pH<br>(standard     | TEMP.                         | co                    |                         | DISSOLV           | $\overline{}$ | ORP                      |           | URBIDITY                       | COLOR                                  | ODOR          |
| TIME                                           | PURGED<br>-(gallong)                                                                                                                                                                                                          | VOLUM<br>PURGE                          |                        | RATE          | TO<br>WATER<br>Wifeet BEOC! | (Siandard<br>Units) | (°C)                          | μS                    | icm                     | OXYGE<br>mg/L     | N             | (mV)                     |           | (NTUs)                         | {describe                              | (describe)    |
| 1350                                           | 1500                                                                                                                                                                                                                          | 150                                     |                        | 300           | 13,42                       | 7.34                | 10.4                          | 6                     | 22                      | (,0               | ٥             | 22,4                     |           | 87                             | cloud                                  | ron           |
| 13 55                                          | 1560                                                                                                                                                                                                                          | 33 00                                   |                        | <u>ه ه</u>    | 13.65                       | 7,19                | 10.3                          | 67                    |                         | 0, 4              |               | 145                      |           | 133                            |                                        |               |
| LHOU                                           | V500                                                                                                                                                                                                                          | 2500                                    |                        | 301)          | 13,61                       | 7,19                | 10.2                          | 62                    |                         | 0,6               |               | 5.1                      |           | 551                            |                                        |               |
| 1405                                           | 405 1000 5500 200 13.56 7.18 10.2 622 0.58 -2.8 3.25 1 410 1000 6500 200 13.54 7.13 10.1 621 0.47 -12.1 106 clear 415 1000 7500 200 13.54 7.13 10.0 618 0.31 -27.8 27.8 420 1000 8500 200 13.54 7.17 10.0 613 0.24 -43.2 14.6 |                                         |                        |               |                             |                     |                               |                       |                         |                   |               |                          |           |                                |                                        |               |
|                                                | 410 1000 6500 200 13.54 7.13 10.1 621 0.47 -12.1 106 clear 415 1000 7500 200 13.54 7.13 10.0 618 0.31 -27.8 27.8                                                                                                              |                                         |                        |               |                             |                     |                               |                       |                         |                   |               |                          |           |                                |                                        |               |
|                                                | 410 1000 6500 200 13.54 7.13 10.1 621 0.47 -12.1 106 dear 15 1000 7 500 200 13.54 7.13 10.0 618 0.31 -27.8 27.8                                                                                                               |                                         |                        |               |                             |                     |                               |                       |                         |                   |               |                          |           |                                |                                        |               |
| 1420                                           | 1000                                                                                                                                                                                                                          | 8 50                                    | <del>''   '</del>      | /00           | 17,24                       | 1,(1                | 10.0                          | 0 1                   | . >                     | 0, 2              | 1             | <u>۳۱۲، ۲</u>            | }         | 4.6                            | <u> </u>                               |               |
|                                                |                                                                                                                                                                                                                               |                                         | -+                     |               |                             |                     |                               |                       |                         |                   |               |                          |           |                                |                                        |               |
|                                                |                                                                                                                                                                                                                               |                                         | <del>-  </del>         |               |                             |                     |                               |                       |                         |                   |               |                          |           |                                |                                        | <del> </del>  |
|                                                |                                                                                                                                                                                                                               |                                         |                        |               |                             |                     |                               |                       |                         |                   | $\dashv$      |                          |           |                                |                                        | <del></del>   |
|                                                |                                                                                                                                                                                                                               |                                         |                        |               |                             |                     |                               |                       |                         |                   |               |                          |           |                                |                                        |               |
|                                                |                                                                                                                                                                                                                               |                                         |                        |               |                             |                     |                               |                       |                         |                   |               |                          |           |                                |                                        |               |
|                                                |                                                                                                                                                                                                                               |                                         |                        |               |                             |                     |                               |                       |                         |                   |               |                          |           |                                |                                        |               |
|                                                | 4                                                                                                                                                                                                                             | 100                                     |                        |               |                             |                     |                               |                       |                         |                   |               |                          |           |                                |                                        |               |
|                                                | 5                                                                                                                                                                                                                             | 10118                                   |                        |               |                             |                     |                               |                       |                         |                   | _             |                          |           |                                |                                        |               |
|                                                |                                                                                                                                                                                                                               |                                         |                        | 04: 4         | 255 222                     | A* . 0.40           | 21 - 227                      | 4 - 0.05              | - 51 - 4                | ng. ot –          | 2.47:         | 401 - 6 00               |           |                                | L                                      | <u> </u>      |
| WELL CAPACITY (G<br>TUBING INSIDE DIA          |                                                                                                                                                                                                                               | -                                       |                        |               | .25" = 0.06;<br>0.0014; 1   |                     | 3" = 0.37;<br>5/16" = 0.0     | 4" = 0.65<br>004; 3/8 | ; 5" = 1<br>3" = 0,006; |                   |               | 12" = 5.88<br>5/8" = 0.0 |           |                                |                                        |               |
| PURGING EQUIPME                                |                                                                                                                                                                                                                               | B = Baller,                             |                        | adder Pt      |                             | P = Electric S      | ubmersible P                  | ump;                  |                         | stattic Pump      | ; (           | O ≈ Other (S             | Specify)  |                                |                                        |               |
| SAMPLED BY (PRINT) / A                         | ECH INTIONS                                                                                                                                                                                                                   | A                                       | ····                   | CAMO          | ED/E) EKMATI                |                     | 7                             |                       | / /                     | ,                 | SAMPLI        |                          | 121       | SAMPLING                       | jų:                                    | \ 7           |
| PUMP OR TUBING                                 | TELEXITOR.                                                                                                                                                                                                                    | Arch 9                                  | 1 wol                  | TUBIN         |                             | metor N             | Frek                          | 16                    |                         | -#<br>D-FILTERED; | INITIATI      |                          | <u> </u>  | ENDED AT:                      | J = L                                  | mm            |
| DEPTH IN WELL (feet):                          | 1                                                                                                                                                                                                                             | 1                                       |                        | 1             | RIAL CODE: PE               |                     |                               | ,                     | - 1                     | itration Equipo   |               | •                        | ,120      | 1 - 441 - 544                  |                                        |               |
|                                                |                                                                                                                                                                                                                               | ECONTAMINATIO                           | ON: PUN                | IP Y          | Ø                           | TUBING              | Y (N (replace                 |                       |                         |                   | DUPLIC        | ATE: Y                   | Q         | 3                              |                                        | 1101 5 0 1010 |
| SAMP                                           | LE CONTAINER S                                                                                                                                                                                                                | PECIFICATION                            |                        | -             | RESERVATIVE                 | SAM                 | PLE PRESERVAT                 | IION                  |                         |                   | INTEND        |                          | AND/OR    | Sampling Eql                   | - 1                                    |               |
| SAMPLE 10 CODE                                 | # CONTAINERS                                                                                                                                                                                                                  | HATERIAL CODE                           | VOLUME (m              | L)            | USED                        | ADI                 | DED IN FIELD (m               |                       | FINAL pH (St            | tanard Units)     |               | METHOD                   |           | CODE                           |                                        | per minute)   |
| BLSWH03-<br>001-GW-<br>017                     | 2                                                                                                                                                                                                                             | PE                                      | 125                    |               |                             |                     |                               |                       |                         |                   |               | EPA 537M                 |           | ላየ                             | P                                      | 200           |
|                                                |                                                                                                                                                                                                                               |                                         |                        |               |                             |                     | (In)                          |                       |                         |                   |               | \                        |           |                                | /                                      |               |
|                                                |                                                                                                                                                                                                                               |                                         |                        |               |                             |                     |                               | $\dashv$              |                         |                   |               |                          |           | RX                             |                                        |               |
|                                                | - 3                                                                                                                                                                                                                           | 5                                       |                        | _             |                             |                     |                               | $\rightarrow$         | _                       |                   |               |                          | -4        | <b>78</b>                      | $\dashv$                               |               |
|                                                |                                                                                                                                                                                                                               |                                         | -                      |               |                             | _                   |                               |                       | _                       | <u></u>           |               |                          | $\dashv$  |                                | +                                      |               |
|                                                | UI pul                                                                                                                                                                                                                        |                                         | أمنيا                  | <u>.</u><br>4 | *1 C.1C.                    | ا . ا چ. م          | 51 00                         |                       |                         |                   |               |                          |           |                                |                                        | <del></del>   |
| REMARKS:                                       | in home                                                                                                                                                                                                                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | my ve                  | , -           |                             | 1 - '''             | J. 52                         | , -                   |                         |                   |               |                          |           |                                |                                        |               |
| •                                              |                                                                                                                                                                                                                               |                                         |                        |               |                             |                     |                               |                       |                         |                   |               |                          |           |                                |                                        |               |
| MATERIAL CODES:                                |                                                                                                                                                                                                                               |                                         | CG = Clear             |               | PE = Polye                  |                     | P = Polyprop                  |                       |                         | ; T≕Tefl          |               | O = Olher (              | Specify)  |                                |                                        |               |
| SAMPLING EQUIPM                                | ENT CODES:                                                                                                                                                                                                                    | APP = Afte<br>RFPP = Re                 |                        | Peristalli    |                             | SM = Straw N        | Bladder Pump<br>Method (Tubin | g Gravity C           | Drain);                 | O = Other         |               |                          |           |                                |                                        |               |
|                                                |                                                                                                                                                                                                                               |                                         |                        | CNA           | abilization Cail            | aria for toward     | of variation of la            | of three col          | neasedfree r            | codings           |               |                          |           |                                |                                        |               |

pH: ± 0.2 unils Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

N 05/10



| Installation: Elfsworth                         | AFB M202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.0003                                 |                                  | •                          | Site:                      | 5,*₩                                 | 2 3                     | (Bu                  | ildny                                         | 618)                       |                |                                          |                     |                    |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------|----------------------------|----------------------------|--------------------------------------|-------------------------|----------------------|-----------------------------------------------|----------------------------|----------------|------------------------------------------|---------------------|--------------------|--|
| WELL NO: Mu                                     | 118 PFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0303                                   |                                  | SA                         | MPLEID: EL                 | SWHO                                 | 73-6c                   |                      | &w-0                                          |                            | те: 5          | 110/4                                    | <u> </u>            |                    |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                  | •                          |                            | RGING DA                             |                         |                      |                                               |                            |                |                                          |                     |                    |  |
| WELL<br>DIAMETER (inches):                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tubing<br>Diametei                     | My M                             |                            | L SCREEN INTE              |                                      | 1                       | TIC DEPT             |                                               | 1.7                        |                | GE PUMP TYPE<br>BAILER:                  | PP                  |                    |  |
| WELL VOLUME PUF                                 | RGE: 1 WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                  |                            |                            |                                      |                         |                      |                                               |                            |                |                                          |                     |                    |  |
| (only fill out if ap                            | olicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = (                                    | 10.37                            | R - 11.                    | 7 FI) X                    | 0,163                                | gai#R ≖                 | 1.2                  | 42 0                                          | ai                         |                |                                          |                     |                    |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                  |                            |                            |                                      |                         |                      |                                               |                            |                |                                          |                     |                    |  |
| EQUIPMENT VOLUM                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EQUIPMENT VOL. =                       | PUMP VOLU                        | JME+(TUBI<br>gal = (       | NG CAPACIT                 | Y X T                                | UBING LE                | NGTH) +              | FLOW CELL                                     | VOLUME                     |                |                                          |                     |                    |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                  |                            |                            |                                      |                         |                      |                                               |                            |                |                                          |                     |                    |  |
| INITIAL PUMP OR TUBING<br>DEPTH IN WELL (feet): | <u> 16</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | AL PUMP OR TO<br>PTH IN WELL (fo |                            | 6                          | Purg<br>Initia                       | ING<br>TED AT:          | 122                  | -5                                            | PURGING<br>ENDED AT:       | 320            | TOTAL VOLUME<br>PURGED <del>(2016)</del> | <i>-</i>            | 6,500              |  |
| TIME                                            | VOLUME<br>PURGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CUMUL                                  | PURGE                            | DEPTH                      | pH<br>{slandard            | TEMP.<br>( <sup>O</sup> C)           | CON:<br>µSfc            |                      | DISSOLVEI<br>OXYGEN                           | ORP (mV)                   |                | RBIDITY<br>NTUs}                         | COLOR<br>(describe) | ODOR<br>(describe) |  |
| IIME                                            | tgenons?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PURGED                                 | in Clark                         |                            | units)                     | ( 0)                                 | роге                    |                      | mg/l.                                         | (,                         |                |                                          | ,                   | (acaemic)          |  |
| 1230                                            | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1500                                   | 300                              | 12.42                      | 7.44                       | 9.8                                  | 491                     | 2                    | 5,45                                          | 39.5                       | t              | 38                                       | clear               | none               |  |
| 1235                                            | 150c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3000                                   | 300                              | 12.69                      | 7.16                       | 9.6                                  | 464                     | ٥،١                  | 5,58                                          | 25.                        | 5              | <b>3</b> 8                               | cloudy              | 1                  |  |
| 1240                                            | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4500                                   | 300                              | 12.48                      | 7,13                       | 9,4                                  | 450                     |                      | 4.83                                          | -3.2                       | 0              | R                                        | 1"                  |                    |  |
| 1245                                            | 250 1500 7500 300 13,69 7,16 9,1 454.3 3.85 53.9 0R 1255 1500 9000 300 14.02 7.19 9,1 454.1 4.41 -55.9 963 300 1500 10500 300 14.41 7.15 9.0 453.9 4.33 -49.1 776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                  |                            |                            |                                      |                         |                      |                                               |                            |                |                                          |                     |                    |  |
| 1250                                            | 250 1500 7500 300 13,69 7.16 9.1 454.3 3.85 53.9 0R 1255 1500 9000 300 14.02 7.19 9.1 454.1 4.41 -55.4 963 300 1500 10500 300 14.11 7.15 9.0 453.9 4.33 -49.1 776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                  |                            |                            |                                      |                         |                      |                                               |                            |                |                                          |                     |                    |  |
|                                                 | 255 1500 9000 300 14.02 7.19 91 454.1 4.41 -55.4 963 300 1500 10500 300 14.41 7.15 9.0 453.9 4.33 -49.1 776 305 1500 12.000 300 14.76 7.14 9.0 453.6 5.65 -38.3 OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                  |                            |                            |                                      |                         |                      |                                               |                            |                |                                          |                     |                    |  |
|                                                 | 255 1500 9000 300 14.02 7.19 91 454.1 4.41 -55.4 963 300 1500 10500 300 14.41 7.15 9.0 453.9 4.33 -49.1 776 305 1500 12.000 300 14.76 7.14 9.0 453.6 5.65 -38.3 0R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                  |                            |                            |                                      |                         |                      |                                               |                            |                |                                          |                     |                    |  |
|                                                 | 1255   1500   9000   300   14.02   7.19   91   454.1   4.41   -55.4   963   300   1500   10500   300   14.14   7.15   9.0   453.9   4.33   -49.1   776   705   1500   12.000   300   14.76   7.14   9.0   453.6   5.65   -38.3   0.8   3.6   15.02   7.12   9.1   454.4   5.72   -34.5   608   100   1500   13500   300   15.12   7.12   9.1   454.4   5.72   -34.5   608   100   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   100 |                                        |                                  |                            |                            |                                      |                         |                      |                                               |                            |                |                                          |                     |                    |  |
|                                                 | 300 1500 10500 300 14.41 7.15 9.0 453.9 4.33 -49.1 776 305 1500 12.000 300 14.76 7.14 9.0 453.6 5.65 -38.3 0R 310 1500 13500 300 15.12 7.12 9.1 454.4 5.72 -345 608 315 1500 15000 300 15.48 7.11 9.2 454.0 5.96 -219 585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                  |                            |                            |                                      |                         |                      |                                               |                            |                |                                          |                     |                    |  |
| 1320                                            | 300 1500 10500 300 14.41 7.15 4.0 453.4 4.33 -44.1 776 305 1500 12000 300 14.76 7.14 9.0 453.6 5.63 -38,3 0R 310 1500 13500 300 15.12 7.12 9.1 454.4 5.72 -34.5 608 315 1500 15000 300 15.48 7.11 9.2 454.0 5.96 -29,9 535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                                  |                            |                            |                                      |                         |                      |                                               |                            |                |                                          |                     |                    |  |
| <i>V)</i> = 0                                   | , -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                  | 1 2,0 -5                   | ,,,,,                      |                                      |                         |                      | <u>, , , , , , , , , , , , , , , , , , , </u> |                            |                |                                          |                     |                    |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                  |                            |                            |                                      |                         |                      |                                               |                            |                |                                          |                     |                    |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                  |                            |                            |                                      |                         |                      |                                               |                            |                |                                          |                     |                    |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | -                                |                            |                            |                                      |                         |                      |                                               |                            |                |                                          |                     |                    |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 510                              | 18                         |                            |                                      | <u></u>                 |                      |                                               |                            |                |                                          |                     |                    |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <u> </u>                         | 252 202                    | 01 040                     | 01 0 07:                             | 41 0.05.                |                      | 1.00                                          | .47: 12" = 5.8             | •              |                                          |                     | l                  |  |
| WELL CAPACITY (G<br>TUBING INSIDE DIA,          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                  | .25" = 0.06;<br>0.0014; 1. | 2 ≈ 0,16;<br>/4" ≈ 0,0026; | 3" = 0,37;<br>5/16" = 0.0            | 4" = 0.65;<br>104; 3/8" | 5" = "5<br>0.006 = " |                                               | -                          |                |                                          |                     |                    |  |
| PURGING EQUIPME                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | = Bladder Pr                     | ımp; ES                    |                            | ubmersible Po<br>IPLING DA           |                         | P ≃ Peri             | istaltic Pump;                                | O = Other (5               | Specify)       |                                          |                     |                    |  |
| SAMPLED BY (PRINT) / A                          | EERIATION: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .l. — 1                                | SAMP                             | LER(S) SIGNATI             |                            | 1 1                                  |                         | 1                    | <i>f.</i> , s.                                | AMPLING<br>LITIATED AT: 13 | 21             | SAMPLING                                 | 127                 | 7                  |  |
| PUMP OR TUBING                                  | /1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rek Turol                              | TUBIN                            |                            |                            | rek                                  | / μ                     | NO 4                 | O-FILTERED:                                   |                            | 6              | ENDED AT:                                | 327                 | mm .               |  |
| DEPTH IN WELL (feet):                           | Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                      |                                  | RIAL CODE; PE              |                            |                                      |                         | 1                    | Fitration Equipmen                            |                            |                |                                          |                     |                    |  |
| DAMO                                            | FIELD D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ECONTAMINATION:                        | PUMP Y                           | (N)                        | TUBING                     | Y (N (replace                        |                         |                      | D                                             | UPLICATE: Y                | <del>-</del> 4 | }                                        | T <sub>SA</sub>     | MPLE PUMP          |  |
| SAMP                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | F                                | RESERVATIVE                | G.A.                       | TOTAL VOL                            |                         |                      |                                               | NTENDED ANALYSIS<br>METHOD | ANDJOR         | SAMPLING EQU<br>CODE                     |                     | - 1                |  |
| SAMPLE ID CODE                                  | # CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MATERIAL CODE VOLUM                    | IE (mL)                          | USED                       | ADI                        | DED IN FIELD (m                      |                         | NAL pH (S            | tanard Units)                                 | METHOD                     |                | cope                                     |                     | par riizidio)      |  |
| 643WHO3-                                        | , 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PE 17                                  | <u>,</u>                         | $\overline{}$              |                            |                                      |                         |                      |                                               | EPA 537M                   |                | AP                                       | P                   | 300                |  |
| 00, u.,                                         | <i>L</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                  |                            | _                          |                                      |                         |                      |                                               |                            |                | 71.7                                     | <u> </u>            |                    |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                  |                            |                            | Sw                                   |                         |                      |                                               |                            | _              |                                          |                     |                    |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ks 1                                   |                                  |                            |                            |                                      | $\prec$                 |                      |                                               |                            | $\rightarrow$  | A                                        | $\overline{}$       |                    |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                            | $\dashv$                         |                            |                            |                                      | $\rightarrow$           |                      |                                               |                            | -              | ~ _                                      | _                   | $\overline{}$      |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | $\forall$                        |                            |                            |                                      |                         |                      |                                               |                            |                |                                          |                     |                    |  |
| We                                              | ll pud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nut compl                              | ele. S                           | fiches                     | 3 61                       | 5 ° aq                               | ۲.                      |                      |                                               |                            |                |                                          | •                   |                    |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | learny up                              |                                  |                            |                            |                                      |                         | wali                 | ا عهدي                                        | lesoide L                  | <i>ያ</i> ልኒ ፣  | المراسل                                  | £4.                 |                    |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | , , , , ,                        |                            |                            |                                      |                         |                      |                                               |                            |                | ~ P P P P                                | יס                  |                    |  |
| MATERIAL CODES:<br>SAMPLING EQUIPM              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ber Glass; CG = C<br>APP = After Peris | lear Glass;<br>laltic Pump:      | PE = Polye<br>B = Balle    |                            | P = Polypropy                        |                         |                      | e; T = Teflo:<br>Submersible                  |                            | Specify)       |                                          |                     |                    |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RFPP = Reverse I                       | low Peristalt                    | ic Pump;                   | SM = Straw N               | felhod (Tubing<br>of variation of la | Gravity Dr              | ain);                | O = Other (S                                  |                            |                |                                          |                     |                    |  |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

M2027.0003

C-139 05/10

| <br>         |        |    |
|--------------|--------|----|
| 1000-        | 8 au C | EC |
| <b>leros</b> | IGF3   |    |

# GROUNDWATER SAMPLING LOG \* Let completed

| installation: Elisworth                  | AFB M202                      | 7.0003          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                  | im 5ile                                                    | 4-               | FORM                    | nec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>[-1</i>    | A            |                                  |                                              |                 |                           |
|------------------------------------------|-------------------------------|-----------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------|------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|----------------------------------|----------------------------------------------|-----------------|---------------------------|
| WELLNO: MWI                              | 8PF(                          | 2401            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MPLE ID: 4         | 125WHOG                                                    | / <del>-</del> 0 | 01-60                   | 0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>3.</i> 2   | DA*          | re:                              | 5-31                                         | -18             | •                         |
|                                          | <u> </u>                      |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | í                  | PURGING DA                                                 |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                                  |                                              |                 |                           |
| WELL<br>DIAMETER (inches):               | 2.0                           | / <b>/</b> Di   | J8ING<br>AMETER (inche | 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ÅD WEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ft                 | NTERVAL DEPTH:<br>- Ft                                     | 1                | TATIC DEPT              | et BTOC);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.           | 37           |                                  | GE PUMP TYP<br>BAILER:                       |                 |                           |
| WELL VOLUME PUR                          |                               |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                                  |                                              |                 |                           |
| (only 15) out if app                     | ocatie)                       | . =             | 34.0                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>5F</i> -10      | * 0./(3                                                    | g.               | 1.6                     | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gal           |              |                                  |                                              |                 |                           |
| EQUIPMENT VOLUM<br>(only fill out if app |                               |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ME+(TUBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                                            |                  | _ENGTH) +               | FLOW CEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | JME<br>Pel   | a                                | )                                            |                 |                           |
| INITIAL PUMP OR TUBING                   | 3 7 7                         |                 | FINAL PUM              | P OR TUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 2                | PURG                                                       | ING              | . ~                     | 2 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -             | URGING       | 170                              | TOTAL VOLUM                                  | Ē               |                           |
| DEPTH (N WELL (feet):                    | 32                            | CUMUL           | DEPTH IN               | VELL (feel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32<br>PH           | INITIA<br>TEMP.                                            | TED AT:          | OND.                    | 20<br>Dissolv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | ORP          | 1 / <b>१</b> ५                   | TOTAL VOLUM<br>PURGED (gallo<br>RBIDITY      | ns):<br>COLUR   | ODOR                      |
| πме                                      | VOLUME<br>PURGED<br>(gallons) | VOLUM<br>PURGE  | E   F                  | ATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TO<br>WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (slandar<br>unils) | i (°c)                                                     |                  | ıS/cm                   | OXYGE <br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N             | (mV)         | (                                | NTUS)                                        | (describe)      | (describe)                |
| 1720                                     | ) (                           | (gallons        | - 1                    | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                                            | -                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              | -                                | ·                                            | Ucar            |                           |
| 1724                                     | 6.0                           | 0.1             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.8                |                                                            | 6                |                         | 3.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7             | 12.2         |                                  | 07                                           | Clark           |                           |
| 1728                                     | 0.2                           | 0.4             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                                            |                  | 99                      | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _             | 77.5         |                                  | <i>56</i><br>81                              | 10              | H                         |
| 1732                                     | 0.2                           | 0,0             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.2<br>27.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.6                | <del></del>                                                |                  | 5 <del>8</del> 9<br>597 | 3.8<br>3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _             | 84.6<br>90.4 |                                  | <u>01</u><br>70                              | +               | H                         |
| 1740                                     | 0.2                           | (,0             |                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                            |                  | 998                     | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -             | 94.8         | T                                | <del>76</del>                                |                 |                           |
| 1744                                     | 0.2                           | 1.2             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                                            |                  | 97                      | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\overline{}$ | 943          | 1                                | 59                                           |                 |                           |
| 746                                      | 0.1                           | 1,3             | Ø                      | 50،                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.4                | 7 18.3                                                     | };               | 599                     | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8             | 97.2         | /                                | <u>55                                   </u> | L               | <u> </u>                  |
|                                          |                               |                 | <u>.</u>               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                                  |                                              |                 |                           |
|                                          |                               |                 |                        | to the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | - Carrier          |                                                            | _                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                                  |                                              |                 |                           |
|                                          |                               |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Alleria          | 1                                                          |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                                  |                                              |                 |                           |
|                                          |                               |                 | $\neg$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                            |                  |                         | The Real Property lies, the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Parks of the Par | -             | ***          |                                  |                                              |                 |                           |
|                                          |                               |                 |                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | - Charles    | Name of Street, or other Persons | No.                                          | <u> </u>        |                           |
|                                          |                               |                 |                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                            | <u> </u>         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                                  |                                              | and the same of | -                         |
|                                          |                               |                 |                        | $\dashv$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                                  |                                              | ļ               |                           |
| WELL CAPACITY (G                         | allons Per Foo                | t); 0.75'≃0.0   | 2; 1 = 0.0             | 4; 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25" = 0,06;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2" = 0.1           | 6; 3° = 0.37;                                              | 4" = 0.1         | 35; 5° =                | 1.02; 6°=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.47;         | 12° = 5.8E   | 3                                |                                              | J               | 1                         |
| TUBING INSIDE DIA<br>PURGING EQUIPME     | CAPACITY (C                   |                 | = 0.0006;              | 3/16" ≃ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0014; 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /4" = 0.00         |                                                            | 004;             | 3/8" = 0,006            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.010;        | 5/8" = 0.0   |                                  |                                              |                 |                           |
| PURGING EQUIPME                          | NT CODES.                     | D ← Dailei,     | OF - DIA               | adel Ful                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71p, LG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | AMPLING DA                                                 |                  | 11 -10                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                                  | T                                            |                 |                           |
| SAMPLED BY (PRINT) / A                   | FFILIATION: A                 | willis.         | (15L)                  | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er(8) signat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | URE(S): 🔇          | $\mathcal{D}_{-}$                                          | -                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLI.       | DAT: 17      | 46                               | SAMPLING<br>ENDED AT:                        | 17              | 52                        |
| PUMP OR TUBING                           | マ                             | 2               |                        | TUBING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AL CODE: PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                                            |                  |                         | D-FILTERED:<br>Filtration Equips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | \_           | 2                                | Filter Size                                  |                 | mm                        |
| DEPTH IN WELL (feet):                    | FIELD C                       | DECONTAMINATION | DN: PUMP               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TUBIN              | G Y N (replac                                              | ed)              | <u> </u>                | Tita Book E. Quiph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DUPLIC        |              | (N                               | 7                                            |                 |                           |
| SAMP                                     | E CONTAINER S                 | PECIFICATION    | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | SAMPLE PRESERVA                                            | TION             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INTEND        | ED ANALYSIS  | ANDJOR                           | SAMPLING EQ                                  |                 | MPLE PUMP<br>LOW RATE (mL |
| SAMPLE ID CODE                           | # CONTAINERS                  | MATERIAL CODE   |                        | PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | TOTAL VOL<br>ADDED IN FIELD (n                             | ıL)              | FINAL pH (5             | itanasd Units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | METHOD       |                                  | CODE                                         |                 | per minute)               |
| ELSWHOU-001-                             | 2,                            | PE              | lasme<br>each          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | EPA 537M     |                                  | MP                                           | p               | 200                       |
| 6W-032                                   | -7                            | , ,             | EW- 1                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                  |                                                            | -                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                                  |                                              |                 |                           |
|                                          | $\setminus$                   | h               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Sen                                                        |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L             |              |                                  |                                              |                 |                           |
|                                          |                               |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                                  | <del></del>                                  |                 |                           |
|                                          |                               |                 | ٧                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                            |                  | _                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                                  |                                              |                 |                           |
|                                          |                               |                 | <u> </u>               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>           |                                                            |                  |                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |              |                                  | . 1                                          | $\rightarrow$   |                           |
| REMARKS:                                 |                               |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                                  | •                                            |                 |                           |
|                                          |                               |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                                  |                                              |                 |                           |
| MATERIAL CODES:<br>SAMPLING EQUIPM       |                               | nber Glass;     | CG = Clear G           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PE = Polys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | PP = Polyprop                                              |                  |                         | e; T = Tef<br>Submersibl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | O = Other (  | Specify)                         |                                              |                 |                           |
| GARPLEYS EQUIPM                          | HINI GODES:                   |                 | verse Flow P           | eristaltic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pump;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SM = Stra          | Method (Tubir<br>ny Method (Tubir<br>nge of variation of ) | g Gravit         | / Drain);               | O = Olher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |              |                                  |                                              |                 |                           |
|                                          |                               |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | une iti id         | MA AL LAUGHBRICH OF                                        |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                                  |                                              |                 |                           |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 rng/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

**(**)



| Installation; ####FB M20                        | <sup>27.0003</sup> E(0                                                                                                                                                                                                      | swoer                          | H AF                           | в                  |                      | Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sile                           | 4-                 | fire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ur P                      | TR                | E ST                 | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                             |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------|
| WELL NO: MW(                                    |                                                                                                                                                                                                                             |                                |                                |                    | SA                   | WPLE ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ECSWHO                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -18                                              |                             |
|                                                 | <del>V </del>                                                                                                                                                                                                               |                                |                                |                    | ~*                   | Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JRG!NG DA                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   | •                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
| WELL<br>DIAMETER (inches):                      | 2.0                                                                                                                                                                                                                         | •                              | JBING<br>AMETER (Inch          | 3): 3              | 5" F WELL            | L SCREEN INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ERVAL DEPTH:                   |                    | TATIC DEPTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 29                | i. 28                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RGE PUMP TYP<br>BAILER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | Orn                         |
| WELL VOLUME PU                                  |                                                                                                                                                                                                                             | VOLUME =                       | TOTAL WE                       | LL DEF             | TH BTOC -            | STATIC I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DEPTH TO WA                    | TER)               | X WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAPACITY                  | <u> d</u> (       | 1                    | O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Druce,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |                             |
| (only full out if ap                            | pšcable)                                                                                                                                                                                                                    | =                              | 437                            | 6                  | Ft - 29,             | 28 FI) X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.163                          | galfit             | - 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36                        | gal               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
| EQUIPMENT VOLU                                  |                                                                                                                                                                                                                             | EQUIPMENT                      | VOL, = PU                      | MP VO              | .UME + (TUE          | ING CAPAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                    | 3 LENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) + FLOW (                | CELL V            | OLUME                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
| (only fill out if ap                            | pšcab(a)                                                                                                                                                                                                                    | 7                              | /h <del>-</del> -              |                    | <u>gal</u>           | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FU                             | +                  | gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | л                         | -41-0             | gal                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | are and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                |                             |
| INITIAL PUMP OR TUBING<br>DEPTH IN WELL (feat): | ' 3ና                                                                                                                                                                                                                        | 3                              | FINAL PU<br>DEPTH IN           |                    |                      | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PURG<br>INITIA                 | ING<br>TED AT:     | 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | لو                        |                   | PURGING<br>ENDED AT: | 412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TOTAL VOLUM<br>PURGED (gallo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E 2.                                             | 34                          |
| TIME                                            | VOLUME<br>PURGED                                                                                                                                                                                                            | AOTAWI<br>CAWAT                |                                | PURGE<br>RATE      | £ВЕРТН<br>ТО         | pH<br>(standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEMP.                          | -                  | OND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DISSOLA                   |                   | ORP<br>(mV)          | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JRBIDITY<br>(NTUs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COLOR<br>(describe                               | ODOR<br>(describe)          |
| TIME                                            | (gallons)                                                                                                                                                                                                                   | PURGEI<br>Igallons             | ,                              | (gpm)              | WATER                | units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                            | 5                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                      |                   | (1112)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (iii as)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (describe)                                       | (describe)                  |
| 1346                                            | <u> </u>                                                                                                                                                                                                                    | }                              |                                | .09                | 30.1                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                              | -                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                         |                   | _                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06                                               | none                        |
| 1350                                            | 0.36                                                                                                                                                                                                                        | 0.3                            | 6 0                            | -09                | 34 S                 | 7.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.6                           |                    | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6                       |                   | 71.3                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cloud                                            |                             |
| 1324                                            | 0.34                                                                                                                                                                                                                        | 0.72                           |                                | -                  | 22.7                 | 7.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.5                           |                    | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                        |                   | <u> 72-7</u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\perp$                                          | $\sqcup$                    |
|                                                 | 1400 0.54 1.76 0.09 34.45 7.20 14.2 1273 2.41 75.6 274 1404 0.36 1.62 0.09 35.1 7.78 14.3 1274 7.32 767 257 1468 0.36 1.99 0.09 35.32 7.75 14.4 1230 2.45 76.3 265 1412 0.34 7.34 0.09 35.47 7.73 14.4 1284 2.56 77.4 266 4 |                                |                                |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
|                                                 | 1404 8.36 1.62 0.09 35.1 7.78 14.3 1274 2.32 767 257 1408 0.36 1.98 0.09 35.32 7.75 14.4 1280 2.45 72.3 265                                                                                                                 |                                |                                |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
|                                                 | 1468 0.36 1.98 0.09 35.32 7.75 14.4 1280 2.45 72.3 265                                                                                                                                                                      |                                |                                |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
|                                                 | 1468 0.36 1.98 0.09 35.32 7.75 14.4 1280 2.45 72.3 265                                                                                                                                                                      |                                |                                |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
| -                                               | 1468 0.36 1.98 0.09 35.32 7.75 14.4 1280 2.45 72.3 265                                                                                                                                                                      |                                |                                |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
|                                                 |                                                                                                                                                                                                                             |                                |                                |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
|                                                 |                                                                                                                                                                                                                             |                                |                                | -                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
|                                                 |                                                                                                                                                                                                                             |                                |                                |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
|                                                 |                                                                                                                                                                                                                             |                                |                                |                    |                      | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                | <u> </u>                    |
|                                                 |                                                                                                                                                                                                                             |                                |                                |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
|                                                 |                                                                                                                                                                                                                             |                                | +                              |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | <del> </del>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | E-Breeze          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del> |                             |
|                                                 |                                                                                                                                                                                                                             |                                | $\dashv$                       |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |                                                  |                             |
| WELL CAPACITY (G                                | Ballons Per Fo                                                                                                                                                                                                              | ot): 0.75" = 0.                | 02; 1"=                        | 0.04;              | 1.25" = 0.06         | 3; 2" = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16; 3" = 0.3                   | 7; 4"=             | 0.65; 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5" = 1.02;                | <b>6</b> " = 1    | 1.47; 12"            | = 5,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STATE OF THE PERSON NAMED IN                   |                             |
| TUBING INSIDE DIA<br>PURGING EQUIPME            |                                                                                                                                                                                                                             | Gal./Ft.): 1/8"<br>B = Bailer; |                                | 3/16"<br>Bladder I | = 0.0014;<br>Pump: E |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26; 5/16" =                    |                    | 3/8" = 0<br>PP = F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .006; 1/<br>Peristaltic P | 2" = 0.<br>ump;   |                      | " = 0.016<br>er (Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | $\overline{}$               |
|                                                 |                                                                                                                                                                                                                             |                                |                                |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MPLING DA                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
| SAMPLED BY (PRINT) / AF                         | FILIATION: A.                                                                                                                                                                                                               | willis                         | (456)                          | ) SAMPI            | .ER(S) SIGNATU       | IRE(S):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\sim$                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | SAMPLI<br>INITIAT | - 11                 | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMPLING<br>ENDED AT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                               | 114                         |
| PUMP OR TUBING                                  | 3                                                                                                                                                                                                                           |                                |                                | TUBIN              | G<br>RIAL CODE: PE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O-FILTERED:               |                   | Ϋ́                   | <b>)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Filler Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | mm                          |
| DEPTH IN WELL (feet):                           |                                                                                                                                                                                                                             | DECONTAMINATI                  | ON: PUM                        |                    | NO.                  | TUBING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y (replaced                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Filtration Equips         | DUPLIC            |                      | -€                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                             |
| SAMP                                            | LE CONTAINER S                                                                                                                                                                                                              | PECIFICATION                   |                                |                    |                      | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MPLE PRESERVA                  | TION               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   | DED ANALYSIS         | ANDIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAMPLING EQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 1                                              | AMPLE PUMP<br>LOW RATE (m). |
| SAMPLE ID CODE                                  | # CONTAINERS                                                                                                                                                                                                                | MATERIAL CODE                  | VOLUME (ml                     | , ,                | PRESERVATIVE<br>USED | Ai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL VOL<br>DDED IN FIELD (m  | 11                 | FIRAL pH (S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | terrard Units)            | INJEN             | METHOD               | NOWA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  | per minute)                 |
| ELSWHOU-002-                                    | . 2                                                                                                                                                                                                                         | 0=                             | 135m                           | 1~                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | •                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | ┢                 | EDA 60714            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 10 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del>,  </del>                                   | 740                         |
| 6W.037                                          | 6                                                                                                                                                                                                                           | PE                             | eah                            |                    |                      | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   | EPA 537M             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ADG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | 350                         |
|                                                 |                                                                                                                                                                                                                             |                                |                                |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >7                             | $oldsymbol{\perp}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | _                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
|                                                 |                                                                                                                                                                                                                             | 7                              |                                | <del> </del>       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | _                 |                      | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\overline{}$                                    |                             |
|                                                 |                                                                                                                                                                                                                             |                                |                                | +                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    | COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERSON NAMED IN COLUMN DESIGNATION OF THE PERS |                           | -                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
| <u>\$</u>                                       | i in a second                                                                                                                                                                                                               |                                | <u> </u>                       |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ac\ = 5                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
| REMARKS:                                        | il crupl                                                                                                                                                                                                                    | cke t                          | (J) ~ (                        | NR().              | una Ca               | b Car.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45) T 5                        | KY40               | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
|                                                 |                                                                                                                                                                                                                             |                                |                                |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
| MATERIAL CODES:                                 |                                                                                                                                                                                                                             |                                | CG = Clear                     |                    |                      | yethylene;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PP = Polypr                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Teflon            |                      | her (Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                             |
| SAMPLING EQUIPM                                 | ENT CODES:                                                                                                                                                                                                                  |                                | er Peristaltion<br>everse Flor | v Perist           |                      | SM = Stra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = Bladder Pun<br>aw Method (Tu | bing Gra           | vity Drain);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |
|                                                 |                                                                                                                                                                                                                             |                                |                                | <u>S</u> 1         | abilization Crit     | eria for range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of variation of la             | ist three c        | onsecutive i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | readings                  |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                             |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

C-141 8/03

| ATTION.     | 7  |
|-------------|----|
| AerosiarSES | ., |
|             |    |

| - Ac. C                                             |                                                       | π¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GINO                            | ONDVIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I LIV OA                           | **** -**       | NG LO              |                        | 4                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
|-----------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|--------------------|------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|
| installation: +#################################### | 77.0003 E                                             | rowall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 274                  | 4FI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$                              | Site:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sik                                | - 4            | - Fo               | rmer                   | <del>-77</del> 4 | Fire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Slation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                        |
| WELL NO: MW                                         | 18 PF (                                               | 1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Se                              | AMPLEID: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LSWH 0                             | 4-0            | 03-6               | W-03                   | 33               | DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5-31-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18                                           |                                        |
| NO                                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tout to              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥                               | PU<br>LL SCREEN INTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RGING DA                           |                | STATIC DEPT        |                        |                  | In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JRGE PUMP TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                                        |
| WELL<br>DIAMETER (inches):<br>WELL VOLUME PUR       | 2.0"                                                  | ים                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JBING<br>AMETER (inc | :hes): 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0) 38                           | LL SCREEN INTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27.67 FL                           |                | TO WATER (6        | eet BTOC):             | 17.48            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R BAILER: 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.PP                                         |                                        |
| WELL VOLUME PUR                                     | RGE: 1 WEL                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                |                    |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
| (only fill out If app                               | zicable)                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , 7 3 B              | .92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ft - 27                         | 1.43° ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.163                              | gal/ft         | - /. i             | 76                     | gai              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
| EQUIPMENT VOLUM                                     |                                                       | EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VOL. = P             | UMP VOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                               | BING CAPAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | TUBIN          |                    | i) + FLOW (            | CELL VOLUM       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
| (only (ill out if app                               | oscabie)                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gal ≓ (                         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ft )                               | +              | gal                |                        | ga               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | <u>Q</u>                               |
| NITIAL PUMP OR TUBING<br>DEPTH IN WELL (feet):      | 32                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | UMP OR TU<br>IN WELL (fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PURG<br>INITIA                     | ing<br>Ted at: | 113                | 2                      | PURGI            | 512 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOTAL VOLUME<br>PURGED (gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 06 o.                                  |
|                                                     | VOLUME                                                | COMUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                    | PURGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DEPTH                           | pH<br>(standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ТЕМР.                              |                | COND.              | DISSOLV                | - 1              | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TURBIDITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COLOR                                        | ODOR                                   |
| TIME                                                | PURGED<br>(gallons)                                   | VOLUM<br>PURGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·                    | RATE<br>(gpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TO<br>WATER                     | Units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (°C)                               | <u> </u>       | μ8/cm )            | OXYGE<br>mg/L          | `                | v,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (NTUs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | {descr(be)                                   | (describe)                             |
| 1132                                                |                                                       | feations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.48                           | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                |                    |                        |                  | -   _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | len                                          | none                                   |
| 113-2                                               | <b>%</b> 3                                            | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 3.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.72                           | 7.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.3                               | 15             | 755                | 3.4                    | 2, 102.          | 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                            | 11                                     |
| 1142                                                | 0, 2                                                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 3.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.90                           | 7.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.1                               | 12             | 73                 | 2.8                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | 11                                     |
| 1/44                                                | 1144 6.1 0.6 0.05 28.0 7.39 17.3 17.5 2.75 100.4 36.6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                |                    |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
| 1148                                                | 1148 0.2 0.3 0.05 28.1 7.35 17.4 1266 2.63 98.1 28.1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                |                    |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
| 1156                                                | 1148 0.2 0.8 0.05 28.1 7.35 17.4 1266 2.63 98.1 28.1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                |                    |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
|                                                     | 1148 0.2 0.8 0.05 28.1 7.35 17.4 1266 2.63 98.1 28.1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                |                    |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
|                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                |                    |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
|                                                     |                                                       | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                |                    |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | <u> </u>                               |
|                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | NAME AND ADDRESS OF THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, TH | -                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | <u> </u>       |                    | <u> </u>               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | <u> </u>                               |
|                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | TO STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PA |                                    | <u> </u>       |                    |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | Ļ—                                     |
|                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 2              | <del>\</del>       | <u> </u>               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | <b>↓</b>                               |
|                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                |                    | <u> </u>               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                        |
|                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                |                    |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
|                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                |                    |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |                                              | +                                      |
|                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                |                    |                        | +                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
| WELL CAPACITY (G                                    | allons Per Fo                                         | ot): 0.75" = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02: 1":              | <b>= 0.04</b> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,25" = 0,06                    | B: 2" = 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6; 3" = 0,3                        | 7: 4°          | = 0.65;            | <u>l</u><br>5" = 1.02; | 6" = 1.47;       | 12" = 5.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 1                                      |
| UBING INSIDE DIA                                    | . CAPACITY (                                          | Gal./Ft.): 1/8"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0.0006;            | 3/16"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 0.0014;                       | 1/4" = 0,002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26; 5/16" =                        | 0.004;         | 3/8" = 0           |                        | 2" = 0.010;      | 5/8" = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
| PURGING EQUIPME                                     | ENT CODES:                                            | B = Bailer;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BP≒                  | Bladder I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pump; E                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c Submersible<br>MPLING DA         |                | PP = I             | Peristaltic Po         | ump; O           | ≍ Other (Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                        |
| AMPLED BY (PRINT) / AF                              | FILIATION:                                            | 1. Willig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16                   | SAMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ER(S) SIGNATU                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>(</del>                       |                |                    | •                      | SAMPLING         | 1150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SAMPLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/5                                          | 2                                      |
| UMP OR TUBING                                       | 2 2                                                   | ,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (43                  | TUBIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                               | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                | FIEL               | D-FILTERED;            | INITIATED AT:    | ( <u>C)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ENDED AT:<br>Filter Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>,,</i> <u>,</u> ,                         | mm                                     |
| EPTH IN WELL (feet):                                | 33                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | MATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RIAL CODE: PE                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                |                    | Fittration Equipm      | pent Type:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
| CALIE                                               | FIELD<br>LE CONTAINER S                               | DECONTAMINATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ON; PU               | MP Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (N)                             | TUBING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y (N (replaced                     |                |                    |                        | DUPLICATE:       | Y (N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s                                            | AMPLE PUMP                             |
| arm.                                                | LE CONTRINER à                                        | PEGIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RESERVATIVE                     | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TOTAL VOL                          | 1014           |                    |                        |                  | ALYSIS AND/OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                            | LOW RATE (ml.                          |
| SAMPLE TO CODE                                      | # CONTAINERS                                          | MATERIAL CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VOLUME (F            | nL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | USED                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DED IN FIELD (m)                   | i.)            | FINAL pH (5        | Stanard Units)         | ME               | THOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | per minula)                            |
| JSW1104-003-                                        | ``                                                    | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1752                 | <u>.                                     </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                | Lame               |                        | EDA              | 537M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                            | २००                                    |
| 6W-033                                              | 2                                                     | PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TACL                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                |                    |                        |                  | 331M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AVP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .                                            | <del>,,,,</del>                        |
|                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | $\bot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                | ···                |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                        |
|                                                     | ~~~~                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · K                                | ~              |                    |                        |                  | - Sandanian Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control o | <b>—</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>.                                    </u> |                                        |
|                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | $\perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                |                    |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C.K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                        |
|                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠ _                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                |                    | <u> </u>               | L                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
| *                                                   | well (                                                | onplete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>L</b> . 5         | (recr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | is T                            | D- N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heno C                             | υρ(1           | ) <sub>'</sub> a5) | = 38.1                 | 7 - 2            | ያ.ሬገ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
| EMARKS:                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | •              |                    |                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |
| MATERIAL CODES:                                     | AG - A-                                               | nber Glass;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CG = Clea            | ar Clore:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DE - 0-                         | yethylene;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PP = Polypr                        | onulana        | ; S=Silli          | rone: T-               | Teflon; O        | ⇒ Other (Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ecifu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del>.</del>                                 |                                        |
| AMPLING EQUIPM                                      |                                                       | APP = Aft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er Peristal          | tic Pump;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B = Ba                          | iler; BP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = Bladder Pun                      | np;            | ESP = Elec         | tric Submer            | sible Pump;      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | coay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | ************************************** |
|                                                     |                                                       | RFPP = F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reverse Fl           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | altic Pump;<br>abilization Crit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w Method (Tu<br>of variation of la |                |                    |                        | her (Specify)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                        |

pH; ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

C-142 06/03



| Installation: Ellsworth                         | h AFB M202                                              | 7.0003              |                           |                    | Sit             | · 5 (                                | B                    | 52 way                     | 84,197                  | 0)                   |                          |          |                            |                    |                                                  |
|-------------------------------------------------|---------------------------------------------------------|---------------------|---------------------------|--------------------|-----------------|--------------------------------------|----------------------|----------------------------|-------------------------|----------------------|--------------------------|----------|----------------------------|--------------------|--------------------------------------------------|
| WELL NO: MW                                     | 18PFC (                                                 | 3501                |                           |                    | SAMPLE ID:      | ELSW H                               |                      |                            |                         |                      | O DA                     | TE:      | 5/4/1                      | 8                  |                                                  |
|                                                 |                                                         |                     |                           |                    |                 | URGING DA                            |                      |                            |                         |                      |                          |          |                            |                    |                                                  |
| WELL<br>DIAMETER (inches):                      | 2                                                       | TUB<br>DIAA         | NG V<br>(ETER (Inches):   | I WOD 1            | VELL SCREEN IN  | 15,22 <sub>1</sub>                   |                      | STATIC DEPT<br>TO WATER (6 | est BTOC):              | 21.                  | 34                       | 1        | RGE PUMP TYP<br>:BAILER:   | PP                 |                                                  |
| WELL VOLUME PUR                                 | RGE: 1 WELL                                             |                     | TAL WELL I                | DEPTH BTOC         | - STATIC DE     | EPTH TO WAT                          |                      |                            |                         |                      |                          |          | ·                          |                    |                                                  |
| (only fill out if ap                            | plicable)                                               | = (                 | 35,4                      | ) ⊨ - 2            | .l.34 =0 >      | 0,163                                | gaVft                | - 2                        | . 3                     | gal                  |                          |          |                            |                    |                                                  |
| EQUIPMENT VOLUM                                 |                                                         | EQUIPMENT VO        | V = PUMP \                |                    |                 |                                      |                      | LENGTH) +                  | FLOW CE                 |                      |                          |          |                            |                    | AT                                               |
| - (oray na out if ep                            | plicable)                                               |                     | -                         | 8.ý ≍ (            | ,               | (Fl)                                 | +                    | gal                        |                         | g                    | 최                        |          |                            | 5/4                | 118                                              |
| INITIAL PUMP OR TUBING<br>DEPTH IN WELL (feet): | ° ३०                                                    |                     | FINAL PUMP<br>DEPTH IN WE |                    | 30              | PURG<br>INITIA                       | ING<br>TED AT:       | 15                         | 00                      | F                    | URGING<br>NDED AT:       | 525      | TOTAL VOLUM<br>PURGED 1921 | ηL 8               | 3750                                             |
| TIME                                            | VOLUME<br>PURGED                                        | COMUL               | PUR                       |                    | pH<br>(standard | TEMP.                                | i .                  | COND,<br>µS/cm             | DISSOLV                 |                      | ORP<br>(mV)              |          | URBIOITY<br>{NTUs}         | GOLOR<br>(describe | 1                                                |
| 1302                                            | (galleng)<br>ML                                         | PURGED<br>Yeallonst | l .                       | WATER              | units)          | 107                                  |                      | ,                          | mg/L                    |                      | <b></b> ,                |          | ,                          |                    | (,                                               |
| 1565                                            | 1750                                                    | 175                 | 6 3                       |                    |                 | ***                                  |                      | 383                        | 4.4                     | •                    | 11.4                     | l        | 4.0                        | clea               | rone                                             |
| 1510                                            | 1750                                                    | 350                 |                           | o                  |                 |                                      | -                    | 807                        | 3,5                     |                      | -2.3                     |          | 6.0                        | <u> </u>           | <del>                                     </del> |
| 1515                                            | 1750                                                    | 525                 |                           |                    | _               |                                      |                      | <u>764</u><br>772          | 2.0                     |                      | -17,0<br>-27,4           | 12       |                            |                    |                                                  |
| 1520                                            | 1750<br>1750                                            | 7000                |                           | <del></del>        |                 |                                      |                      |                            |                         |                      |                          | 13       |                            | $\vdash$           | <del> }</del> -                                  |
| ()~3                                            | 112                                                     | 0 100               | 120                       | ,0  00,16          | 1,20            | 10,0                                 | <u> </u>             |                            |                         |                      | 7 7, 1                   | LA       | 0                          |                    |                                                  |
|                                                 | 1525 1750 8750 350 23,16 7,26 13,3 2753 2.46 -34,9 10.3 |                     |                           |                    |                 |                                      |                      |                            |                         |                      |                          |          |                            |                    |                                                  |
|                                                 |                                                         |                     |                           |                    |                 |                                      |                      |                            |                         |                      |                          |          |                            |                    |                                                  |
|                                                 |                                                         |                     |                           |                    |                 |                                      |                      |                            |                         |                      |                          |          |                            |                    |                                                  |
|                                                 |                                                         |                     |                           |                    |                 |                                      |                      |                            |                         |                      |                          |          |                            |                    |                                                  |
|                                                 |                                                         |                     |                           |                    | +               |                                      |                      |                            |                         |                      |                          |          |                            |                    |                                                  |
| -                                               |                                                         |                     |                           |                    | -               |                                      |                      |                            |                         |                      |                          |          |                            |                    |                                                  |
|                                                 |                                                         | 14                  |                           | $\neg$             |                 | 1                                    |                      |                            |                         |                      |                          |          |                            |                    |                                                  |
|                                                 |                                                         | -714/1              | 5                         |                    |                 |                                      |                      |                            |                         |                      |                          |          |                            |                    |                                                  |
|                                                 |                                                         | ې د تې              |                           |                    |                 |                                      |                      |                            |                         |                      |                          |          |                            |                    |                                                  |
| WELL SINISHE                                    |                                                         |                     |                           |                    | <u> </u>        | 1 0.53                               | 4. 0                 | nr. m                      | 4 00. 01                | 4 47                 | 407 5 00                 |          |                            | <u> </u>           |                                                  |
| WELL CAPACITY (G<br>TUBING INSIDE DIA           |                                                         |                     |                           |                    |                 |                                      |                      | 3/8" = 0,006               | 1,02; 6" =<br>5; 1/2" = |                      | 12" = 5.88<br>5/8" = 0.8 |          |                            |                    |                                                  |
| PURGING EQUIPME                                 | NT CODES:                                               | 8 = Bailer;         | BP = Bladd                | er Pump; {         |                 | Submersible P                        |                      | PP = Per                   | istaltic Pump           | ); C                 | = Other (S               | Specify) |                            |                    |                                                  |
| SAMPLED BY (PRINT) / A                          | FFILIATION: A                                           | rele To             | 1e k )                    | SAMPLER(S) SIGN    |                 | 200                                  | ~                    | Sold                       |                         | SAMPLIN<br>INITIATEI | 14                       | 26       | SAMPLING<br>ENDED AT:      | 152                | 27                                               |
| PUMP OR TUBING                                  |                                                         | 30                  |                           | TUBING             | ,,,             | r Ola                                | 1 we                 |                            | D-FILTEREO:             | Y                    |                          | N)       | Filter Size                |                    | mm                                               |
| DEPTH IN WELL (feet):                           |                                                         | ECONTAMINATION:     | PUMP                      | NATERIAL CODE: F   | E<br>TUBING     | Y N (replac                          | rel)                 |                            | Filtration Equipr       | nent Type:           | TE: Y                    | N        | •                          |                    |                                                  |
| SAMPI                                           | LE CONTAINER SI                                         |                     | , 0                       | . (5)              |                 | MPLE PRESERVA                        |                      |                            |                         |                      |                          |          | <del></del>                | i                  | AMPLE PUMP                                       |
| SAMPLE (D CODE                                  | # CONTAINERS                                            | MATERIAL CODE V     | OLUME (mL)                | PRESERVATA<br>USEO |                 | TOTAL VOL                            | iL}                  | FINAL pH (S                | itanard Units)          | INTENDE              | METHOD                   | AND/OR   | SAMPLING EQU<br>CODE       | IIPMENT F          | LOW RATE (mL<br>per minuta)                      |
| - 20 HMSJE<br>50-MD-100                         | ٥ 2                                                     | PE                  | 125                       |                    |                 |                                      |                      |                            |                         | _                    | EPA 537M                 |          | API                        | 2                  | 350                                              |
|                                                 |                                                         |                     |                           |                    |                 | Sow                                  |                      |                            |                         |                      | \                        |          |                            |                    |                                                  |
|                                                 |                                                         | AR                  |                           | <del>.</del>       | <del> </del>    |                                      | $ egthinspace{-1pt}$ |                            |                         |                      | •                        | _        | <b>X</b>                   |                    |                                                  |
|                                                 |                                                         |                     |                           |                    |                 |                                      |                      |                            |                         |                      |                          |          |                            | $\leq$             |                                                  |
|                                                 |                                                         |                     | ,                         |                    |                 |                                      | [                    |                            |                         |                      |                          |          |                            |                    |                                                  |
| REMARKS:                                        | ell pub                                                 | not cem             | plate.                    | Poc is             | 1,14            | ags                                  |                      |                            |                         |                      |                          |          |                            |                    |                                                  |
| MATERIAL CODES:                                 | AG = Am                                                 | ber Glass; CG       | = Clear Glas              | ss; PE = Pol       | yethylene;      | PP = Polyprop                        | ylene:               | S = Silicon                | e; T≕Tef                | lon; C               | = Other (                | Specify) | *                          |                    |                                                  |
| SAMPLING EQUIPM                                 |                                                         | APP ≈ After F       | eristaltic Pu             | mp: B = Ba         | iler; BP=       | Bladder Pump                         | ; ES                 | P = Electric               | Submersib               | e Pump               |                          | ,        |                            |                    |                                                  |
|                                                 |                                                         | RFPP = Reve         | se Flow Per               |                    |                 | Method (Tubin<br>e of variation of i |                      |                            | O = Other<br>readings   | opecity              | <i></i>                  |          |                            |                    |                                                  |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

25/67



| installation: Eliswort                         | h AFB M20:                                                                                                                                                                         | 27.0003                        |                             |                           |                         | Situ                      | · 5 (                           | B~52           | Cus                      | 19 ر ۱۸                    | 70                 | )                          |          |                                |            |               |          |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|---------------------------|-------------------------|---------------------------|---------------------------------|----------------|--------------------------|----------------------------|--------------------|----------------------------|----------|--------------------------------|------------|---------------|----------|
| WELL NO: Mu                                    | 718 P F                                                                                                                                                                            | 0.050                          | 2                           |                           | s                       | AMPLE ID: E               | LSWHO                           | 5-0            | 02-                      | GW-                        | 02                 | 5 DA                       | ITE: C   | 25/03                          | 118        |               |          |
|                                                |                                                                                                                                                                                    |                                |                             |                           |                         |                           | JRGING DA                       |                |                          |                            |                    |                            |          |                                |            |               |          |
| WELL<br>DIAMETER (Inches):                     | 2                                                                                                                                                                                  | c                              | FUBING<br>DIAMETER (in      |                           | ″o⊳ 24                  | 185Ft -                   | TERVAL DEPTH:                   | то             |                          | eet BTOC):                 | 19                 | .14                        |          | RGE PUMP TYPE<br>BAILER:       | PP         |               |          |
| WELL VOLUME PU                                 | RGE: 1 WELL                                                                                                                                                                        |                                |                             |                           | Н ВТОС -                | STATIC DE                 | PTH TO WATE                     | -              |                          |                            |                    |                            |          |                                |            |               |          |
| (only fill out if at                           | ppšcable)                                                                                                                                                                          |                                | '' 30                       | 9.1                       | Ft - 9                  | ,14 <sup>ድ</sup> ን ×      | 0,163                           | gal/ft :       | - l.                     | <u>አ</u>                   | gai                |                            |          |                                |            |               |          |
| EQUIPMENT VOLU                                 |                                                                                                                                                                                    | EQUIPMENT                      | VOL. = PU                   | JMP VOLU                  | JME + (TUBI             | NG CAPACI                 | TY X T                          | UBING LE       | NGTH) +                  | FLOW CE                    | LL VOL             | UME<br>asl                 |          |                                |            | AT            |          |
|                                                |                                                                                                                                                                                    |                                |                             |                           |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            | 3/18          |          |
| INITIAL PUMP OR TUBIN<br>DEPTH IN WELL (feet): | ° 2.                                                                                                                                                                               | 5                              | 1                           | PUMP OR TU<br>IN WELL (fe |                         | 25                        | PURG<br>INITIA                  | ING<br>TED AT: | 15:                      | 35                         |                    | PURGING<br>ENDED AT: (     | 629      | TOTAL VOLUME<br>PURGED (pallon |            | 18,9          | ,00      |
| TIME                                           | VOLUME<br>PURGED<br>(gellons)                                                                                                                                                      | CUMU<br>VOLUM<br>PURGE         | i                           | PURGE<br>RATE             | DEPTH<br>TO<br>WATER    | pH<br>(standard<br>units) | TEMP.                           | hai<br>Cai     | ND,<br>/cm               | DISSOLV<br>OXYGE<br>mg/i.  | :N                 | ORP<br>(mV)                | 1        | (ATUs)                         | (describe) | OD<br>(desc   |          |
| 1540                                           | 1750                                                                                                                                                                               |                                |                             | 350                       | 19,65                   | 7,43                      | 12.2                            | 28             | <u></u> ४८               | 2,0                        | 2                  | <b>~32.</b> €              | l        | 59                             | clear      | Non           | nÆ.      |
| 1545                                           | 1750                                                                                                                                                                               | 3.5c                           |                             | 350                       | 19,76                   | 7,29                      | 12,0                            | 281            |                          | 1.0                        |                    | -650                       |          | 0 T                            | 1          |               | Ī        |
| 1550                                           | 1750                                                                                                                                                                               | 5,25                           |                             | 356                       | 19.80                   | 7,27                      | 11.9                            | 286            | 69                       | 0,9                        | 6                  | -82.8                      |          | 75.6                           |            |               |          |
| 1555                                           | 1750                                                                                                                                                                               | 7,00                           | O                           | 350                       | 19.83                   | 7.25                      | 11.9                            | 293            |                          | 0.9                        |                    | -98,0                      | 9        | 2.3                            |            |               |          |
| 1600                                           | 600 1750 8750 350 1984 7.24 11.9 2969 0.97 -1064 71.1 610 3500 12, 250 350 1984 7.23 17.2 3136 0.98 -1151 36.3 620 3500 15, 750 350 1984 7.24 12.7 3266 1.64 -118.6 22.4           |                                |                             |                           |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            |               |          |
|                                                | 610 \$3500 12,250 350 19.84 7.23 12.2 3136 0.88 -1151 36.3<br>620 \$3500 15,750 350 19.84 7.24 12.7 3266 1.64 -118.6 22.4                                                          |                                |                             |                           |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            |               |          |
|                                                | 610 <b>43</b> 500 12, 250 350 19.84 7.23 12.2 3136 0.88 -1151 36.3<br>620 <b>23</b> 500 15, 750 350 19.84 7.24 12.7 3266 1.64 -118.6 22.4                                          |                                |                             |                           |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            |               |          |
| _                                              | 620 23500 15, 750 350 19.84 7.24 12.7 3266 1,64 -118.6 22.4                                                                                                                        |                                |                             |                           |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            |               |          |
|                                                | 623 1050 16,800 350 19,84 7.24 12.7 3266 1.64 -118,6 22.4<br>623 1050 16,800 350 19,84 7.25 13.0 3308 1.55 -120.0 17.4<br>626 1050 17,850 350 19,84 7.25 (3.1 3316 1.70 -1262 17.3 |                                |                             |                           |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            |               |          |
| 1629                                           | 623 1050 16,800 350 14,84 7.25 13.0 3308 1.55 -120.0 17.4                                                                                                                          |                                |                             |                           |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            |               |          |
|                                                |                                                                                                                                                                                    |                                |                             |                           |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            |               |          |
|                                                |                                                                                                                                                                                    |                                |                             | -                         |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            |               |          |
|                                                |                                                                                                                                                                                    |                                | -                           |                           |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            | <u> </u>      |          |
|                                                |                                                                                                                                                                                    | AI                             |                             |                           |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            |               |          |
|                                                |                                                                                                                                                                                    | 5/3 CC                         | 5                           |                           |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            |               |          |
|                                                |                                                                                                                                                                                    |                                |                             |                           |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            |               |          |
| WELL CAPACITY (G                               |                                                                                                                                                                                    | -                              |                             |                           |                         |                           | 3" = 0.37;                      |                |                          |                            | 1.47;              | 12" = 5.88                 | 3        |                                |            |               |          |
| Tubing inside DIA<br>Purging Equipme           |                                                                                                                                                                                    | Bal./F1.): 1/8"<br>B = Baller; |                             | 3/16" =<br>3ladder Pu     |                         |                           | 5/16" = 0.0<br>Submersible Po   |                | " = 0.006<br>PP = Peri   | ; 1/2" = 0<br>staltic Pump |                    | 5/8" = 0.0<br>O = Other (S |          |                                |            |               | _        |
|                                                |                                                                                                                                                                                    |                                |                             |                           |                         |                           | MPLING DA                       |                |                          |                            |                    |                            |          | Ta como sica                   |            |               |          |
| SAMPLED BY (PRINT) / A                         | FFILIATION: A                                                                                                                                                                      | rell Tu                        | nlsk                        | SAMPL                     | .ER(S) SIGNATI          | URE(S):                   | Bel Si                          | Tunk           |                          |                            | SAMPLI<br>INITIATI | EDAT: 163                  | 80       | SAMPLING<br>ENDED AT:          | 163        |               |          |
| PUMP OR TUBING                                 | 2                                                                                                                                                                                  | 5                              | ·                           | TUBING                    |                         |                           |                                 |                | 1                        | O-FILTERED;                |                    | `                          | )        | Filler Size                    |            | mmt           |          |
| DEPTH IN WELL (feet):                          |                                                                                                                                                                                    | ECONTAMINATI                   | ON: PU                      |                           | RAL CODE: PE            | TUBING                    | Y (N (replace                   | si             |                          | Fatration Equipm           | DUPLIC             |                            | (N)      | <del></del>                    |            |               | $\dashv$ |
| SAMP                                           | LE CONTAINER S                                                                                                                                                                     | PECIFICATION                   |                             |                           |                         |                           | APLE PRESERVAT                  |                |                          |                            |                    |                            | Ĭ        |                                | SA         | MPLE PU       | ЛИР      |
| SAMPLE ID CODE                                 | # CONTAINERS                                                                                                                                                                       | MATERIAL CODE                  | VOLUME (r                   | nL)                       | RESERVATIVE<br>USED     | Aſ                        | TOTAL VOL                       |                | INAL pH (S               | tanard Units)              | INTENE             | DED ANALYSIS<br>METHOD     | AND/OR   | SAMPLING EQU<br>CODE           |            | per minu      |          |
| ELSWHO5-<br>002-GW-07                          | . 2                                                                                                                                                                                | PE                             | 125                         |                           | <u> </u>                |                           |                                 |                |                          |                            |                    | EPA 537M                   |          | APP                            |            | 350           | 5        |
|                                                |                                                                                                                                                                                    |                                |                             |                           |                         | $\sim$                    | Sow                             |                |                          |                            |                    |                            |          | ./                             |            |               |          |
|                                                | 71                                                                                                                                                                                 | 7                              |                             |                           |                         |                           |                                 | egthanking     |                          |                            |                    |                            |          | ***                            | o          |               | ᅥ        |
|                                                | <i>r</i>                                                                                                                                                                           |                                |                             |                           | .,                      |                           | <u> </u>                        | 7              |                          |                            |                    |                            |          | _/                             |            | $\overline{}$ | ᅦ        |
| ,                                              |                                                                                                                                                                                    |                                |                             |                           |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            |               | $\neg$   |
| Well                                           | pul no                                                                                                                                                                             | it comp                        | ોઇના ૅ                      | TOC i                     | is 0, 9°                | hove                      | ground 5                        | wfac           | R                        |                            |                    |                            |          |                                |            |               |          |
| REMARKS:                                       | •                                                                                                                                                                                  | ,                              |                             |                           |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            |               |          |
|                                                |                                                                                                                                                                                    |                                |                             |                           |                         |                           |                                 |                |                          |                            |                    |                            |          |                                |            |               |          |
| MATERIAL CODES:<br>SAMPLING EQUIPM             |                                                                                                                                                                                    | ber Glass; (<br>APP = Afte     | CG ≃ Clear<br>er Peristaitk |                           | PE = Polye<br>B = Balle | · ·                       | PP = Polypropy<br>Bladder Pump; |                | = Silicons<br>= Electric | ; T≕Tefl<br>Submersibl     |                    | O ≈ Other (S               | Specify) |                                |            |               | 듸        |
|                                                |                                                                                                                                                                                    | RFPP ≈ Re                      |                             | / Peristalti              | c Pump;                 | SM = Straw                | Method (Tubing                  | Gravity D      | rain);                   | O = Other (                |                    |                            |          |                                |            |               |          |
|                                                |                                                                                                                                                                                    |                                |                             | 51                        | aviikauon Crit          | erra tot tande            | of variation of la              | PT HILES COU   | accutive 1               | Eacings                    |                    |                            |          |                                |            |               |          |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

65/07



| Installation: Elisworti                        | h AFB M202          | 27.0003             |               |               |                     | Site:            | 6(                 | 988                  | B-               | 1 00                      | shi                                          | )                        |          |                                            |                    |                                                  |
|------------------------------------------------|---------------------|---------------------|---------------|---------------|---------------------|------------------|--------------------|----------------------|------------------|---------------------------|----------------------------------------------|--------------------------|----------|--------------------------------------------|--------------------|--------------------------------------------------|
| WELL NO: MWI                                   | &PFC O              | 60 l                |               |               | S/                  | MPLEID: EI       | LSWHO              | 5-001                | 1 - G            | W-O                       | 18                                           | DA                       | TE:      | 5/9/18                                     |                    |                                                  |
|                                                |                     | _                   |               |               |                     |                  | RGING DA           |                      |                  |                           |                                              |                          |          |                                            |                    |                                                  |
| WELL<br>DIAMETER (inches):<br>WELL VOLUME PUI  | 2                   | 0                   | UBING (incl   | VY M          | OD WE               | LL SCREEN INTE   | ERVAL DEPTH:       | STA<br>TO            | WATER (F         | H<br>set BTOC):           | 15.                                          | 56                       |          | RGE PUMP TYPE<br>BAILER:                   | PF                 | )                                                |
| 1                                              |                     |                     |               |               |                     |                  |                    |                      |                  |                           |                                              |                          |          |                                            |                    |                                                  |
| (only fill out if ap                           | opticable)          | =                   | 120.          | 34            | r · 15              | `₽ <i>ष</i> ∘ ×  | 0,163              | ga⊮nt =              | 0,               | 10                        | gal                                          |                          |          |                                            |                    |                                                  |
| EQUIPMENT VOLUI                                |                     | EQUIPMENT           | VOL. = PUI    | MP VOLU       |                     |                  |                    | UBING LEI            |                  | FLOW CEL                  | L VOI                                        |                          |          |                                            |                    | AT                                               |
| (only fill out if an                           | op(icable)          |                     |               |               | gał = (             | ×                | Ft )               | +                    | gał              | 8                         |                                              | gal                      |          |                                            | 5/                 | 1/18                                             |
| INITIAL PUMP OR TUBIN<br>DEPTH IN WELL (feet): | le l                | 8                   |               | IMP OR TU     |                     | l 8              | Purg<br>Initia     | NG<br>TED AT:        | ıı               | 5                         |                                              | PURGING<br>ENDED AT:     | 132      | TOTAL VOLUME<br>PURGED (p <del>ullon</del> | int r              | 1250                                             |
| TIME                                           | VDLUME              | COMUL               |               | PURGE<br>RATE | DEPTH<br>TO         | pit<br>(slandarð | TEMP,              | CON<br>µS/c          |                  | DISSOLV                   |                                              | ORP<br>(mV)              |          | IRB)DITY<br>(NTUs)                         | COLOR<br>(describe | DDOR<br>(describe)                               |
| IIME                                           | PURGED<br>(gallous) | PURGE               |               |               | WATER<br>Meet BIOG) | units)           | (°C)               | цын                  | STE .            | mg/L                      | •                                            | (iii+)                   | ,        | (1410a)                                    | (Describe          | (describe)                                       |
| 1120                                           | 1250                | 12                  |               | 150           | 15.69               | 7.40             |                    | 52                   | ۱,               | 6.3                       |                                              | 15.1                     |          | 39.6                                       | cle                | none                                             |
| 1123                                           | 750                 | 20                  | _             |               | 15.75               | 7.17             | 13.5               | 50                   |                  | 6.2                       | _                                            | 0.5                      | Ч        | 13.4                                       | $\Box$             | $\vdash$                                         |
| 1126                                           | 750                 | 27                  |               | <u>250</u>    | 15,75               | 7,11             | 13.3               | 491                  |                  | _ · · · ·                 | 2                                            | -8,7                     | <u> </u> | <u>8.8</u>                                 | $\vdash$           | +                                                |
| 1132                                           | 750                 | 35<br>42            |               | 250<br>250    | 15,75<br>15,75      | 7.18             | 13.0               | 470<br>460           |                  | 7.0                       |                                              | -10.4                    |          | <u>5.2</u><br>2.6                          | $\vdash$           | <del>                                     </del> |
| 1136                                           | 150                 | ""                  | 20 /          | 200           | (3, 0               | 1.(0             | 13.0               | ٠. 60                | a, l             | 6,0                       | 1                                            | - 1.6                    |          |                                            |                    | <del> </del>                                     |
|                                                |                     |                     |               |               |                     |                  |                    |                      |                  |                           |                                              | سستنتن                   |          |                                            |                    |                                                  |
|                                                |                     |                     |               |               |                     |                  |                    |                      |                  |                           |                                              |                          |          |                                            |                    |                                                  |
| ·                                              |                     |                     |               |               |                     |                  |                    |                      |                  |                           |                                              |                          |          |                                            |                    |                                                  |
|                                                |                     |                     |               |               |                     |                  |                    |                      |                  |                           |                                              |                          |          |                                            |                    | ļ                                                |
|                                                |                     |                     | <del>-</del>  |               |                     |                  |                    |                      |                  |                           |                                              |                          |          |                                            |                    |                                                  |
|                                                |                     |                     |               |               |                     |                  |                    |                      |                  |                           |                                              |                          |          |                                            |                    | <u> </u>                                         |
|                                                |                     |                     |               |               |                     |                  |                    |                      |                  |                           |                                              |                          |          |                                            |                    | <u> </u>                                         |
|                                                | 118                 |                     |               |               |                     |                  |                    |                      |                  |                           |                                              |                          |          |                                            |                    |                                                  |
|                                                | gration             |                     |               |               |                     |                  |                    |                      |                  |                           |                                              |                          |          |                                            |                    |                                                  |
|                                                |                     |                     |               |               | 903 000             | nt ata           | 01 × 0.07:         | # . O.C.             |                  | 100. 00                   | 4.47.                                        | 40° – F 0                |          |                                            |                    | <u> </u>                                         |
| WELL CAPACITY (G<br>TUBING INSIDE DIA          |                     | •                   |               |               | 0.0014; 1           | /4" = 0.0026;    |                    | 04; 3/8              | o =<br>' = 0.006 | 1.02; 6" =<br>5; 1/2" = 0 |                                              | 12" = 5.84<br>5/8" = 0.1 |          |                                            |                    |                                                  |
| PURGING EQUIPME                                | ENT CODES:          | B = Bailer;         | BP = 81       | ladder Pu     | ımp; ES             |                  | Submersible Pu     |                      | P = Peri         | istaltic Pump             | <u>:                                    </u> | O = Olher (8             | Specify) |                                            |                    |                                                  |
| SAMPLED BY (PRINT) / A                         | AFFILIATION: A      | ~1 Ti               | - olsk        | ) SAMPI       | ER(S) SIGNAT        |                  |                    | Jun                  | kli              |                           | SAMPL                                        | ING<br>ED AT:            | 33       | SAMPLING<br>ENDED AT:                      | 113                | ч                                                |
| PUMP OR TUBING                                 |                     |                     | 00 ON         | TUBING        | G                   |                  | nen (              | <i>y - 200</i>       |                  | D-FILTERED:               |                                              |                          | D.       | Filter Size                                |                    | en/m                                             |
| DEPTH IN WELL (feet):                          |                     | 8<br>DECONTAMINATIO | ON: PUM       |               | RIAL CODE: PE       | TUBING           | Y (N (replace      | an.                  | ;                | Fitration Equipm          | ent Typ                                      |                          | (N       | <u> </u>                                   |                    |                                                  |
| SAMP                                           | LE CONTAINER S      |                     | JN. PON       |               | <u> </u>            |                  | PLE PRESERVAT      |                      |                  |                           |                                              |                          |          |                                            |                    | AMPLE PUMP                                       |
| SAMPLE ID CODE                                 | # CONTAINERS        | MATERIAL CODE       | VOLUME (m     | iL) P         | RESERVATIVE<br>USED | - 1              | TOTAL VOL          |                      | NAL pH (S        | tanard Units)             | INTEN                                        | DED ANALYSIS<br>METHOD   | AND/OR   | SAMPLING EQU<br>CODE                       | IPMENT F           | LOW RATE (mL<br>per minute)                      |
| ELSWHO6-<br>001-GW-06                          | 8 2                 | PE                  | 125           |               |                     |                  |                    |                      |                  |                           |                                              | EPA 537M                 |          | APP                                        | ,                  | 250                                              |
|                                                | /                   | _                   |               |               | ****                | \                | Sow                |                      |                  |                           |                                              |                          |          |                                            |                    |                                                  |
|                                                |                     | 1                   |               |               |                     |                  |                    | $ egthinspace{-1pt}$ |                  |                           |                                              |                          |          | W                                          | $\Box$             |                                                  |
|                                                |                     |                     |               |               |                     |                  |                    |                      |                  |                           |                                              |                          |          |                                            | $\rightarrow$      |                                                  |
|                                                | <u> </u>            |                     |               | ١_            |                     | <u> </u>         |                    |                      |                  |                           |                                              |                          |          |                                            |                    |                                                  |
| REMARKS:                                       | ll pud              | not w               | mplet         | ₽, 54         | +d4np               | : 1,51           | ` 4gs              |                      |                  |                           |                                              |                          |          |                                            |                    |                                                  |
| MATERIAL CODES:                                | AG ≃ An             | iber Glass;         | CG = Clear    | Glass;        | PE = Polya          | thylene; F       | P = Polypropy      | rlene; S =           | Sillcon          | e; T = Teff               | on;                                          | O = Olher (              | Specify) |                                            |                    |                                                  |
| SAMPLING EQUIPM                                |                     |                     | r Peristaltic | Pump;         | B = Balle           | er, BP=E         | Bladder Pump;      | ESP =                | Electric         | Submersibl<br>O = Other ( | e Pum                                        | P;                       |          |                                            |                    |                                                  |
| <u> </u>                                       |                     |                     | . 5,001 1017  |               |                     |                  | of variation of la |                      |                  |                           |                                              | .,                       |          |                                            |                    |                                                  |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 rng/L or ± 10% (whichever is greater) TurbIdIty: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

(D) 05/10



| Installation: Eliswort                         | h AFB M202       | 27.0003          |                   |                       |                      | Site:                | 6(1                           | ૧૪૪               | <u>B-</u>              | Cros                             | h)                           |               |                                |                                                  |             |
|------------------------------------------------|------------------|------------------|-------------------|-----------------------|----------------------|----------------------|-------------------------------|-------------------|------------------------|----------------------------------|------------------------------|---------------|--------------------------------|--------------------------------------------------|-------------|
| WELL NO: MW                                    | SPFC(            | 0602             |                   |                       | S#                   |                      | 5w HB6                        | -002              |                        |                                  |                              | DATE:         | 5/4/18                         |                                                  |             |
| WELL                                           |                  | IT               | USING             | 1/ \                  | - Ne                 | PU<br>LL SCREEN INTI | RGING DA                      | i cr              | ATIC DEPT              | H                                |                              | Pi            | RGE PUMP TYPE                  | :                                                |             |
| DIAMETER (Inches):<br>WELL VOLUME PUI          | 2                | D                | DIAMETER (        | ソル (か、<br>inches):    | 20                   | ),UFL -              | 10,11 Ft                      |                   |                        |                                  | 15.52                        |               | BAILER: F                      |                                                  |             |
|                                                |                  |                  |                   |                       |                      |                      |                               |                   |                        |                                  |                              |               |                                |                                                  |             |
| (only fill out if ap                           | pp@cable)        | =                | 20                | 9,36                  | Fi - 15              | .5 CF1) ×            | 0.163                         | gal/TL =          | 0.                     | 8                                | gel                          |               |                                |                                                  |             |
| EQUIPMENT VOLU                                 |                  | EQUIPMENT        | VOL. = PI         | UMP VOLU              | JME + (TUBII         | NG CAPACIT           | ү х т                         | UBING LE          | NGTH) +                | FLOW CEL                         | L VOLUME                     |               |                                |                                                  | AT          |
| (only fill out if an                           | oplicable)       |                  |                   |                       | gal = (              | X-                   | Ft-)                          |                   | gal                    |                                  | gal                          |               |                                | 5/                                               | 1/18        |
| INITIAL PUMP OR TUBIN<br>DEPTH IN WELL (feet); | G (              | 8                |                   | PUMP OR TU            |                      | LB                   | PURG                          | ING<br>TED AT:    | 10 L                   | <u></u>                          | PURGING<br>ENDED AT          | 1034          | TOTAL VOLUME<br>PURGED (galler | mr 4                                             | 500         |
| TIME                                           | VOLUME<br>PURGED | AOF RW<br>CRIMAI | - 1               | PURGE<br>RATE         | DEPTH<br>TO          | pH<br>(standard      | TEMP.                         | CON               |                        | DJSSOLV                          | - 1                          | ı             | URBIDITY<br>(NTUs)             | COLOR<br>(describe)                              | оров        |
| IIME                                           | (gallons)        | PURGE            |                   |                       | WATER<br>Iteet BTOCI | units)               | (°C)                          | μS/ <sub></sub>   | CIA                    | mg/L                             | (0.04)                       |               | (it) us)                       | (describe)                                       | (describ    |
| 1020                                           | 1500             | 150              |                   |                       | 16.68                | 7.28                 | (3.2                          | Ø 3               |                        | 4,4                              |                              |               | 755                            | cloud                                            | non         |
| 1023                                           | 900              | 240              |                   | 300                   | 17,05                |                      |                               |                   | 64                     | 4.4                              |                              |               | 394                            |                                                  | $\sqcup$    |
| 1026                                           | 200              | \$ 30            |                   | 300                   | 17.52                |                      |                               | 48                |                        | 6.2<br>5.7                       |                              |               | 9/3                            | $\vdash \vdash$                                  |             |
| 1034                                           | 750<br>450       | 463              |                   | 150<br>150            | 17.89                | 7.14                 | 14.7                          | 50<br>51          |                        | 5.<br>5.l                        |                              |               | 700<br>513                     | <del>                                     </del> | +           |
| Wit                                            | -130             | <b>4</b> 20      | <del>,</del> ()   | 150                   | 1 600                | C <sub>L</sub> C-C   | 1 76. 1                       | υl                | . 65                   |                                  | G   JU. (                    | <b>«</b>      | 2,4                            |                                                  |             |
|                                                |                  |                  |                   |                       |                      |                      |                               |                   |                        |                                  |                              | . weeks       | and the second second          |                                                  |             |
|                                                |                  | ļ                |                   |                       |                      |                      |                               |                   |                        |                                  |                              | _             |                                |                                                  | ļ           |
|                                                |                  | <u> </u>         |                   |                       |                      |                      |                               |                   |                        |                                  |                              |               |                                |                                                  | ļ           |
|                                                |                  |                  |                   |                       |                      |                      |                               |                   |                        |                                  |                              |               |                                |                                                  |             |
|                                                |                  |                  |                   |                       |                      |                      |                               |                   |                        |                                  | +                            |               |                                |                                                  | <u> </u>    |
|                                                |                  |                  |                   |                       |                      |                      |                               |                   |                        |                                  |                              | 1             |                                |                                                  |             |
|                                                | 7.4              |                  |                   |                       |                      |                      |                               |                   |                        |                                  |                              |               |                                |                                                  |             |
|                                                | 319              | 18               |                   |                       |                      |                      |                               |                   |                        |                                  |                              | <del> </del>  |                                |                                                  |             |
|                                                | 200              | [                |                   |                       |                      |                      |                               |                   |                        |                                  |                              |               |                                |                                                  |             |
| WELL CAPACITY (G                               | allons Per Foo   | t): 0.75°= 0.0   | )2; 1"=           | 0.04; 1               | .25" = 0.06;         | 2" = 0.16;           | 3" = 0.37;                    | 4" = 0.65;        | 5" = 1                 | 1.02; 6" =                       | 1.47; 12" = 5                | .86           |                                |                                                  | L           |
| TUBING INSIDE DIA                              |                  |                  |                   | 3/16" =<br>Bladder Pu |                      |                      | 5/16" = 0.0<br>Submersible Po |                   | " = 0,006<br>PP = Peri | ; 1/2" = 0<br>stattic Pump       |                              |               |                                |                                                  |             |
|                                                |                  |                  |                   |                       |                      |                      | MPLING DA                     | TA                |                        |                                  |                              |               | SAMPLING                       |                                                  |             |
| SAMPLED BY (PRINT) / A                         | FFILIATION:      | rek Tu           | urols             |                       | ER(S) SIGNATU        | JRE(S):              | Frek                          | <u> </u>          |                        | hd                               | SAMPLING<br>INITIATED AT:    | 933           | ENDED AT:                      | 101                                              | 13          |
| PUMP OR TUBING DEPTH IN WELL (feet):           | 18               |                  |                   | TUBIN                 | g<br>RIAL CODE; PE   |                      |                               |                   |                        | D-FILTERED:<br>Filtration Equipm | Y                            | (D)           | Filter Size                    |                                                  | mm          |
|                                                |                  | DECONTAMINATIO   | ON: PL            | UMP Y                 | <b>(b)</b>           |                      | Y (N {replace                 |                   |                        |                                  | DUPLICATE: (                 | D N           |                                | 1                                                |             |
| SAMP                                           | LE CONTAINER S   | PECIFICATION     | I                 | Р                     | RESERVATIVE          | SAU                  | PLE PRESERVAT                 |                   |                        |                                  | INTENDEO ANALY               |               |                                |                                                  |             |
| SAMPLE 10 CODE                                 | # CONTAINERS     | MATERIAL CODE    | VOLUME            | (mL)                  | USED                 | ADI                  | DED IN FIELD (m               |                   | INAL pH (S             | tanard Units)                    | метно                        | D             | CODE                           |                                                  | per minute) |
| -GW-018                                        |                  | PE               | 125               | ,                     |                      |                      |                               |                   |                        |                                  | EPA 537                      | м             | APP                            |                                                  | 150         |
| - GW-018<br>- GW-018<br>MS/MSD                 | 4                | PB               | 125               |                       |                      | $\sim$               | Sen!                          |                   |                        |                                  | EPA 5                        | 37M           | APP                            |                                                  | 150         |
| 202-CW-918                                     | 2                | PE               | 125               | 5                     |                      |                      |                               |                   |                        |                                  | EPH 53                       | ŽΜ            | AfP                            |                                                  | 150         |
|                                                |                  | _                |                   |                       |                      |                      |                               |                   | <u> </u>               |                                  |                              | -             | -57                            | <u> </u>                                         |             |
|                                                |                  |                  |                   |                       |                      |                      |                               |                   |                        |                                  |                              | ſ             | 011 0                          | <u>/</u>                                         |             |
| REMARKS:                                       | . pad no         | + compl          | 19 <b>3</b> 16, S | SHICK                 | up; 1                | ,25 a                | .35. E                        | ropping<br>rell V | , res<br>ohn           | tricted<br>Herlen<br>Le pur      | laccess<br>el tool<br>gelles | san<br>vite 1 | mple as                        | ter c                                            | me<br>litz  |
| MATERIAL CODES:                                | AG = Aπ          | nber Glass; (    | CG = Clea         | ar Glass;             | PE = Polye           | thylene; P           | P ≈ Polypropy                 | tena; S           | = Silicone             | ; T = Tefi                       | on; O = Other                | (Specify)     | <u> </u>                       |                                                  |             |
| SAMPLING EQUIPM                                |                  |                  | r warietali       | lic Pump;             | B ≃ Baite            | rc 8P≃B              | Bladder Pump;                 | ESP =             | = t-tectric            | Submersible                      | e Humo:                      |               |                                |                                                  |             |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

Je 05/10



| installation: E[ swort                          | AFB M202                                                                                                             | 7.0003                                |                               |            |                            | Site            | 6 (                             | 198            | 8 B-                        | 1 cm                             | sh)     |                            |            |                          |                 |               |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------|------------|----------------------------|-----------------|---------------------------------|----------------|-----------------------------|----------------------------------|---------|----------------------------|------------|--------------------------|-----------------|---------------|
| WELL NO: MW                                     | 18PFC                                                                                                                | 0603                                  |                               |            | S/                         | AMPLE ID: EI    | -5w HO                          |                |                             |                                  |         | DΑ                         | TE:        | 5/7/                     | 18              |               |
|                                                 |                                                                                                                      |                                       |                               |            |                            |                 | IRGING DA                       |                |                             |                                  |         |                            |            |                          |                 |               |
| WELL<br>DIAMETER (Inches):<br>WELL VOLUME PUR   | 2                                                                                                                    | וז<br>ום                              | JEING<br>IAMETER (inch        | 1/2 i      | 10D WE                     | LL SCREEN INT   | ERVAL DEPTH:<br>50,151          |                | STATIC DEPT<br>TO WATER (fo | ب ,eet BTOC):                    | 5.      | 26                         |            | rge pump typi<br>Bailer: | Esp             |               |
| WELL VOLUME PUR                                 | RGE: 1 WELL                                                                                                          |                                       |                               |            |                            |                 |                                 |                |                             |                                  |         |                            |            |                          |                 |               |
| (only fill out if ap                            | pticable)                                                                                                            | =                                     | (60.                          | 40         | Ft - 31                    | ),2(⊊0 x        | 0.163                           | ga∜ft          | · 4,                        | 1                                | gal     |                            |            |                          |                 |               |
| EQUIPMENT VOLUM                                 | ME PURGE: 1                                                                                                          | EQUIPMENT                             | VOL. ≈ PUM                    | IP VOLU    | JME + (TUBI                | NG CAPACIT      | ry x t                          | UBING          | LENGTH) +                   | FLOW CEL                         | L VOL   | UME                        |            |                          |                 | 47            |
| (ordy fill out if 20)                           | o@caple)                                                                                                             |                                       |                               |            | ga! <u>= (</u>             | ×               |                                 | *              | gai                         | =                                |         | gal                        |            |                          | 3,              | 7/18          |
| INITIAL PUMP OR TUBING<br>DEPTH IN WELL (feet): | 55                                                                                                                   | ,                                     | FINAL PUI<br>DEPTH IN         |            |                            | 55              | PURG                            | ING<br>TED AT: | 153                         | 5                                |         | PURGING<br>ENOED AT:       | 620        | TOTAL VOLUME             | mL 15           | 5,75℃         |
|                                                 | VOLUME                                                                                                               | CUMUL                                 | .   1                         | URGE       | DEPTH                      | pH<br>{standard | TEMP.                           | 1              | COND.                       | DISSOLV                          | ED      | ORP                        | ŢŪ         | RBIDITY                  | COLOR           | ODOR          |
| TIME                                            | PURGED<br>(gallons)                                                                                                  | VOLUM<br>PURGEI<br>Vasiena            | I                             | RATE       | TO<br>WATER<br>Wieet BYOCI | units)          | (°C)                            |                | µS/cm                       | OXYGE<br>OXYGE                   | N       | (mV)                       | '          | (NTUs)                   | (describe)      | (describe)    |
| 1545                                            | 3500                                                                                                                 | 3,5 O                                 |                               |            | 38795                      | 6,74            | 15,0                            | 40             | ı 88                        | 4.4                              | 17      | 35.6                       | l          | 63                       | clear           | none          |
| 1555                                            | 3 <b>5</b> 00                                                                                                        | 7,00                                  | 90 3                          | 350        | 42.76                      | 6,73            | 14,4                            | 41             | wi                          | 3,8                              | 53      | 29.2                       | t          | 7.9                      |                 |               |
| 1605                                            | 3500                                                                                                                 | (10,50                                |                               | _          | 46.26                      |                 | 14.6                            |                | wr                          |                                  | vl_     | 27.3                       |            | 2.2                      |                 |               |
| 1610                                            | 1756                                                                                                                 |                                       |                               |            | 47.42                      | 6.74            | MM                              |                | U36                         |                                  | 22      | <u> 26.4</u>               |            | <u>15.2</u>              |                 |               |
|                                                 | 615 1760 14,000 350 \$8,87 6.74 14.6 4430 3.62 26.4 14.8 1 1 620 1750 15,750 350 50.61 6.73 14.9 4427 3.93 27.0 15.8 |                                       |                               |            |                            |                 |                                 |                |                             |                                  |         |                            |            |                          |                 |               |
| 1620                                            |                                                                                                                      |                                       |                               |            |                            |                 |                                 |                |                             |                                  |         |                            |            |                          |                 |               |
|                                                 |                                                                                                                      |                                       |                               |            |                            |                 |                                 |                |                             |                                  |         |                            |            |                          |                 |               |
|                                                 | 620 1750 15,750 350 50.61 6.73 14,9 4427 3,93 27.0 15.8                                                              |                                       |                               |            |                            |                 |                                 |                |                             |                                  |         |                            |            |                          |                 |               |
|                                                 |                                                                                                                      |                                       |                               |            |                            |                 |                                 |                |                             |                                  |         |                            |            |                          |                 |               |
|                                                 |                                                                                                                      |                                       |                               |            |                            |                 |                                 |                |                             |                                  |         |                            |            |                          |                 |               |
|                                                 |                                                                                                                      | · · · · · · · · · · · · · · · · · · · |                               |            |                            |                 |                                 |                |                             |                                  |         |                            |            |                          |                 |               |
|                                                 |                                                                                                                      |                                       |                               |            |                            |                 | ļ                               |                |                             |                                  | _       |                            |            |                          |                 |               |
|                                                 | 0.7                                                                                                                  |                                       |                               |            |                            |                 |                                 |                |                             |                                  | $\neg$  |                            |            |                          |                 |               |
|                                                 |                                                                                                                      | 77/18                                 |                               |            |                            |                 |                                 |                |                             |                                  |         |                            |            |                          |                 |               |
|                                                 | -                                                                                                                    | )                                     |                               |            |                            |                 |                                 |                |                             |                                  |         |                            |            |                          |                 |               |
| WELL CAPACITY (G                                |                                                                                                                      |                                       |                               |            |                            |                 |                                 |                |                             |                                  | 1.47;   | 12" = 5.88                 |            |                          |                 |               |
| TUBING INSIDE DIA<br>PURGING EQUIPME            |                                                                                                                      | B = Baller                            | = 0.0006;<br>BP = Bla         |            |                            | P = Electric S  | Submersible Pu                  | ımp;           | 3/8" = 0,006<br>PP = Peri   | ; 1/2" = i<br>staltic Pum;       |         | 5/8" = 0,0<br>O = Other (5 |            |                          |                 |               |
|                                                 |                                                                                                                      |                                       |                               | 1          |                            |                 | MPLING DA                       |                | 0 8                         |                                  | SAMPL   | ING                        |            | SAMPLING                 | 1.              |               |
| SAMPLED BY (PRINT) / A                          | FFILIATION: A                                                                                                        | rell Yur                              | olski                         |            | ER(S) SIGNATI              | URE(S):         | nel                             | / u            | BW                          |                                  | INITIAT |                            |            | ENDED AT:                | 162             |               |
| PUMP OR TUBING<br>DEPTH IN WELL (feet):         | •                                                                                                                    | 55                                    |                               | TUBING     | S<br>RIAL CODE: PE         |                 |                                 |                | 1                           | D-FILTERED:<br>- Itration Equips |         |                            | <u>د ۱</u> | Filter Size              |                 | TELLI         |
|                                                 |                                                                                                                      | ECONTAMINATIO                         | IN: PUME                      | · (§)      | N                          |                 | Y (N (replace                   |                |                             |                                  | DUPLIC  | ATE: Y                     | (N         | )                        | la.             |               |
| SAJAPI                                          | LE CONTAINER S                                                                                                       |                                       |                               | P          | RESERVATIVE                |                 | TOTAL VOL                       | ION            |                             |                                  | INTEN   | DED ANALYSIS               | AND/OR     | SAMPLING EQU             | IPMENT FL       |               |
| SAMPLE ID CODE                                  | # CONTAINERS                                                                                                         | WATERIAL CODE                         | VOLUME (mL                    | )          | USED                       | 1               | DED IN FIELD (ml                | L)             | FINAL pH (S                 | tanard Units)                    |         | METHOD                     |            | CODE                     |                 | per minute)   |
| ELSW HOG-<br>603 mGW-09                         | ss 2.                                                                                                                | PB                                    | 125                           |            |                            |                 |                                 |                |                             |                                  |         | EPA 537M                   |            | BSP                      |                 | 350           |
|                                                 |                                                                                                                      |                                       |                               | 1          |                            | $\overline{}$   |                                 |                |                             |                                  | /       |                            |            |                          |                 |               |
|                                                 | <u> </u>                                                                                                             | /                                     |                               |            |                            | 5               | Spr                             |                |                             |                                  |         |                            |            | <u> </u>                 |                 |               |
|                                                 | M                                                                                                                    |                                       |                               |            |                            |                 |                                 | $\leq$         |                             |                                  |         |                            |            | ***                      | $ \mathcal{I} $ |               |
|                                                 |                                                                                                                      |                                       |                               | _          |                            |                 |                                 |                |                             |                                  |         |                            |            |                          | _               | $\rightarrow$ |
|                                                 |                                                                                                                      |                                       |                               | 1          |                            | 0.81 = 1.5      | 0, ,                            |                | >~ \                        |                                  | L       |                            |            |                          |                 |               |
| Surt<br>REMARKS:                                | are me                                                                                                               | U pud 1                               | rot co                        | mple       | te. w                      | eu Str          | ing:                            | O. (           | os a                        | gs                               |         |                            |            |                          |                 |               |
|                                                 |                                                                                                                      |                                       |                               |            |                            |                 |                                 |                |                             |                                  |         |                            |            |                          |                 |               |
| MATERIAL CODES:                                 |                                                                                                                      |                                       | G = Clear (                   |            | PE = Polye                 |                 | PP ≈ Polypropy                  |                | S = Silicone                |                                  |         | O = Other (S               | Specify)   |                          |                 |               |
| SAMPLING EQUIPM                                 | ENT CODES:                                                                                                           | APP = Afte<br>RFPP = Ret              | r Peristallic<br>verse Flow f | Peristalli |                            | SM = Straw I    | Bladder Pump;<br>Method (Tubing | Gravit         |                             | O = Other                        |         |                            |            |                          |                 |               |
|                                                 |                                                                                                                      |                                       |                               | St         | abilization Crit           | erta for range  | of variation of la              | st three       | consecutive                 | readings                         |         |                            |            |                          |                 |               |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

<sub>C-147</sub> 5/07



| íns | tallatio    | n: El     | Isworth              | AFB M202         | 7.0003           |          |                                                  |                | Site:             | Sik 7                      | - To               | exiwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | my Do                        | Ha C                      | rush       | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>0</i> 0) |             |
|-----|-------------|-----------|----------------------|------------------|------------------|----------|--------------------------------------------------|----------------|-------------------|----------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| w   | ELL N       | o: /      | พพ                   | 3PFC07           | 101              |          |                                                  | SA             | MPLEID: <b>EL</b> | SWHO?                      | - 001              | - 6W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>کاوہ ک</u>                | D/                        | TE: 5-/    | 5-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |             |
| _   |             | •         |                      |                  |                  |          |                                                  | 14             | PUI               | RGING DA                   | TA                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |            | GE PUMP TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |             |
|     | LL.         |           |                      | 2.0"             |                  | BING     | inches):                                         | 40D 40         | L SCREEN INTE     | RVALDEPTH:                 | S.                 | TATIC DEPTH<br>D WATER (fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | el BTOCh:                    | 14.80                     | ORI        | BAILER: P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |             |
| Λ.  | MED         | ER (Inc   | hes):<br>IME PUI     | RGE; 1 WELL      | VOLUME = (T      | OTAL V   | ACRES): /                                        | H BTOC -       | STATIC DEP        | TH TO WATE                 | R) X               | WELL CAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACITY                        |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| •   |             |           | fill out If ap       |                  |                  |          |                                                  |                |                   | صا.٥                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | أهو                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
|     |             | (OILI)    | nii oce ii op        | picabo)          | - ,              | 40       | 0.38                                             | 79.            | 0 7               | 0,10                       |                    | 7,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | יי                           |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| E   | QUIP        | MEN       | T VOLUI              | ME PURGE: 1      | EQUIPMENT V      | OL. = P  | UMP VOLU                                         | JME + (TUBII   | NG CAPACIT        | ү х т                      | UBING L            | ENGTH) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FLOW CELL                    | VOLUME                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
|     |             |           | M out if ap          |                  | N/A              | ×        |                                                  | gal = (        | x                 | Ft )                       | <u> </u>           | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u></u>                      | gal                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| IM  | TRAL        | or is a p | OR TUBIN             | G _              | <u>.</u>         | FINAL    | PUMP OR T                                        | UBING          | 35                | PURG                       | ING                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | PURGING                   | 0.55       | TOTAL VOLUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E           | 211         |
|     |             |           | Li. (feet):          | <u>     35</u>   |                  |          | H IN WELL (fe                                    | eet):          |                   |                            | TED AT:            | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DISSOLVE                     |                           |            | PURGED (gallor<br>IRBIDITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | color       | ODOR        |
|     |             |           | _                    | VOLUME<br>PURGED | VDLUME<br>CUMUL  |          | PURGE<br>RATE                                    | DEPTH          | pH<br>(standard   | TEMP.<br>(°C)              | -                  | OND.<br>S/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OXYGEN                       | ì                         | 1          | (NTUs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (describe)  | 1           |
|     |             | TIME      | =                    | (gallons)        | PURGEO           |          | (gpm)                                            | WATER          | (elinu            | ' '                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                         |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| H   | 17          | 2         | u                    |                  | (oallons)        |          | ٥.04                                             | 14.85          | 1                 | _                          | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                            |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clear       | non         |
| -   |             | u         | $\overline{\lambda}$ | 0.24             | 0.24             | 1        | 12.04                                            | 16.45          | 7.07              | 13.7                       | 0.2                | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.54                         | 1 -54.8                   | 2          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 1           |
| _   | 17          | ü         | <u>~</u> _           | 0.20             | N 4              |          | 0.64                                             | 14.96          | 1.13              | 13.5                       | 0.3                | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.79                         | 5 -51.5                   | 12         | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |             |
| r   | 12          | 3         | <del>2</del>         | 5.30             | . 10             | 니        | 0 04                                             | 17.34          | 7.13              | 13.3                       | 0.3                | aa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a. 7                         | 3 - 59.7                  | 12         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |             |
| _   | 10          | र्द       | 꿏                    | 0.20             | 0 24             | 1        | 0.04                                             | 13.25          | 7.17              | 13.1                       |                    | 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                          | 2 -62.0                   | 13         | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7           | <u> </u>    |
|     |             |           |                      |                  |                  |          |                                                  |                |                   |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
|     |             |           |                      |                  |                  |          |                                                  |                |                   |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
|     |             |           |                      |                  |                  |          |                                                  |                |                   |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
|     |             |           |                      |                  |                  |          |                                                  |                |                   |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
|     |             |           |                      |                  |                  |          |                                                  |                |                   |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
|     |             |           |                      |                  |                  |          |                                                  |                |                   |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| H   |             |           |                      |                  |                  |          |                                                  |                |                   | -                          | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                            |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| ŀ   |             |           |                      |                  |                  |          |                                                  |                |                   |                            | $\vdash \subseteq$ | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | The Later                    | -                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| ŀ   |             |           |                      | <u> </u>         |                  |          |                                                  | 1              |                   |                            | <b>T</b>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| H   |             |           |                      |                  |                  |          | <del>                                     </del> |                |                   |                            | <del> </del>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |            | No. of Concession, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, or ot |             |             |
| H   |             |           |                      |                  |                  |          |                                                  |                |                   |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| ŀ   |             |           |                      | +                |                  |          | <u> </u>                                         |                |                   |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| ŀ   | VELL        | CAP       | ACITY (              | Gallons Per Foo  | on: 0.75" = 0.0  | 2; 1*    | = 0.04;                                          | 1.25* = 0.06;  | 2' = 0.16;        | 3" = 0.37;                 | 4" = 0.0           | 35; 5°=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.02; 6 =                    | 1.47; 12" = 5.            | 88         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| b   | UBI         | IG IN     | SIDE DI              | A. CAPACITY (    | Gal./Ft.): 1/8": | = 0.0000 | 3; 3/16"                                         |                | /4" = 0.0026;     |                            |                    | 3/8" = 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3; 1/2" = 0<br>istaltic Pump |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| ľ   | URG         | ING       | EQUIPM               | IENT CODES:      | B = Bailer;      | BP       | ≕ Bladder F                                      | omp; E         |                   | Submersible F<br>MPLING DA |                    | PP = Pel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | istanic Punip                | , O-Callel                | (ореску)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| ľ   | AMDI        |           | ADDILED !            | ACCULATION: A    | /                | 101      | SAM                                              | PLER(S) SIGNAT | TURE(S):          | a                          | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | SAMPLING<br>INITIATED AT: | 255        | SAMPLING<br>ENDED AT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12          | 57          |
| -   |             |           |                      | AFFILIATION:     | millis r         | <u> </u> | TUBS                                             |                |                   | <u> </u>                   |                    | FIEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D-FILTERED:                  | Y Y                       | -          | Filter Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | r           |
| 1   |             | OR TU     | ELL (feet):          | 35               |                  |          |                                                  | erial code: Pe | <u>.</u>          |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Filtration Equipm            | nent Type:                | <u> </u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| ŀ   |             |           |                      |                  | DECONTAMINATIO   | DN:      | PUMP Y                                           | (N)            | TUBING            | Y N (repla                 | /                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | DUPLICATE:                | Y (1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T.          | AMPLE PUMP  |
| L   |             |           | SAM                  | PLE CONTAINER    | SPECIFICATION    | 1        |                                                  |                |                   | MPLE PRESERVA              | ATION              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | INTENDED ANALY            | SIS AND/OR | SAMPLING EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QUIPMENT I  | LOW RATE (m |
| ١   | s           | (VPLE I   | D CODE               | # CONTAINERS     | MATERIAL CODE    | VDLUM    | IE (mL)                                          | PRESERVATIVI   |                   | TOTAL VOL                  |                    | FINAL pH (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stanard Units)               | METHO                     | D          | COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E           | per minute) |
| ļ   |             | 40.0      |                      |                  |                  | 120      | <del>,                                    </del> | USED           | A                 | DDED IN FIELD (            | mL)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | <u> </u>                  |            | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | ·C-         |
| ۱   | الما        | νHο       | 7-061                | _ \ \a           | PE               | 125      |                                                  |                |                   |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | EPA 537                   | M          | API                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ρ           | 150         |
| ŀ   | <u>(5()</u> | <u> </u>  | 035                  |                  |                  | eac      | <del>^</del>                                     |                | $\rightarrow$     |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| ĺ   | _           | _         | _                    | J                |                  |          |                                                  |                | 3                 | Sou                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | \                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| ŀ   |             |           |                      | 79               | h                |          |                                                  |                | 1                 |                            | $\overline{}$      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |            | $ar{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |             |
| ŀ   | _           |           |                      | + 4              | *                |          |                                                  |                |                   |                            |                    | $\overline{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |                           |            | \ <u>\</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |             |
| ŀ   |             |           |                      |                  |                  |          | $\dashv$                                         |                |                   |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |            | <b>│</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |             |
| ŀ   |             |           | 1 -                  |                  |                  | <u> </u> |                                                  | N / A          |                   | 1 1 .                      | ) (o               | h.i. c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                     | 1                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
|     |             |           | K V                  | 2 insect         | Ecsin            | н -      | R5-1                                             | U19 a          | 7850CA            | eus vi                     | , ( (**            | 74127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | myre                         | _                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| ľ   | KEMA        | KKS:      | ォ⊁ぃ                  | red not          | complet          | eol      |                                                  |                |                   |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| Į   |             |           |                      |                  | mber Glass;      |          | loar Class                                       | DE = Dob       | yathylene;        | PP = Polypro               | ovlene:            | S = Silico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne; T = Te                   | flon; O = Othe            | r (Specify | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |             |
|     |             |           | L CODE               | S: AG = A        | : APP = Aft      | er Peris | taltic Pump                                      | ; B≕Ba         | ler; BP =         | = Bladder Pum              | ıp; E              | SP = Electr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ic Submersib                 | le Pump;                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| ۱   |             |           |                      |                  |                  | everse l | low Perista                                      | altic Pump;    |                   | / Method (Tub              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | (Specify)                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

(A) 5/15



| Installation: Ellsworth                       | AFB M202                                                                                                      | 7.0003                       |                                |               |                            | Sita:               | 7                                  | (de                  | <u>Uta</u>             | taxi                      | W        | est)              | )                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|---------------|----------------------------|---------------------|------------------------------------|----------------------|------------------------|---------------------------|----------|-------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------|
| WELL NO: M.W.                                 | IRPEC                                                                                                         | <u>070</u>                   | 2                              |               | SA                         | MPLE ID: 6          | LSWHO                              |                      |                        |                           |          |                   | re: 5            | 1/21/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18          |                                        |
|                                               |                                                                                                               |                              |                                |               |                            |                     | RGING DA                           |                      |                        |                           |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
| WELL<br>DIAMETER (inches):<br>WELL VOLUME PUR | ว                                                                                                             | TUE                          | BING I                         | 4 14          | 0D WEL                     | L SCREEN INTE       | ERVAL DEPTH:                       | S                    | TATIC DEPT             | H<br>set BTOC):           | 14.      | ०१                | PUR<br>OR B      | SE PUMP TYPE<br>AILER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PP          |                                        |
| WELL VOLUME PUR                               | GE: 1 WELL                                                                                                    | VOLUME = (To                 | OTAL WELL                      | DEPTH         | BTOC -                     | STATIC DE           | TH TO WATE                         | R) X                 | WELL CA                | PACITY                    |          | ,                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
| (only fill out if app                         |                                                                                                               | = (                          | 25.                            | ď             | Ft -   14,                 | ⊳q <sub>F0</sub> ×  | 0.163                              | galifit              | =                      | 43                        | gal      |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
| EQUIPMENT VOLUM                               | E PURGE: 1                                                                                                    | EQUIPMENT V                  | OL. = PUMF                     | VOLUN         | Æ + (TUBII                 | NG CAPACIT          | ү х т                              | UBING L              | ENGTH) +               | FLOW CELI                 | LVOLU    | IME               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ŕ           | T                                      |
| (only fill out if app                         | Ecable)                                                                                                       |                              |                                |               | al                         |                     | rt)                                |                      | <del></del>            |                           |          |                   |                  | Ę                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/21/1      | 8                                      |
| INITIAL PUMP OR TUBING                        | <u> </u>                                                                                                      | 1                            | FINAL PUM                      |               |                            | 9 )                 | PURG                               | NG N                 | 161                    | <del>6</del> 165          | o l      | PURGING           | 714              | OTAL VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2L 1        | 1800                                   |
| DEPTH IN WELL (feet):                         | VOLUME                                                                                                        | CUMUL                        | DEPTH IN V                     | RGE           | DEPTH                      | pH                  | TEMP.                              |                      | OND.                   | DISSOLVE                  |          | ORP               |                  | RBIDITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COLOR       | ODOR                                   |
| TIME                                          | PURGED<br>(gallons)                                                                                           | VOLUME<br>PURGED<br>Manionsi | 40                             | ATE TOWN      | TO<br>WATER<br>Treet BTOCL | (standard<br>units) | (°C)                               | ц                    | ıS/cm                  | OXYGEN<br>mg/L            | 1        | (mV)              | (I               | NTUs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (describe)  | (descr(be)                             |
| 1655                                          | 1000                                                                                                          | looe                         |                                | 20            | 4.26                       | 7.26                | 14.6                               | l                    | 644                    |                           | l        | -11.7             |                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Clear       | none                                   |
| 1700                                          | (000)                                                                                                         | 200                          | 0 2                            |               | 14,28                      | 7,17                | 13, 8                              |                      | 140                    | 2,3                       |          | -14.7             |                  | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1           |                                        |
| 1705                                          | [000]                                                                                                         | 3000                         |                                |               | 14,28                      | 7.33                | 17.9                               |                      | 244                    | 4,8                       |          | -16.5             |                  | <u>9.6</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del></del> | <del></del>                            |
| 1708                                          | 600                                                                                                           | 360                          |                                |               | 14.28                      | 7,42                | 12,5                               |                      | 209                    | 6.3                       |          | -16.8             |                  | <u> 7,5                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$    |                                        |
| [71]                                          | 1711 600 4200 200 14.28 7.48 12.5 1193 6.99 -17.1 14.7 1714 600 4800 200 14.28 7.47 12.4 1184 7.18 -15.7 12.5 |                              |                                |               |                            |                     |                                    |                      |                        |                           |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
| 1714                                          |                                                                                                               |                              |                                |               |                            |                     |                                    |                      |                        |                           |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
|                                               |                                                                                                               |                              |                                |               |                            |                     |                                    |                      |                        |                           |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
|                                               |                                                                                                               |                              |                                |               |                            |                     |                                    |                      |                        |                           |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
|                                               |                                                                                                               |                              |                                |               |                            |                     |                                    |                      |                        |                           |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
|                                               |                                                                                                               |                              |                                |               |                            |                     |                                    |                      |                        |                           |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
|                                               |                                                                                                               |                              |                                |               |                            |                     |                                    |                      |                        |                           |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
|                                               |                                                                                                               |                              | A                              | $\overline{}$ |                            |                     |                                    |                      |                        |                           |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
|                                               |                                                                                                               |                              | 72                             | 18            |                            |                     |                                    |                      |                        |                           |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
|                                               |                                                                                                               | 7                            | ) (**                          |               |                            |                     |                                    |                      |                        |                           |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
|                                               |                                                                                                               |                              |                                |               |                            |                     | <u> </u>                           | <u> </u>             |                        |                           |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |                                        |
|                                               |                                                                                                               |                              |                                |               |                            | <u> </u>            | <u></u>                            |                      |                        | 100 0                     | 4 47:    | 12* = 5,8         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L           |                                        |
| WELL CAPACITY (G<br>TUBING INSIDE DIA         |                                                                                                               |                              |                                |               |                            |                     |                                    |                      | 55; 5°=<br>3/8"= 0.006 | 1.02; 6* =<br>6; 1/2° = 0 |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
| PURGING EQUIPME                               |                                                                                                               | B = Bailer,                  | BP = Bla                       | dder Pu       | mp; ES                     | P = Electric        | Submersible P<br>MPLING DA         | ump;                 | PP ≃ Per               | ristaltic Pump            | ); 1     | O = Other (       | Specify)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
|                                               |                                                                                                               | 0 5                          |                                | T.            | ER(S) SIGNAT               |                     | 17.1                               |                      | nd l                   | /                         | SAMPLI   |                   | 7.5              | SAMPLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17,         | 17.                                    |
| SAMPLED BY (PRINT) / A                        | FFILIATION:                                                                                                   | rek ju                       | wolski                         | TUBING        |                            | URE(S).             | 77.00                              | Va                   |                        | D-FILTERED:               | INITIATI |                   | $\frac{715}{83}$ | ENDED AT:<br>Filter Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , ,         | mm m                                   |
| PUMP OR TUBING<br>DEPTH IN WELL (feel):       | 2                                                                                                             | 1                            |                                | 1             | IAL CODE: PE               |                     |                                    |                      |                        | Fitration Equipm          |          | •                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
|                                               |                                                                                                               | DECONTAMINATIO               | ON: PUMP                       | Y             | (N)                        | TUBING              | Y N (replac                        |                      |                        |                           | DUPLIC   | ATE: Y            | <u>(N</u>        | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s.          | AMPLE PUMP                             |
| SAMP                                          | LE CONTAINER S                                                                                                | PECIFICATION                 |                                | n             | RESERVATIVE                |                     | MPLE PRESERVA<br>TOTAL VOL         | IION                 |                        |                           | INTEN    |                   | S AND/OR         | SAMPLING EQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UIPMENT F   | LOW RATE (mL<br>perminula)             |
| \$AMPLE ID CODE                               | # CONTAINERS                                                                                                  | MATERIAL CODE                | VOLUME (mL                     |               | USEO                       | - 1                 | DDED IN FIELD (n                   | ıL)                  | FINAL pH (             | Stanard Units)            |          | METHOD            |                  | CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | per italians)                          |
| ELSWHO7-<br>002-GW-02                         | , 2                                                                                                           | PE                           | 125                            |               | <u>\</u>                   |                     |                                    |                      |                        |                           |          | EPA 537M          | 1                | APF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )           | 200                                    |
|                                               |                                                                                                               |                              |                                |               |                            | $\sim$              | San                                |                      |                        |                           | _        |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
|                                               | - 2                                                                                                           |                              |                                | <b>-</b>      |                            |                     |                                    | $ egthinspace{-1pt}$ |                        |                           |          |                   |                  | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |             |                                        |
|                                               |                                                                                                               |                              |                                |               |                            |                     |                                    |                      |                        |                           |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | •                                      |
|                                               |                                                                                                               |                              |                                |               |                            |                     |                                    |                      |                        |                           |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
| REMARKS:                                      | ell pa                                                                                                        | d con                        | pere                           |               |                            |                     |                                    |                      |                        |                           |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
|                                               |                                                                                                               |                              |                                |               |                            |                     |                                    |                      |                        |                           |          | 0 6"              | /C 10 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |
| MATERIAL CODES                                |                                                                                                               |                              | CG = Clear (<br>er Peristaltic |               | PE = Poly<br>B = Bai       |                     | PP = Polyprop<br>Bladder Pump      |                      |                        | ne; T≕Tef<br>ic Submersib |          | O = Olher  <br>Pi | (opecity)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ······································ |
| Service and Association                       |                                                                                                               |                              | verse Flow I                   | Peristalti    | c Pump;                    | SM = Straw          | Method (Tubic<br>e of variation of | ng Gravit            | y Drain);              | O = Other                 |          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

(8149) 05/24



| TO MATERIAL PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS O        | Installation: Ellsworth    | AFB M2027                                               | 7,0003                                        |              |               |                | Site:         | 7 (8                         | telta         | ta          | مما سرو                                 | 24                        |            |             | ,           |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------|-----------------------------------------------|--------------|---------------|----------------|---------------|------------------------------|---------------|-------------|-----------------------------------------|---------------------------|------------|-------------|-------------|-------------|
| PURCHNS DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WELL NO: MW                | & P.F.C.C                                               | 7703                                          |              |               | SA             | MPLEID: E     | LSW HC                       | <u> </u>      | 003         | - Gw                                    | -021 DA                   | re 5       | 1211        | 18          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                                         | 4                                             |              |               |                | PU            | RGING DAT                    | Α             |             |                                         |                           |            |             |             |             |
| PRILADARTY College From Cuts   125, 9   1   15,55 ft   0.163 or   1,7   20   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WELL<br>DIAMETER (Inches): | 2                                                       | DIA                                           | METER finche | es.           | 115            | Labet - I     | 17.66.67.51                  | TOV           | VATER (fe   | set BTOC):                              | 15 <b>.5</b> 5            | OR B       | AILER:      | PP          |             |
| Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   C          | WELL VOLUME PUR            | GE: 1 WELL                                              |                                               |              |               | н втос         | STATIC DEP    | TH TO WATE                   |               |             |                                         |                           |            |             |             |             |
| MINUS PATE PARTITION   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (only f⊠ out if app        | (cable)                                                 | = (                                           | 25,0         | 11            | Ft - 15.       | 55 Ft) ×      | 0.163                        | gab∏t =       | 1           | .7 °                                    | al                        |            |             |             |             |
| STATE   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part            | EQUIPMENT VOLUM            | E PURGE: 1 I                                            | EQUIPMENT V                                   | OL. = PUM    | P VOLU        | ME + (TUBII    | NG CAPACIT    |                              | UBING LEI     | vGTH) +     | FLOW CELL                               | VOLUME                    |            |             |             |             |
| NOTIFIED AND COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE   COURSE          | (only fill out if any      | licable)                                                |                                               | =            |               | gal <u>= {</u> | Y_            | E)_                          |               | - ya        | *************************************** | 021                       |            |             |             | 21/18       |
| The   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Pro          | i .                        | 2                                                       | l                                             |              |               |                | 21            |                              | NG<br>'ED AT: | 54          |                                         | ENDED AT:                 |            |             |             |             |
| 1550   750   750   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150          |                            |                                                         |                                               | - 1          |               |                | (standard     | i I                          |               | ĺ           | 1                                       | 1                         | i          |             |             | 1           |
| 15.0   75.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0             | LIME                       | (प्रकीर्गाउँ)                                           |                                               |              |               |                |               |                              |               | ***         |                                         |                           | ļ.,        | 2 = 2       |             |             |
| 150   150   150   150   15.65   132   12.1   1011   5.08   -98.3   9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1550                       | 750                                                     | 750                                           | ) 1          |               |                |               |                              |               |             |                                         |                           | -6         | 28          | <del></del> | 7           |
| 1605   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150          |                            | 750                                                     |                                               |              |               |                | *             | -                            |               |             | 4.1                                     |                           | <u> </u>   | 8 7         | روم         | rong        |
| 16   10   750   3 750   150   15,65 7,37   12,41   038   6,25 -104,1   33,6   16   15   750   4,500   150   15,65 7,50   12,1   1040   6,54   -106,6   22,6   16   16   16   16   16   16   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | 750                                                     |                                               |              |               |                |               |                              |               | ·           | 2,0                                     |                           |            | <u> </u>    | 1           |             |
| 16   5   7.50   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                                         |                                               |              |               |                |               |                              |               |             | 5.8                                     |                           |            |             | $\vdash$    | +           |
| Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Tota          | <u> </u>                   | 1615 750 4500 150 15,65 7,50 12,1 1040 6,54 -106,6 22.6 |                                               |              |               |                |               |                              |               |             |                                         |                           |            |             |             |             |
| WELL CAPACITY (Gallions Per Fool): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.00; 2" = 0.16; 3" = 0.37; 4" = 0.85; 5" = 1.02; 6" = 1.47; 12" = 5.88  TUBING INSIDE DIA, CAPACITY (Gallion): 115" = 0.0006; 31" = 0.0014; 14" = 0.0026; 51" = 0.0006; 30" = 0.0006; 12" = 0.016; 55" = 0.016  TUBING INSIDE DIA, CAPACITY (Gallion): 115" = 0.0006; 31" = 0.0014; 14" = 0.0026; 51" = 0.0006; 30" = 0.0006; 12" = 0.016; 55" = 0.016  TUBING INSIDE DIA, CAPACITY (Gallion): 15" = 0.0006; 31" = 0.0014; 14" = 0.0026; 51" = 0.0006; 30" = 0.0006; 12" = 0.016; 55" = 0.0106  TUBING INSIDE DIA, CAPACITY (Gallion): 15" = 0.0006; 31" = 0.0014; 14" = 0.0026; 51" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30" = 0.0006; 30        |                            | 1013 100 -100 100 100 100 100 100 100 100 10            |                                               |              |               |                |               |                              |               |             |                                         |                           |            |             |             |             |
| WELL CAPACITY (Galions Per Fool): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88  TUBING INSIDE DIA. CAPACITY (Galifrit): 1.18" = 0.00006; 31"6" = 0.0014; 1.45" = 0.0026; 51"6" = 0.004; 38" = 0.005; 31"6" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.0        | 1620                       | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                 |                                               |              |               |                |               |                              |               |             |                                         |                           |            |             |             |             |
| WELL CAPACITY (Galions Per Fool): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88  TUBING INSIDE DIA. CAPACITY (Galifrit): 1.18" = 0.00006; 31"6" = 0.0014; 1.45" = 0.0026; 51"6" = 0.004; 38" = 0.005; 31"6" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.0        |                            |                                                         |                                               |              |               |                |               |                              |               |             |                                         |                           |            |             |             |             |
| WELL CAPACITY (Galions Per Fool): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88  TUBING INSIDE DIA. CAPACITY (Galifrit): 1.18" = 0.00006; 31"6" = 0.0014; 1.45" = 0.0026; 51"6" = 0.004; 38" = 0.005; 31"6" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.0        |                            |                                                         |                                               |              |               |                |               |                              |               |             |                                         |                           |            |             |             |             |
| WELL CAPACITY (Galions Per Fool): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88  TUBING INSIDE DIA. CAPACITY (Galifrit): 1.18" = 0.00006; 31"6" = 0.0014; 1.45" = 0.0026; 51"6" = 0.004; 38" = 0.005; 31"6" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.010; 518" = 0.0        | <u> </u>                   |                                                         |                                               |              |               |                |               |                              |               |             |                                         |                           |            |             |             |             |
| WELL CAPACITY (Galions Per Fool): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88  TUBING INSIDE DIA. CAPACITY (Galifrit): 1.18" = 0.00006; 31"6" = 0.0014; 1.45" = 0.0026; 51"6" = 0.004; 38" = 0.006; 31"6" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.0        |                            |                                                         |                                               |              |               |                |               |                              |               |             |                                         |                           | 1          |             |             |             |
| WELL CAPACITY (Galions Per Fool): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88  TUBING INSIDE DIA. CAPACITY (Galifrit): 1.18" = 0.00006; 31"6" = 0.0014; 1.45" = 0.0026; 51"6" = 0.004; 38" = 0.006; 31"6" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.0        |                            |                                                         |                                               | _            |               |                |               |                              |               |             | 1                                       |                           |            |             |             |             |
| WELL CAPACITY (Galions Per Fool): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88  TUBING INSIDE DIA. CAPACITY (Galifrit): 1.18" = 0.00006; 31"6" = 0.0014; 1.45" = 0.0026; 51"6" = 0.004; 38" = 0.006; 31"6" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.010; 516" = 0.0        |                            |                                                         | A                                             | -            |               |                |               |                              |               |             |                                         |                           |            |             |             |             |
| TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016  PURGING EQUIPMENT CODES: B = \$\text{Bailer}\$; BP = \$\text{Bladder Pump}\$; ESP = \$\text{Electric Submership Pump}\$; O = Other (\$\text{Specify}\$)  SAMPLING DATA  SAMPLED BY (FRINT) / AFFILIATION: A-UL TUBING  PUMP OR TUBING  DEPTH IN WELL (ret): FIELD DECONTAMENATION: PUMP Y (N TUBING Y Userphase)  SAMPLE CONTAMERS MATERIAL COOK PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE |                            |                                                         |                                               | 24 t         | 8             |                |               |                              |               |             |                                         |                           |            |             |             |             |
| TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016  PURGING EQUIPMENT CODES: B = \$\text{Bailer}\$; BP = \$\text{Bladder Pump}\$; ESP = \$\text{Electric Submership Pump}\$; O = Other (\$\text{Specify}\$)  SAMPLING DATA  SAMPLED BY (FRINT) / AFFILIATION: A-UL TUBING  PUMP OR TUBING  DEPTH IN WELL (ret): FIELD DECONTAMENATION: PUMP Y (N TUBING Y Userphase)  SAMPLE CONTAMERS MATERIAL COOK PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE INTERCORD PE |                            |                                                         | <del>- 5</del>                                |              |               |                |               |                              |               |             |                                         |                           |            |             |             |             |
| TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.0004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016  PURGING EQUIPMENT CODES: B = \$Bailer; BP = Bladder Pump; ESP = Bladder Pump; BP = Polypropylene; SAMPLING DATA  SAMPLED BY (FRINT) / AFFILIATION: APUL Turble SAMPLER(8): SIGNATURE(6): BLAD SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPL       |                            |                                                         |                                               |              |               |                |               |                              |               |             |                                         |                           |            |             |             |             |
| TOBING INSIDE DIA CAPACHY (Salify): The "Output of the property" is a personal property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the        | WELL CAPACITY (G           | ailons Per Foo                                          | t): 0.75° = 0.02                              | 2: 1 = 0.    | .04; 1        | .25" = 0.06;   | 2" = 0.16;    | 3° = 0.37;                   | 4" = 0.65     | 5" =        | 1,02; 6" =                              |                           |            |             |             |             |
| SAMPLING DATA  SAMPLEND BY (PRINT) AFFILIATION: AFILATION: AFILATION: PUMP Y (N. TUBING Y UNIQUED)  SAMPLE CONTAINER SPECIFICATION SAMPLE PLANCE ADDED IN FIELD CITY, SAMPLE CODE  FIELD DECONTAINER SPECIFICATION  SAMPLE CODE FE FERNANCE SECURITATION: PUMP Y (N. TUBING Y UNIQUED)  SAMPLE DECONTAINER SPECIFICATION  SAMPLE DECONTAINER SPECIFICATION  SAMPLE PLANCE SECURITATION  SAMPLE DECONTAINER SPECIFICATION  SAMPLE PLANCE SECURITATION  SAMPLE DECONTAINERS MATERIAL CODE  FRAIL PROBLEM SECURITATION  SAMPLE PLANCE SECURITATION  NITENDED ANALYSIS ANDION SAMPLING EQUIPMENT FLOW RATE (not. per mixed)  FRAIL PLANCE SECURITATION  SAMPLE PLANCE SECURITATION  SAMPLE PLANCE SECURITATION  NITENDED ANALYSIS ANDION SAMPLING EQUIPMENT FLOW RATE (not. per mixed)  FRAIL PLANCE SECURITATION SAMPLE PLANCE SECURITATION  EPA 537M  APP 150  SAMPLING EQUIPMENT CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Bailer, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = Bladler, BP = BB        |                            |                                                         | 3al./FL): 1/8* =                              | 0,0006;      | 3/16" =       | 0.0014;        | /4" = 0.0026; | 5/16" ≈ 0.0<br>Submersible P |               |             |                                         |                           |            |             |             |             |
| SAMPLED BY (PRINT) / AFFILIATION: APUK Tumbby SAMPLER(S) SIGNATURE(S): Bold At: 1622  PUMP OR TUBING DEPTH IN WELL (1648): FIELD DECONTAMENATION: PUMP Y (I) TUBING Y (Newpood)  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  INTENDED ANALYSIS AND/OR SAMPLING EQUIPMENT FLOW RATE end. Per minute)  ELSW HOT- OO3 - GW - OR 2 PE 125  PE 125  WATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polywopylene; PP = Polyyropylene; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Presistalite Pump; SM = States, BP = Elladder Pump; SM = State Method (Ubbing Gravity Drain); O = Other (Specify)  REPAY STATES AND APP = After Presistalite Pump; SM = State Method (Ubbing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PURGING EQUIPME            | EN1 CODES:                                              | B = Baller;                                   | BP = BI      | addel Pi      | ыпр, с         |               |                              |               |             |                                         |                           |            |             |             |             |
| PUMP OR TUBING DEPTH IN WELL (first):  FIELD DECONTAMINATION: PUMP Y N TUBING Y Norphased  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  USED  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)        | SAMPLED BY (PRINT) / A     | AFFILIATION:                                            | Zell T.                                       | Stell        | SAMP          | LER(S) SIGNAT  | URE(S):       | Bel                          | 7             | Tana        | 641                                     | SAMPLING<br>INITIATED AT: | 521        |             | 16          | 22          |
| DEPTH IN WELL (Neet):  FIELD DECONTAMENATION: PUMP Y N TUBING Y NOPPLESS DUPLICATE: Y STANDLE POLYPICATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  INTENDED ANALYSIS AND/OR SAMPLING EQUIPMENT FLOW RATE (INC. Per minute)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PP (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH (Stanard Units)  FINAL PH        |                            |                                                         | 1 ,                                           | mo Ch        |               | iG             |               | <u> </u>                     |               |             |                                         | Y                         | (i)        | Filter Siza |             | mm          |
| SAMPLE DECONTAINER SPECIFICATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  TOTAL VOL  ADDED IN FIELD (mL)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed Units)  FINAL pH (Stanzed U        | 1                          |                                                         | <u>~ {                                   </u> |              |               |                |               | _                            |               |             |                                         |                           | <u> </u>   | *           |             |             |
| REMARKS:  MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODEs: APP = After Peristaliic Pump; Sh = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; Sh = Straw Method (Tubing Gravity Orain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                                         |                                               | N: PUM       | P Y           | (N)            |               |                              |               |             |                                         | DOPLICATE:                | · <u>C</u> |             | į.          | SAMPLE PUMP |
| SAMPLING EQUIPMENT CODES:  APP = After Peristalic Pump;  SAMPLING EQUIPMENT CODES:  APP = Reverse Flow Peristalic Pump;  REPA STAW APP   After Peristalic Pump;  REPA STAW APP   After Peristalic Pump;  REPA STAW APP = Reverse Flow Peristalic Pump;  SAMPLING EQUIPMENT CODES:  APP = Reverse Flow Peristalic Pump;  SAMPLING EQUIPMENT CODES:  APP = Reverse Flow Peristalic Pump;  SAME Straw Method (Tubing Gravity Drain);  O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAME                       | LE CONTRINER S                                          |                                               |              |               | PRESERVATIVE   |               |                              |               |             |                                         |                           |            | SAMPLING EC | UIPMENT     |             |
| PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)  MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RPPP = Reverse Flow Peristallic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE ID CODE             | # CONTAINERS                                            | MATERIAL CODE                                 | VOLUME (m    | L)            |                | I '           |                              |               | - JNAL pH ( | (otanard Units)                         |                           |            |             |             |             |
| PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)  MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RPPP = Reverse Flow Peristallic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ELSWHO7-                   | 0                                                       | 00                                            | 10.5         | $\overline{}$ |                |               |                              |               |             |                                         | EPA 537                   | м          | Ap          | م           | 150         |
| REMARKS:  MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;  RFPP = Reverse Flow Peristallic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 003-6W-0                   | 以上                                                      | TL                                            | 175          | $\bot$        |                | $\overline{}$ |                              |               |             | ··-                                     |                           |            | N/ A        | 4           | · -         |
| MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump;  RFPP = Reverse Flow Peristallic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                         |                                               |              |               |                |               | SAW                          |               |             |                                         |                           |            |             |             |             |
| MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump;  RFPP = Reverse Flow Peristallic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 78/                                                     |                                               |              | <del></del>   |                |               |                              | $\forall$     |             |                                         |                           |            | 780         |             |             |
| MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump;  RPP = Reverse Flow Peristallic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                                         |                                               |              | 1             |                |               |                              |               |             |                                         |                           |            |             |             |             |
| MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;  RFPP = Reverse Flow Peristallic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                         |                                               | 7            | 1             |                |               |                              |               |             |                                         |                           |            |             |             | <u> </u>    |
| MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;  RFPP = Reverse Flow Peristallic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 11                                                      | 0 -                                           | ار ا         |               |                | ,             |                              |               |             |                                         |                           |            |             |             |             |
| SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump;  RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | REMARKS:                   | wew                                                     | pro c                                         | omp          | м,            |                |               |                              |               |             |                                         |                           |            |             |             |             |
| SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump;  RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                                         |                                               |              | _             |                |               |                              |               |             |                                         |                           |            |             |             |             |
| RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                                         |                                               |              |               |                |               |                              |               | = Silico    | ine; T = Tef                            | ion; O = Other<br>e Pump: | (Specify)  |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAMPLING EQUIP             | VIENT CODES:                                            |                                               |              | Peristal      | ltic Pump;     | SM = Straw    | Method (Tubli                | ng Gravity    | Drain);     | O = Other                               |                           |            |             |             |             |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

W 55/524



| instatation: Ellsworth                                                                                                    | AFB M202                                                   | 7.0003                             |                                      |                             | Site:               | 8 (1                          | Mart               | en in                        | ush 2                            | 206)                |                      |                                                 |              |                           |  |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------|--------------------------------------|-----------------------------|---------------------|-------------------------------|--------------------|------------------------------|----------------------------------|---------------------|----------------------|-------------------------------------------------|--------------|---------------------------|--|
| WELL NO: MW                                                                                                               | ISPFC                                                      | 0801                               |                                      | S                           | AMPLEID: B          | LSWHO                         | 8 ~ C              | 001-G                        | دس سرمار                         | 44                  | DATE:                | 11/18                                           |              |                           |  |
|                                                                                                                           | - /                                                        |                                    |                                      |                             |                     | RGING DA                      |                    |                              |                                  |                     |                      |                                                 |              |                           |  |
| WELL<br>DIAMETER (inches);<br>WELL VOLUME PUR                                                                             | 2                                                          | TUB)<br>DIAM                       | NG V2                                | NOD WE                      | LL SCREEN INTI      | ERVAL DEPTH:                  |                    | STATIC DEPTI<br>TO WATER (fo | H<br>eet BTOC):                  | 16.03               |                      | RGE PUMP TYPE<br>BAILER:                        | PP           |                           |  |
| WELL VOLUME PUR                                                                                                           | RGE: 1 WELL                                                | VOLUME = (TO                       | TAL WELL DEF                         | TH BTOC -                   | STATIC DE           | TH TO WATE                    | R) X               | WELL CA                      | PACITY                           | V                   |                      |                                                 |              |                           |  |
| (only fill out if app                                                                                                     | olicable)                                                  | = (                                | 51.53                                | Ft - 16,                    | ,03 F1) ×           | 0.163                         | fNag               | - 5.                         | 78                               | gal                 |                      |                                                 |              |                           |  |
| EQUIPMENT VOLUM                                                                                                           | ME PURGE: 1                                                | EQUIPMENT VO                       | L. = PUMP VO                         | .UME + (TUBI                | NG CAPACIT          | TY X 7                        | UBING              | LENGTH) +                    | FLOW CEL                         | LVOLUME             | ****                 |                                                 |              | AT                        |  |
|                                                                                                                           | olicab/e)                                                  |                                    |                                      | 04  _= -(                   | <del></del>         |                               |                    |                              | -                                |                     |                      | <del>-1000</del> 1 <del>1 pro-100 pro-100</del> |              | 511/18                    |  |
| INITIAL PUMP OR TUBING                                                                                                    | 41                                                         | 4                                  | FINAL PUMP OR<br>DEPTH IN WELL       |                             | Ч                   | PURG                          | ING<br>ITED AT:    | lor                          | 0                                | PURGING<br>ENDED AT | 1140                 | TOTAL VOLUME<br>PURGED (page)                   | m1_          | 22,500                    |  |
| DEF IN WYELL (1884).                                                                                                      | VOLUME                                                     | CUMUL                              | PURGE                                | DEPTH                       | pH<br>{standard     | TEMP.                         | _                  | DND,                         | DISSOLVE                         | D ORP               |                      | URBIDITY                                        | COLOR        | POGO                      |  |
| тіме .                                                                                                                    | PURGED<br>(gallens)                                        | VOLUME<br>PURGED                   | RATE<br>(STATE)                      | TD<br>WATER<br>A Heet BTOCI | (standard<br>units) | (°c)                          | ١                  | µS/em                        | OXYGEA<br>mg/l.                  | i (mV)              |                      | (NTUs)                                          | (describe)   | (describe)                |  |
| 1015                                                                                                                      | 1250                                                       | 1,250                              | 250                                  | 17.24                       | 6,68                | 10.6                          | <u>15</u>          | 110                          | 1.66                             |                     | 9                    | 6.6                                             | elecc        | none                      |  |
| 1020                                                                                                                      | 1250                                                       | 2,500                              | 250                                  | 17.72                       | 6.76                | 10.7                          | 241                |                              | O.8                              |                     | , į                  | <u>75                                    </u>   | cleur        |                           |  |
| 1030                                                                                                                      | 2500                                                       | 5,000                              |                                      | 18.40                       | 6.87                | 10.9                          | 248                |                              | 0.79                             |                     | 7 2                  |                                                 | Cloud        |                           |  |
| 1040                                                                                                                      | 2500                                                       | 7,500                              |                                      | 19.05                       | 694                 | 10.9                          | 248                |                              | 0,4                              | 7 -83               |                      | 81                                              | H            |                           |  |
| 1050 2500 10000 250 19.34 6.98 10.9 25361 0.34 -1983 349 1100 2500 12.500 250 19.42 7.02 10.8 25761 0.31 -1223 353        |                                                            |                                    |                                      |                             |                     |                               |                    |                              |                                  |                     |                      |                                                 |              |                           |  |
| 1110 2500 15000 250 19.49 7.05 10.9 26202 0.28 -13.8 302                                                                  |                                                            |                                    |                                      |                             |                     |                               |                    |                              |                                  |                     |                      |                                                 |              |                           |  |
| 1110 2500 15 000 250 19.49 7.05 10.9 26202 0.28 -131.8 307<br>1120 2500 17 500 250 19.54 7.08 11.0 26509 0.26 -134,1 262  |                                                            |                                    |                                      |                             |                     |                               |                    |                              |                                  |                     |                      |                                                 |              |                           |  |
| 1120 2500 17,500 250 19.54 7.08 11.0 26509 0.26 -134,1 262<br>1130 2500 20,006 250 19.54 7.12 11.0 27157 0.25 -133,1 3.22 |                                                            |                                    |                                      |                             |                     |                               |                    |                              |                                  |                     |                      |                                                 |              |                           |  |
| 1140                                                                                                                      | 1130 2500 20,000 250 19.59 7.12 11.0 27157 0.25 -133.1 322 |                                    |                                      |                             |                     |                               |                    |                              |                                  |                     |                      |                                                 |              |                           |  |
|                                                                                                                           |                                                            |                                    |                                      |                             |                     |                               |                    |                              |                                  |                     |                      |                                                 |              |                           |  |
|                                                                                                                           |                                                            |                                    |                                      | <u> </u>                    |                     |                               | <u> </u>           |                              |                                  |                     |                      |                                                 |              |                           |  |
|                                                                                                                           |                                                            |                                    |                                      | <u> </u>                    |                     |                               |                    |                              |                                  |                     | _                    |                                                 |              |                           |  |
|                                                                                                                           |                                                            |                                    |                                      |                             |                     |                               | -                  |                              |                                  |                     |                      |                                                 |              |                           |  |
| 4                                                                                                                         | H                                                          |                                    | _                                    |                             | i                   | <b>_</b>                      |                    |                              |                                  |                     |                      |                                                 | <del></del>  |                           |  |
|                                                                                                                           | -51./L                                                     | ×                                  | -                                    | <u> </u>                    |                     |                               | <u> </u>           |                              |                                  |                     |                      |                                                 |              |                           |  |
| WELL CAPACITY (G                                                                                                          | allons Per Foo                                             | 1): 0.75" = 0.02;                  | 1" = 0.04;                           | 1,25" = 0.06;               | 2" = 0.16;          | 3* = 0,37;                    | 4" = 0.6           | 35; 5°=                      | 1.02; 6" =                       | 1.47; 12" =         | 5.88                 |                                                 |              |                           |  |
| TUBING INSIDE DIA<br>PURGING EQUIPME                                                                                      |                                                            | Gal./F1.): 1/8" = 0<br>B = Baller; | .0006; 3/16"<br>BP = Bladder         | = 0.0014; 1                 |                     | 5/16" = 0.6<br>Submersible P  |                    | 3/8" = 0,006<br>PP = Peri    | istaltic Pump                    |                     | 0.016<br>r (Specify) |                                                 |              |                           |  |
|                                                                                                                           |                                                            |                                    |                                      |                             |                     | MPLING DA                     |                    |                              |                                  | SAMPLING (          |                      | SAMPLING                                        |              |                           |  |
| SAMPLED BY (PRINT) / A                                                                                                    | FFILIATION: A                                              | rek Tu                             | robW SAN                             | PLER(S) SIGNAT              | URE(S):             | rele "                        | Ju                 | ulista                       | <i>! .!</i>                      | INITIATED AT:       | 141                  | ENDED AT:                                       | 114          | 2                         |  |
| PUMP OR TUBING                                                                                                            | 41                                                         | Ы                                  | TUB                                  | NG<br>ERIAL CODE; PÉ        |                     |                               |                    | - 1                          | D-FILTEREO:<br>Filtration Equipm | Y<br>met Tune       | $\odot$              | Filler Size                                     |              | mm                        |  |
| DEPTH IN WELL (feet):                                                                                                     |                                                            | DECONTAMINATION:                   |                                      |                             | TUBING              | Y N (replac                   | <u>ज</u>           |                              |                                  | DUPLICATE:          | Y (                  | )                                               |              |                           |  |
| SAMP                                                                                                                      | LE CONTAINER S                                             | PECIFICATION                       |                                      |                             | ·····               | MPLE PRESERVA                 | MOIT               |                              |                                  | INTENDED ANAL       | reis andior          | SAMPLING FOL                                    |              | MPLE PUMP<br>OW RATE (ml. |  |
| SAMPLE ID CODE                                                                                                            | # CONTAINERS                                               | WATERIAL CODE V                    | OLUME (mL)                           | PRESERVATIVE<br>USED        |                     | TOTAL VOL                     | ıL)                | FINAL pH (S                  | Stanard Units)                   | METRO               | ac                   | CODE                                            |              | per minute)               |  |
| 021-02-0411<br>Etanko8-                                                                                                   | 3                                                          | ₽ <i>Ĝ</i>                         | 125                                  | <u> </u>                    |                     |                               |                    |                              |                                  | EPA 53              | 7M                   | App                                             |              | 250                       |  |
|                                                                                                                           | /                                                          |                                    |                                      |                             | $\sim$              | Sew                           |                    |                              |                                  |                     | \                    | <b>.</b>                                        |              |                           |  |
|                                                                                                                           |                                                            | 1                                  |                                      |                             |                     |                               | egthinspace = 1000 |                              |                                  |                     |                      | TO                                              |              |                           |  |
|                                                                                                                           |                                                            |                                    |                                      |                             |                     |                               |                    |                              |                                  |                     |                      |                                                 |              |                           |  |
|                                                                                                                           |                                                            |                                    | `                                    |                             |                     |                               |                    |                              |                                  |                     |                      | L                                               |              |                           |  |
| REMARKS: Volu                                                                                                             | h pad<br>me di                                             | not com                            | plate.<br>Wot de                     | still week.                 | p of who            | ell ~ c                       | 435<br>نوااف       | `લગુડ<br>#પ્ત 3              | s , Col<br>somp                  | le bott             | es d                 | ve to h                                         | r ).<br>mbid | ity.                      |  |
| MATERIAL CODES:                                                                                                           |                                                            |                                    | = Clear Glass;                       | PE = Poly                   |                     | PP = Polyprop                 |                    |                              |                                  |                     | r (Specify)          |                                                 |              |                           |  |
| SAMPLING EQUIPM                                                                                                           | ENT CODES:                                                 |                                    | Peristallic Pump<br>rse Flow Perista | illic Pump;                 | SM = Straw I        | Bladder Pump<br>Method (Tubin | g Gravity          | / Drain);                    | Submersible<br>O = Other (       |                     |                      |                                                 |              |                           |  |
| l                                                                                                                         |                                                            |                                    |                                      | Stabilization Cr            |                     |                               |                    |                              | readings                         |                     |                      |                                                 |              |                           |  |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

C-151 05/07



| Installation: Ellswort                                       | h AFB M20        | 27,0003           |                      |                     |                      | Site                        | · 🛍                                  | Marlo                                   | n Crac                                       | ih                    |              |                           |                           |                     |                           |
|--------------------------------------------------------------|------------------|-------------------|----------------------|---------------------|----------------------|-----------------------------|--------------------------------------|-----------------------------------------|----------------------------------------------|-----------------------|--------------|---------------------------|---------------------------|---------------------|---------------------------|
| WELL NO: MIN                                                 | MAPF             | coa               | 02                   |                     | s                    | AMPLEID:                    | LSWI                                 | 108-                                    | · 002                                        | ()N                   | J 0129       | ı= <b>4</b> [7            | 6/10                      |                     |                           |
|                                                              | ,                |                   |                      |                     |                      | Pl                          | JRGING DA                            | TA                                      |                                              | ادطآ                  | 13           |                           | VIQ                       |                     |                           |
| WELL<br>DIAMETER (inches):                                   | 2"               |                   | UBING<br>NAMETER (In | chash )             |                      |                             | TERVAL DEPTH:<br>39,38 Ft            |                                         | DEPTH<br>TER (feet 8TOC):                    | 49                    | سميل         | PURGE<br>OR BAIL          | PUMP TYPE                 | D                   |                           |
| WELL VOLUME PU                                               | RGE: 1 WELL      |                   |                      |                     |                      |                             |                                      |                                         |                                              | - Lot                 | (V           | AN)                       |                           | Ī                   |                           |
| (only fill out if ap                                         | oplicable)       | =                 | 49                   | .63                 | Ft - 16              | of \$ Ft) ×                 | 0.16                                 | gsl⁄ft = ∣                              | 5.36                                         | gal                   |              |                           |                           |                     |                           |
| EOLIIDMENT VOLU                                              | MEDITORE, 4      |                   |                      |                     |                      |                             |                                      |                                         |                                              | NELL MO               |              |                           |                           |                     |                           |
| EQUIPMENT VOLUI<br>(only fill out it as                      |                  | EQUIPMENT         | VUL. = PU            | )MP VOLU            |                      |                             | ๊ <del>\</del> 5^ เง                 | _                                       | TH) + FLOW C<br>والع                         | 3.317                 |              |                           |                           |                     |                           |
| INITIAL PUMP OR TUBIN                                        | (a. 1)           | -                 | CINIAL C             | UMP OR TU           |                      |                             | PURG                                 |                                         |                                              | ,,                    | PURGING .    | # l=0=                    | AL MOLUBIE                |                     |                           |
| DEPTH IN WELL (feet):                                        | ° 45             |                   | DEPTH                | IN WELL (fe         | et):                 | 5                           | INITIA                               | TED AT:                                 | 245                                          |                       | ENDED AT:    | אטן                       | AL VOLUME<br>GED (gallons | s): <b>5</b> •      | 40                        |
| TIME                                                         | VOLUME<br>PURGED | CUMU              |                      | PURGE<br>RATE       | DEPTH<br>TO          | pH<br>(standard             | TEMP.                                | COND,<br>µS/cm                          |                                              | GEN<br>GEN            | ORP<br>(mV)  | TURBII<br>(NTV)           | DITY                      | COLOR<br>(describe) | ODOR<br>(describe)        |
|                                                              | (gallons)        | PURGE<br>(gallon) | (D<br>(S)            | (gpm)               | WATER<br>(feet BTOC) | units)                      |                                      | ,                                       |                                              | g/L                   |              |                           |                           |                     | ,,                        |
| 1245                                                         | -                | _                 |                      | 09                  | 16:13                |                             |                                      |                                         | _                                            |                       |              |                           |                           | Ν                   | N                         |
| 1255                                                         | <u>090</u>       | 0.90              |                      | ·6g                 | 19.09                | 6.63                        | 12.7                                 | 2503                                    | 7 1.3                                        | 39_                   | -36.2        | - Hio                     | 0                         | N                   | N                         |
| <u> 130'2                                    </u>            | 1000             | 1 1.8             | المر                 | Pa                  | 20.73                | 13,2                        | 1606                                 | 2495                                    | Del                                          | 21_                   | -10°C        | _31                       | _ط                        | Ņ                   | N                         |
| 1315                                                         | 0.90             | 2.7               | <u> </u>             | <u> 609</u>         | 219                  | Popp                        | 166                                  | 250                                     | 1 000                                        | 5J_                   | -18.7        | 140                       | 7                         | Ŋ                   | Ň.                        |
| 1325 0.90 3.60 .09 22.83 6.86 12.5 25270 0.36 -55.6 15.6 N N |                  |                   |                      |                     |                      |                             |                                      |                                         |                                              |                       |              |                           |                           |                     |                           |
| 1335 0.90 4.50 .09 23.386.86 17.7 25450 0.34 -62.5 11.3 N N  |                  |                   |                      |                     |                      |                             |                                      |                                         |                                              |                       |              |                           |                           |                     |                           |
|                                                              |                  |                   |                      |                     |                      |                             |                                      |                                         |                                              |                       |              |                           |                           |                     |                           |
|                                                              |                  |                   |                      |                     |                      |                             |                                      |                                         |                                              |                       |              |                           |                           |                     |                           |
| 1345 0.36 5.40 .09 23.496.86 12.7 25421 0.39 -65.4 7.45 N N  |                  |                   |                      |                     |                      |                             |                                      |                                         |                                              |                       |              |                           |                           |                     |                           |
| 1015 00 50 50 10 10 10 10 10 10 10 10 10 10 10 10 10         |                  |                   |                      |                     |                      |                             |                                      |                                         |                                              |                       |              |                           |                           |                     |                           |
|                                                              |                  |                   |                      |                     |                      |                             |                                      | *************************************** |                                              |                       |              |                           |                           |                     |                           |
| ,                                                            |                  |                   | $\neg$               |                     |                      | 7                           |                                      |                                         |                                              |                       |              |                           |                           |                     |                           |
|                                                              |                  |                   |                      |                     |                      |                             |                                      |                                         |                                              |                       |              |                           |                           |                     |                           |
|                                                              |                  |                   |                      |                     |                      |                             |                                      |                                         |                                              |                       |              |                           |                           |                     |                           |
|                                                              |                  |                   |                      |                     |                      |                             |                                      |                                         |                                              |                       | -            |                           |                           |                     |                           |
|                                                              | <u> </u>         |                   | $\perp$              |                     |                      |                             | <u> </u>                             |                                         |                                              |                       |              |                           |                           |                     |                           |
| WELL CAPACITY (G<br>FUBING INSIDE DIA                        |                  | -                 |                      | 0.04; 1.<br>3/16" ≕ |                      | 2" = 0.16;<br>/4" = 0.0026; | 3" = 0.37;<br>5/16" = 0.0            |                                         |                                              | ' = 1.47;<br>= 0.010; |              |                           |                           |                     |                           |
| URGING EQUIPME                                               |                  | B = Baller;       |                      | Bladder Pu          |                      | P = Electric 9              | Submersible Pt                       | ımp; PP=                                | Peristaltic Pu                               |                       | O = Other (S |                           |                           |                     |                           |
| SAMPLED BY (PRINT) / A                                       | EERIATION: M     | 11/1/1            | <u>, (), </u>        | CALID               | EB/e) eleva-         |                             | MPLING DA                            | int-                                    |                                              | SAMPI                 | ING 11L      | ا کر ا                    | MPLING                    | 2 U                 | <i>i</i>                  |
|                                                              | - FACATION:      | les IV            | 2515 on              |                     | ER(S) SIGNATI        | UNE(O):                     | 111/189_                             | Males (                                 | <u>)                                    </u> | INITIAT               |              |                           | DED AT:                   | 2                   | <u> </u>                  |
| PUMP OR TUBING<br>DEPTH IN WELL (feet):                      | 45               |                   |                      | MATER               | MLCQDE: PE           |                             | -                                    |                                         | FIELD-FILTERED<br>Filtration Equ             |                       | _            |                           | Her Size                  |                     | mm                        |
|                                                              |                  | DECONTAMINATIO    | ON: PU               |                     |                      | TUBING                      | Y N (replace                         |                                         |                                              | DUPLI                 |              | (N                        | )                         |                     |                           |
| SAMP                                                         | LE CONTAINER S   | PECIFICATION      |                      |                     | 000001/445           |                             | PLE PRESERVAT                        | 10N                                     |                                              | INTEN                 | DED ANALYSIS | AND/OR SAM                | PLING EQUI                | 1                   | APLE PUMP<br>OW RATE (mi. |
| SAMPLE (0 CODE                                               | # CONTAINERS     | MATERIAL CODE     | AOTOWE (U            | nL)                 | RESERVATIVE<br>USED  |                             | TOTAL VOL                            |                                         | pH (Stanard Units)                           |                       | METHOD       |                           | CODE                      |                     | per minute)               |
| . ها                                                         | 2                | 5                 | 125                  |                     |                      | ,,,,                        | OLD IN TILLE (III                    | ,                                       |                                              | +                     |              |                           |                           | ٠,                  | 50                        |
| 1408 -001                                                    | <u>- L</u>       | PE                | éach                 |                     |                      |                             |                                      |                                         |                                              |                       | EPA 537M     |                           | PP                        |                     | 550                       |
| W-045                                                        |                  |                   |                      |                     |                      |                             |                                      |                                         |                                              |                       | _            |                           |                           |                     |                           |
|                                                              |                  |                   |                      |                     |                      |                             | - Serv                               |                                         |                                              |                       |              | $\geq \downarrow_{\star}$ |                           | $\downarrow$        |                           |
|                                                              |                  | 2                 |                      |                     |                      |                             |                                      | $\rightarrow$                           |                                              |                       |              |                           |                           | 식                   |                           |
|                                                              |                  |                   |                      | -3                  |                      |                             |                                      |                                         | <u> </u>                                     | -                     |              |                           |                           |                     |                           |
|                                                              | L                |                   |                      |                     |                      |                             |                                      | <u> </u>                                |                                              | <u> </u>              | ····         | l                         |                           |                     |                           |
| STANDUM.                                                     | well             | comple            | red                  |                     |                      |                             |                                      |                                         |                                              |                       |              |                           |                           |                     |                           |
| REMARKS:                                                     |                  | •                 |                      |                     |                      |                             |                                      |                                         |                                              |                       |              |                           |                           |                     |                           |
| MATERIAL CODES:                                              | AG = Am          | ber Glass; C      | CG = Clear           | Glass:              | PE = Polye           | thylene:                    | PP ≈ Polypropy                       | lene; S = Sil                           | lcone: T≂Ti                                  | eflon:                | O = Other (S | pecify)                   |                           |                     |                           |
| SAMPLING EQUIPM                                              |                  | APP = Afte        | r Peristallic        | e Pump;             | B = Balle            | er; BP=                     | Bladder Pump;                        | ESP = Ele                               | ctric Submers                                | ble Pum               | p;           | ,,,                       |                           |                     |                           |
|                                                              |                  | RFPP ≃ Re         | verse Flow           |                     |                      |                             | Method (Tubing<br>of variation of la |                                         |                                              | r (Specif             | у)           |                           | ·                         |                     |                           |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

OD 05/10



|                                                                                                                                                                                             | LACD MOO                                     | 37.0002         | · · · · · · · · · · · · · · · · · · · | <del> t</del> |                                               | Site            | (2) M                                | 1 1          |                     | 1 1                             |              |                   |         |               |                                                   |                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------|---------------------------------------|---------------|-----------------------------------------------|-----------------|--------------------------------------|--------------|---------------------|---------------------------------|--------------|-------------------|---------|---------------|---------------------------------------------------|---------------------------------------------|
| Installation: Elisworti                                                                                                                                                                     | I AFB MZU                                    | - 61            | _                                     |               |                                               |                 | <u> </u>                             | пV           | ev c                | man                             |              |                   |         | 3 (A ) I      |                                                   |                                             |
| WELL NO: V                                                                                                                                                                                  | <u> 18 PF</u>                                | <u>_ 08c</u>    | <u> </u>                              |               | S.A                                           | AMPLE ID:       | <u>Els w</u>                         | HO           | <u>8 - a</u>        | <u> </u>                        | W-           | C'E DA            | TE: L   | 116           | <u> Zol E</u>                                     | <u> </u>                                    |
|                                                                                                                                                                                             |                                              |                 |                                       | آاه           | IID                                           | PU              | IRGING DA                            | TA           |                     |                                 |              |                   |         |               |                                                   |                                             |
| WELL<br>DIAMETER (inches):                                                                                                                                                                  | 211                                          |                 | USING<br>IAMETER (Inche               | 1 1           | 1 00 S                                        | LL SCREEN INT   |                                      |              | STATIC DEPT         | 1                               | 4. 1         | Н                 |         | RGE PUMP TY   |                                                   |                                             |
| WELL VOLUME PUS                                                                                                                                                                             | RGE: 1 WELL                                  |                 |                                       |               | <u>                                      </u> |                 | 化。以下<br>PTH TO WATE                  |              | TO WATER (F         |                                 | UO I         | 1                 | I OF    | BALLER:       | <u> </u>                                          |                                             |
| (only fill out if ap                                                                                                                                                                        |                                              |                 |                                       |               |                                               |                 |                                      | galifit      | 20                  | au C                            | M Ar         | 2 4               | Δ       |               |                                                   |                                             |
| AN.                                                                                                                                                                                         | M                                            | 40              | 50.7                                  | 8             | 16.                                           | )4 Ft) X        | 0410                                 | gan          | 340                 |                                 | gai          | 5,4               | 8       |               |                                                   |                                             |
| EQUIPMENT VOLUM                                                                                                                                                                             | ME PURGE: 1                                  | EQUIPMENT       | VOL. ≈ PUMF                           | VOLU          | ME+(TUBI                                      | NG CAPACIT      | Y X T                                | UBING        | LENGTH) +           | FLOW CEL                        | L VOŁ        | UME               |         |               |                                                   |                                             |
| (only E3 out if ap                                                                                                                                                                          | p(icab(e)                                    |                 | = (                                   | <u>ጎ</u> ለ    | ga± = (                                       | 002b ×          | 45 FO                                | + 4          | ) gad               | - A                             | , 3l         | oa!               |         |               |                                                   |                                             |
| INITIAL PUMP OR TUBIN                                                                                                                                                                       |                                              |                 | FINAL PUM                             | 2027          | 1                                             | 7-              | PURG                                 | 110          |                     |                                 |              | PURGING .         |         | TOTAL VOLUM   | 45                                                | -                                           |
| DEPTH IN WELL (feet):                                                                                                                                                                       | <u>"                                    </u> | <u> </u>        | DEPTH IN Y                            |               | •                                             | 2               |                                      | TED AT:      | 101                 | 0                               |              | ENDED AT:         | 139     | PURGED (gall  |                                                   | 62                                          |
|                                                                                                                                                                                             | VOLUME                                       | CUMUL           |                                       | RGE           | ОЕРТН                                         | pH<br>(standard | темр.                                | 1            | OND.                | DISSOLV                         |              | ORP               |         | URBIDITY      | COLOR                                             | ODOR                                        |
| TIME                                                                                                                                                                                        | PURGED<br>{gallons}                          | VOLUM<br>PURGE  | / All .                               | AYE<br>(pm)   | TO<br>WATER                                   | units)          | ( <sub>0</sub> C)                    |              | µB/cm               | OXYGE<br>mg/L                   |              | (mV)              |         | (NTUs)        | (describe)                                        | (describe)                                  |
| 1010                                                                                                                                                                                        | <b>-</b>                                     | Coallon         | 25 ac                                 | 7             | tfeet BTOC1                                   |                 |                                      |              |                     |                                 |              |                   |         |               | None                                              | Alman                                       |
| 0                                                                                                                                                                                           | N 7777                                       | 0 0 1 (         | ) (C                                  | _             | 10 (3)                                        | / QD            | 17 10                                | 920          | -                   | 230                             |              | 13865             | 2       | 1.0           | 140116                                            | None                                        |
| 1615                                                                                                                                                                                        | 900                                          |                 |                                       | _             | 70.05                                         | 0,0 <u>C</u>    | 1240                                 | 23           | 710                 | 2.7                             |              | 1200              |         | 7. 1          | <del>                                      </del> | N                                           |
| 1020                                                                                                                                                                                        | e Z 💆                                        | ~ ~ ~           | 5 100                                 | _             | 20.00                                         | 0.02            | 12 2                                 | 72           | <u>/ [ ツ</u><br>つっ/ | 2,15                            | -            | 04 -              | ***     |               | 10                                                | 10                                          |
| 1025 0.25 0.07 0.05 20.65 6.84 17.20 23776 2.25 94.7 25.7 N N N 1030 0.25 1.01 0.05 20.91 6.82 12.20 23712 2.26 83.5 17.9 N N N 1040 0.50 150 0.5 20.91 6.82 12.20 23712 2.26 83.5 17.9 N N |                                              |                 |                                       |               |                                               |                 |                                      |              |                     |                                 |              |                   |         |               |                                                   |                                             |
| 1010 0.50 1.50 .05 21.65 6.56 12.20 23736 2.53 51.6 21.00 N N                                                                                                                               |                                              |                 |                                       |               |                                               |                 |                                      |              |                     |                                 |              |                   |         |               |                                                   |                                             |
| 1050 0.50 2.00 05 22.30 6.79 12.30 23785 2.09 426 70.2 N N                                                                                                                                  |                                              |                 |                                       |               |                                               |                 |                                      |              |                     |                                 |              |                   |         |               |                                                   |                                             |
| 1050 0.50 2.00 .05 12.30 6.79 12.30 23785 2.09 426 70.2 N N<br>1100 .0.500.2.50 .00 72.60 6.78 17.3 23880 2.24 33.5 25.5 N N                                                                |                                              |                 |                                       |               |                                               |                 |                                      |              |                     |                                 |              |                   |         |               |                                                   |                                             |
| 1100 .0.500.2.50 86 72.60 6.78 17.3 23880 2.24 33.5 25.5 N N<br>1110 8.60 3.30 88 2380 6.76 1240 24013 2.08 28.5 17.1 N N                                                                   |                                              |                 |                                       |               |                                               |                 |                                      |              |                     |                                 |              |                   |         |               |                                                   |                                             |
|                                                                                                                                                                                             |                                              |                 |                                       |               |                                               |                 |                                      |              |                     |                                 |              |                   |         |               |                                                   |                                             |
| . 1 0                                                                                                                                                                                       | 0.8                                          | u.a             | _                                     |               | 2 C HE                                        | 676             | 12.4                                 | 24           | 2 1903              | 1 U 2                           | 2            | 12 /              | 30      | 24 <b>2</b> 3 | 17                                                | 17                                          |
| 1130                                                                                                                                                                                        | <del></del>                                  | 5.1             | 7                                     | <u> </u>      | 7 4 1                                         | ( 3)            | 17.4                                 | 24           | <del>) (</del> )    | 1 0                             | <del>}</del> | 8.5               |         | 95            |                                                   | <del>  , Y</del>                            |
| 1137                                                                                                                                                                                        | 0.24                                         |                 | 1 00<br>8 00                          |               | 775                                           | 178             | 17 7                                 | 24           | 103                 | خما                             | 2            | -                 | -4      | 07            | <del>                                      </del> | 10                                          |
| 1130                                                                                                                                                                                        | 0.24                                         | * 6: i          |                                       | 9             | 75 55                                         | 6.10            | 12 /                                 | 24           | 10.3                | 1,36                            | 2<br>(1)     | <i>G₄!</i><br>3.5 |         | - Fr<br>- GR  | N                                                 | <u>                                    </u> |
| 11.54                                                                                                                                                                                       | U# 1                                         | وام (           | <u> </u>                              | 17)           | A2502                                         | Dall            | 1/-45                                | 2-4          | 16.3                | 106                             | <del>-</del> | J475              |         | للام          | 1,0                                               | /V                                          |
|                                                                                                                                                                                             |                                              |                 | -+                                    | _             |                                               |                 |                                      |              |                     |                                 |              |                   |         |               |                                                   |                                             |
|                                                                                                                                                                                             |                                              |                 |                                       |               |                                               |                 |                                      |              |                     |                                 |              |                   |         |               | 1                                                 |                                             |
| WELL CAPACITY (G                                                                                                                                                                            | alions Per Foo                               | t): 0.75" = 0.0 | 2; 1° = 0.0·                          | i<br>1: 1:    | .25° ≈ 0.06;                                  | 2" = 0.16;      | 3" = 0.37;                           | 4" = 0,6     | 5; 5" =             | 1,02; 6*=                       | 1.47;        | 12" = 5,88        |         |               |                                                   | L                                           |
| TUBING INSIDE DIA                                                                                                                                                                           | . CAPACITY (C                                | eal./Ft.): 1/8" | = 0,0006; 3                           | /16" =        | 0,0014; 1/                                    | /4" = 0,0026;   | 5/16" = 0.0                          |              | 3/8" = 0.006        | s; 1/2" = 0                     | 3.010;       | 5/8" = 0.6        | )16     |               |                                                   |                                             |
| PURGING EQUIPME                                                                                                                                                                             | NT CODES:                                    | B = Bailer;     | BP = Blac                             | lder Pu       | mp; ESi                                       |                 | Submersible Pu<br>MPLING DA          |              | PP ≃ Peri           | istaltic Pump                   | ); (         | D ≃ Other (S      | pecify) |               |                                                   |                                             |
| SAMPLED 8Y (PRINT) / A                                                                                                                                                                      | ECHIATION: 1A                                | ) (1)           | <u> </u>                              | SAME          | .ER(S) SIGNATU                                | ,               | M.A V                                | Ϋ́I.         | 4                   |                                 | SAMPLI       | NG 1:7            | Λ       | SAMPLING      | 1 411                                             | 2                                           |
|                                                                                                                                                                                             | Maxion: M                                    | 185 Ne.         | 1951                                  | <u> </u>      |                                               | //              | 1/1/1/2/                             | red          | <u> </u>            | S EU TEOED                      | INITIATE     |                   |         | ENDED AT:     | 117                                               | გ                                           |
| PUMP OR TUBING<br>DEPTH IN WELL (feet);                                                                                                                                                     | 45'                                          |                 |                                       | MATER         | RIAL GODE: PE                                 |                 |                                      | -            | 1                   | D-FILTERED:<br>Filmulion Equipm |              | 1                 | N )_    | Filter Siza   |                                                   | mm                                          |
|                                                                                                                                                                                             | FIELD I                                      | ECONTAMINATIO   | ON: PLIMP                             | ٧(            | CN                                            | TUBING          | Y N (replace                         | d)           |                     |                                 | DUPLIC       |                   | (N      | $\sim$        |                                                   |                                             |
| SAMPI                                                                                                                                                                                       | LE CONTAINER S                               | PECIFICATION    |                                       | L             |                                               | SAM             | PLE PRESERVAT                        | ION          |                     |                                 | MTC···       | ED AUALVA         | AMPLE   | CANON N       |                                                   | MPLE PUMP<br>OW RATE (ml.                   |
| SALIPLE ID CODE                                                                                                                                                                             | # CONTAINERS                                 | MATERIAL CODE   | VOLUME (mt)                           | P             | RESERVATIVE                                   |                 | TOTAL VOL                            |              | FINAL pH (S         | tanard Units)                   | INTEND       | METHOD            | AND/OR  | CODE          |                                                   | per minute)                                 |
|                                                                                                                                                                                             |                                              |                 |                                       |               | USED                                          | ADI             | DED IN FIELD (m)                     | -)           |                     |                                 |              |                   |         |               |                                                   |                                             |
| FISWHOR-                                                                                                                                                                                    | 2                                            | PE              | 125 eac                               | h             |                                               |                 |                                      |              |                     |                                 |              | EPA 537M          |         | PP            |                                                   | 200                                         |
| ELS WHO8-<br>023-GW-<br>045                                                                                                                                                                 |                                              | . •             | `                                     |               |                                               | $\forall$       |                                      |              |                     |                                 | _            |                   |         |               |                                                   |                                             |
| 045                                                                                                                                                                                         |                                              |                 |                                       |               |                                               | >               | Sow                                  | - 1          |                     |                                 |              |                   |         |               | -                                                 |                                             |
|                                                                                                                                                                                             |                                              |                 |                                       |               |                                               |                 |                                      | ${}^{\prec}$ |                     |                                 |              |                   |         |               | $\overline{}$                                     |                                             |
|                                                                                                                                                                                             |                                              | - 25            |                                       |               |                                               |                 |                                      | 一            | $\overline{}$       |                                 |              |                   |         |               | $\rightarrow$                                     | =                                           |
|                                                                                                                                                                                             |                                              |                 |                                       |               |                                               |                 |                                      |              |                     |                                 |              |                   |         |               |                                                   |                                             |
|                                                                                                                                                                                             |                                              |                 | . , ,                                 | L             |                                               |                 |                                      | L            |                     |                                 |              |                   |         |               |                                                   |                                             |
| REMARKS:                                                                                                                                                                                    | well                                         | Comp            | elc led                               |               |                                               |                 |                                      |              |                     |                                 |              |                   |         |               |                                                   |                                             |
|                                                                                                                                                                                             |                                              | •               |                                       |               |                                               |                 |                                      |              |                     |                                 |              |                   |         |               |                                                   |                                             |
| MATERIAL CODES:                                                                                                                                                                             | AG = Am                                      | ber Glass; (    | G = Clear GI                          | 285;          | PE = Polye                                    | thylene; F      | P = Polypropy                        | lene;        | S = Silicone        | e; T = Tell                     | an; (        | O = Other (S      | pacify) |               |                                                   |                                             |
| SAMPLING EQUIPM                                                                                                                                                                             |                                              | APP = Afte      | r Peristaltic P                       | ump;          | B = Baile                                     | r; ΒP≃£         | Bladder Pump;<br>Nethod (Tubing      | ES           | = Electric          | Submersible                     | e Pump       | ;                 |         |               |                                                   |                                             |
|                                                                                                                                                                                             |                                              | KLLL = KG       | verse Flow Pe                         |               |                                               |                 | nethod (Tubing<br>of variation of la |              |                     | O = Other (                     | opecity      | <u>'</u>          |         |               |                                                   |                                             |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

ON 05/10



# GROUNDWATER SAMPLING LOG \* ( well completed)

| Installation: ~+#3-AFB = 1/126                  | 27.0003 EU     | SWORT                                   | (1 A                         | FR           | ·                    | Sita:                                   | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                                         |                           |
|-------------------------------------------------|----------------|-----------------------------------------|------------------------------|--------------|----------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------|-----------------------------------------|---------------------------|
| WELL NO: WW                                     |                |                                         | •                            |              | S                    | AMPLE ID: EU                            | SWHOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 00           | 1 - 60                      | ~-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 /              | 7 0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATE: 5               | - 31-                           | 13                                      |                           |
| J                                               |                |                                         |                              |              |                      | PU                                      | RGING DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TΑ             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 | <u> </u>                                |                           |
| WELL<br>DIAMETER (inches):<br>WELL VOLUME PU    | 7.6"           | T                                       | UBING<br>IAMETER (inche      | s); V        | 1' 3S                | LL SCREEN INTE                          | RVAL DEPTH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | STATIC DEPT<br>TO WATER (fe | н<br>»taтос): <b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31,3             | -D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PU<br>OR             | RGE PUMP TYPE<br>BAILER: 🏕      | Non                                     | 560^                      |
| WELL VOLUME PU                                  | RGE: 1 WEL     | L VOLUME =                              | (TOTAL WE                    | LL DE        | тн втос              | - STATIC D                              | EPTH TO WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TER)           | X WELL                      | CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                                         |                           |
| (only fill out if ap                            | pōcable)       | }\-                                     | 33:                          | 91           | R 31.                | <b>7</b> ∪Ft) x                         | 0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gal/fi         | " O .;                      | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gal              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                                         |                           |
| EQUIPMENT VOLU                                  |                |                                         |                              | MP VOI       | .UME + (TUE          | BING CAPAC                              | ITY X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TUBIN          | IG LENGTH                   | ) + FLOW (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ELL V            | OLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                 |                                         |                           |
| (only fill out if ap                            | plicable)      | NA                                      | <del></del>                  |              | <u>oal = (</u>       |                                         | Ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *              | gal                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                    |                                 |                                         |                           |
| INITIAL PUMP OR TUBING<br>DEPTH IN WELL (feet): | • 7            | うう                                      | FINAL PUI<br>DEPTH IN        |              |                      | 33                                      | PURG<br>INITIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ING<br>TED AT: | PH                          | 62 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58               | PURGING<br>ENDED AT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 602                  | TOTAL VOLUME<br>PURGED (gallone | ): <i>C</i>                             | .48                       |
| TIME                                            | VOLUME         | COWOI                                   | 1                            | URGE<br>RATE | рертн<br>то          | pH<br>(standard                         | TEMP,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | COND,<br>µS/om              | DISSOLV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ΕĐ               | ORP<br>(mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | URBIDITY<br>(NTUs)              | COLOR<br>(describe)                     | ODOR                      |
| TIME                                            | (galions)      | PURGE<br>(mailons                       |                              | (gpm)        | WATER<br>(feet BTOC) | units)                                  | (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | расст                       | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | М                | (804)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | (MTOS)                          | (describe)                              | (describe)                |
| 1558                                            |                |                                         |                              | ·0B          | X~23                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                 | Turko                                   | nune                      |
| 602                                             | 0.27           | 0.2                                     | 8 0                          | .08          | 33.50                | 7.45                                    | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39             | 78                          | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                | 865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                    | ٥٢                              |                                         |                           |
|                                                 |                |                                         |                              |              |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | •                               |                                         |                           |
|                                                 |                | -                                       | Took                         | <u> </u>     | anjo                 | e -                                     | abo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4              | 10 i                        | run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                | uell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d                    | ry_                             |                                         |                           |
|                                                 |                |                                         |                              |              |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                                         |                           |
|                                                 |                |                                         |                              |              |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                                         |                           |
|                                                 |                |                                         |                              |              |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                                         |                           |
|                                                 |                |                                         |                              |              |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                                         |                           |
|                                                 |                |                                         |                              |              |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                                         |                           |
|                                                 |                |                                         |                              |              |                      | -                                       | AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>             |                                 |                                         |                           |
|                                                 |                |                                         | -                            |              |                      |                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    |                                 |                                         |                           |
|                                                 |                |                                         | -                            |              |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7              |                             | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                                         |                           |
|                                                 |                |                                         |                              |              |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\vdash$       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                | On the last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                                 |                                         |                           |
|                                                 |                |                                         |                              |              |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa | 2000.00              |                                 |                                         |                           |
|                                                 |                | ·····                                   |                              |              |                      | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | To and the second               |                                         | '                         |
|                                                 |                | *************************************** |                              |              |                      | ****                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 3,4                             | -                                       |                           |
| WELL CAPACITY (G                                | Sallons Per Fo | ot): 0.75" = 0.                         | .02; 1"=                     | 0.04;        | 1.25" = 0.00         | 3; 2" = 0.1                             | 6; 3° = 0.3°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7; 4°          | = 0,65;                     | 5" = 1.02;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6" = 1           | 1.47; 12"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 5,88               |                                 | -                                       |                           |
| TUBING INSIDE DIA                               |                | Gal./Ft.): 1/8"<br>B = Bailer;          |                              |              |                      | 1/4" = 0,002<br>SP = Electric           | 6; 5/16" =<br>Submersible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 3/8" = 0<br>PP = 8          | .006; 1/.<br>Peristaltic Pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2" = 0.<br>ump:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | " = 0.01<br>er (Spec |                                 |                                         | -403                      |
|                                                 |                |                                         |                              |              |                      |                                         | IPLING DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                                         |                           |
| SAMPLED BY (PRINT) / A                          | FILIATION: 🔥   | willis (                                | 4SL)                         | SAMPI        | .ER(S) SIGNATL       | IRE(S):                                 | <b>シ</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPL<br>INITIAT | 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 02                   | SAMPLING<br>ENDED AT:           | 16                                      | 0 <i>4</i>                |
| PUMP OR TUBING<br>DEPTH IN WELL (feet):         | 33             |                                         | <del></del>                  | TUBIN        | S<br>RIAL CODE: PE   | <u> </u>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | - 1                         | D-FILTERED:<br>Filtration Equipm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nent Tvo         | Y (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ć                    | Filter Size                     |                                         | mm                        |
|                                                 | FIELD          | DECONTAMINATI                           | ON: PUMI                     |              |                      | TUBING                                  | Y N (replaced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sim$         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DUPLIC           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (N                   | )                               |                                         |                           |
| SAME                                            | LE CONTAINER S | PECIFICATION                            | 1                            |              |                      | SAM                                     | PLE PRESERVAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TON            |                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INTEN            | DED ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S AND/OR             | SAMPLING EQU                    |                                         | MPLE PUMP<br>OW RATE (ml. |
| SAMPLE ID CODE                                  | # CONTAINERS   | MATERIAL CODE                           | VOLUME (mL)                  | ·  '         | reservative<br>USED  | AD                                      | TOTAL, VOL<br>DED IN FIELD (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .)             | FINAL pH (S                 | tanard Units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *******          | METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7,410,010            | CODE                            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | per minute)               |
| EUWHOG-001-                                     | <del>*</del> 3 | PE                                      | lasa (                       |              |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | EPA 537M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | mon300                          | , I                                     | <b>^</b>                  |
| 6W-037A                                         | ٦              | PC                                      | cace                         | <u> </u>     |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | $\cup$                          | _   .                                   | 300                       |
|                                                 |                |                                         |                              | ╄            |                      |                                         | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | ,                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                                         |                           |
|                                                 | <              | _                                       |                              | $\vdash$     |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ><             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>             | -                               | -                                       |                           |
|                                                 |                | -                                       | -                            | $\vdash$     |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | -                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | <del>- C</del>                  | 1                                       |                           |
|                                                 |                | 1                                       | . 434                        |              | 1 4.                 |                                         | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | L                               |                                         |                           |
| REMARKS:                                        | one t          | 1 turb                                  | id My -                      | 3            | といかたこ                | SAM-                                    | pled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                                         |                           |
|                                                 |                |                                         |                              |              |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                                         |                           |
| MATERIAL CODES:<br>SAMPLING EQUIPM              |                |                                         | CG = Clear<br>er Peristaltic |              | PE = Poly            | yethylene;<br>iler: BP =                | PP = Polypro<br>Bladder Pur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | ·                           | one; T =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Teflon           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | her (Spe             | cify)                           |                                         |                           |
|                                                 |                |                                         | Reverse Flow                 | / Perist     | altic Pump;          | SM = Strav                              | w Method (Tul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bing Gr        | avity Drain);               | O = Ot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                                 |                                         |                           |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% seturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

06/0/



| Installation: HELAER MO                         | 2000 E                                                     | LLSWOR.                 | th k         | +FB                         |                      | Site:                         | Sik 9                        |                                     |                            |                                                  |                       |                         |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|-------------------------------------------------|------------------------------------------------------------|-------------------------|--------------|-----------------------------|----------------------|-------------------------------|------------------------------|-------------------------------------|----------------------------|--------------------------------------------------|-----------------------|-------------------------|-----------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1                                               | 18PFC0                                                     |                         |              |                             | S                    |                               |                              | ·002-61                             | w - 03c                    | A                                                | С                     | ATE: 5                  | 3/-                         | 18                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| WELL                                            |                                                            |                         | Jaing        |                             | 16 hazi              |                               | RGING DA                     | TA<br>STATIC DEP                    | 7(1                        |                                                  |                       | les u                   | RGE PUMP TYP                | - 7                | F33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| DIAMETER (Inches):                              | 2.0"                                                       | D                       | AMETER (     |                             |                      | L SCREEN INTE                 |                              | TO WATER                            | (feet BTOC):               | <i>26.</i>                                       | 73                    |                         |                             | 150                | 621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PΡ             |
| WELL VOLUME PU                                  |                                                            |                         | -            |                             |                      |                               |                              | TER) X WEL                          | L CAPACITY                 | ,                                                |                       |                         |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| (only fill out if ap                            | plicable)                                                  | =                       | · 35.        | <i>ት</i> ካ                  | ft - J(              | ·]} *                         | 0.143                        | gal/ft ≖ ∫⊶                         |                            | gal .                                            |                       |                         |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| EQUIPMENT VOLU<br>(only M out if ap             |                                                            | NIY<br>110              | VOL, =<br>شد | PUMP VOL                    | 1UT) + 3MU.          | OING CAPAC                    | ITY X                        | TUBING LENGT                        | H) + FLOW                  | CELL                                             | /OLUME                | m                       |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| INITIAL PUMP OR TUBING<br>DEPTH IN WELL (feet): | 3                                                          | 30                      | DEPT         | PUMP OR TU<br>H IN WELL (fe | st):                 | 30                            |                              | TED AT:                             | 56                         |                                                  | PURGING<br>ENDED AT:  |                         | TOTAL VOLUM<br>PURGED (gašt | ns):               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| TIME                                            | VOLUME<br>PURGED<br>(gallons)                              | CUMUI<br>VOLUM<br>PURGE | E .          | PURGE<br>RATE<br>(gpm)      | DEPTH<br>TO<br>WATER | pH<br>(slandard<br>units)     | TEMP.                        | COND.<br>μS/cm                      | OXYG:                      | EN                                               | ORP<br>(mV)           | 1                       | (NTUs)                      | COLOR<br>(describe | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DOR<br>scribe) |
| [516                                            |                                                            | (eallons                |              | 0.05                        | 26.92                |                               |                              |                                     | Pign                       | -                                                |                       |                         |                             | 50                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1514                                            | 1.0                                                        | 01                      |              | 0.05                        | 27.13                | 1 62                          | 10.5                         | 1242                                | 3 1                        | 1                                                | 123.0                 | -                       | <u></u>                     | <u>Clea</u>        | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ne             |
| 1611                                            | 0.15                                                       | 0.0                     | 6            | 1.05                        | 17.40                | 1 17                          | 16.3                         | 11312                               | 3.6                        | <u> </u>                                         | 124.6                 |                         | <u>-</u>                    | ++                 | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1524                                            | 6.1                                                        | 0.4                     | ζ            | 0:05                        | 27.53                | 7.75                          | 16.5                         | 1123                                | 3.6                        |                                                  | 124.6                 | -                       | 2,4                         | ++                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\neg$         |
| <del></del>                                     | 1528 0.25 8.5570 0.05 27.73 7.76 16,5 1120 3.50 122.4 24.1 |                         |              |                             |                      |                               |                              |                                     |                            |                                                  |                       |                         |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|                                                 |                                                            |                         |              |                             |                      |                               |                              |                                     |                            |                                                  |                       |                         |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|                                                 |                                                            |                         |              |                             |                      |                               |                              |                                     |                            |                                                  |                       |                         |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|                                                 |                                                            |                         |              |                             |                      |                               |                              |                                     |                            |                                                  |                       |                         |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|                                                 |                                                            |                         |              |                             |                      |                               |                              |                                     |                            |                                                  |                       |                         |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|                                                 |                                                            |                         |              |                             |                      |                               |                              |                                     |                            |                                                  |                       |                         |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|                                                 |                                                            |                         |              |                             |                      |                               |                              |                                     | T                          |                                                  |                       |                         | •                           |                    | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                 |                                                            |                         |              |                             | 46.                  |                               |                              |                                     | 1                          |                                                  |                       |                         |                             |                    | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                 |                                                            |                         |              |                             |                      |                               |                              | <b>Z</b> .                          |                            |                                                  |                       |                         |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|                                                 |                                                            |                         |              |                             |                      |                               | ~~~                          |                                     |                            |                                                  | -                     |                         |                             |                    | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                 |                                                            |                         |              |                             |                      |                               |                              |                                     |                            | Name of Street, or other Desires.                | ,                     |                         |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|                                                 |                                                            |                         |              |                             |                      |                               |                              |                                     |                            |                                                  | -                     |                         | _                           |                    | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}$ |                |
|                                                 |                                                            |                         |              |                             |                      |                               |                              |                                     |                            |                                                  |                       |                         |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| WELL CAPACITY (C                                |                                                            | -                       |              | " = 0.04;                   | 1.25" = 0.06         |                               |                              |                                     | 5" = 1.02;                 | 6" = 1                                           |                       | ° = 5.88                |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| TUBING INSIDE DIA<br>PURGING EQUIPM             |                                                            | B = Bailer;             |              | 6; 3/16"<br>= Bladder I     | = 0.0014;<br>Pump; & | 1/4" = 0.002<br>SP = Electric | :6; 5/16" =<br>: Submersible |                                     | 0.006; 1.<br>Peristaltic P | /2" = 0.<br>'ump;                                |                       | 8" = 0.016<br>her (Spec |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|                                                 |                                                            | •                       |              |                             |                      | SAN                           | IPLING DA                    | TA                                  |                            | SAMPL                                            | ING.                  |                         | SAMPLING                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\equiv$       |
| SAMPLED BY (PRINT) / A                          | FFILIATION: A                                              | willis / A              | <b>1</b>     | SAMPL                       | ER(S) SIGNATU        | RE(S):                        | <del></del>                  |                                     |                            | INITIAT                                          | ED AT: 5              | 32                      | ENDED AT:                   | 15.                | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| LANNE OK LORING                                 | 30                                                         |                         |              | TUBIN                       |                      |                               |                              | FIE                                 | LD-FILTERED;               |                                                  | Ý (                   | $\bigcirc$              | FOler Size                  |                    | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| DEPTH IN WELL (feet):                           | •                                                          | DECONTAMINATI           | ON: F        |                             | (N)                  | TUBING                        | Y (N (replaced               |                                     | Filtration Equip           | DUPLIC                                           | _                     | ( N                     |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| SALLE                                           | LE CONTAINER S                                             |                         |              |                             |                      |                               | PLE PRESERVAT                | _                                   |                            | 1                                                |                       |                         |                             | 5                  | AMPLE I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UMP            |
| SWAPLE ID CODE                                  | # CONTAINERS                                               | MATERIAL CODE           | VOLUME       | (mL)                        | RESERVATIVE<br>USED  | AD                            | TOTAL VOL                    |                                     | (Stanard Units)            | INTEN                                            | DED ANALYSI<br>METHOD |                         | SAMPLING EC                 |                    | Per mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| ELSWH 69-002-                                   | 2                                                          | PE                      | insn<br>cach |                             | $\overline{}$        |                               |                              |                                     |                            |                                                  | EPA 537N              | 4                       | TP                          | <b>,</b>           | /5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0              |
| 6w-030A                                         | <b>V</b> -                                                 |                         | caes         |                             |                      | $\forall$                     |                              |                                     |                            | <del>                                     </del> |                       |                         | -                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|                                                 |                                                            | >                       |              |                             |                      |                               | 778                          |                                     |                            |                                                  |                       |                         |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|                                                 |                                                            | X                       |              |                             |                      |                               |                              |                                     |                            |                                                  |                       |                         |                             | 5                  | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
|                                                 |                                                            |                         | ~            |                             |                      |                               |                              |                                     | _                          |                                                  |                       | ,                       |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| REMARKS: PA                                     | to not                                                     | comp                    | lelec        | 4                           |                      |                               |                              |                                     |                            |                                                  |                       | ,                       |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| MATERIAL CODES:                                 |                                                            | nber Glass;             | CG = Ck      | ear Glass;                  | PE = Pol             | yethylene;                    | PP = Polypre                 | opylene; S = Si                     | licone; T=                 | Teflon                                           | ; <b>0</b> =0         | ther (Spe               | cify)                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 一              |
| SAMPLING EQUIPN                                 | ENT CODES:                                                 |                         |              | altic Pump;<br>low Perist   | B = Ba               | -                             | Bladder Pun<br>w Method (Tul | op; ESP ≃ Ele<br>bing Gravity Drain | ctric Submer               | rsible P<br>ther (S)                             |                       |                         |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\neg$         |
|                                                 |                                                            | M FF - F                |              |                             |                      |                               |                              | st three consecutive                |                            | 4,0, (0)                                         |                       |                         |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |

pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation; optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

Revision Date: March 14, 2016



| AerostarSES   |
|---------------|
| Aciosidi 353" |
|               |

| staliation: Elisworth                         | AFB M2027                | .0003                            |                                   |                             | Site                         | 5116                                   | = 10 -            | WWT                      | P                 | <del></del>  |                       |             |                             |                                                  |                              |
|-----------------------------------------------|--------------------------|----------------------------------|-----------------------------------|-----------------------------|------------------------------|----------------------------------------|-------------------|--------------------------|-------------------|--------------|-----------------------|-------------|-----------------------------|--------------------------------------------------|------------------------------|
| ELL NO: MWI                                   | RIFCI                    | 001                              |                                   |                             | SAMPLE ID:                   | LSWHIO                                 | - 001.            | -6W                      | -04               | <u>b</u>     | DATE:                 | <u> 5</u> - | 19-1                        | 9                                                |                              |
|                                               |                          |                                  |                                   |                             | Pί                           | JRGING DAT                             | Α                 |                          |                   |              |                       | Invent      | PURING TYPE                 |                                                  |                              |
| VELL<br>MAMETER (Inches):<br>VELL VOLUME PURC | 20%                      | TVB                              | NG                                | 1/4 1/2 1/2                 | ELL SCREEN INT               | TERVAL DEPTH:                          | STATI             | C DEPTH<br>ATER (feet BT | FOC):             | 9.81         |                       | OR BAI      | PUMP TYPE<br>LER:           | PP                                               |                              |
| AMETER (Inches):                              | GE: 1 WELL V             | OLIME = (TO                      | ETER (inches):<br>TAL WELL DE     | רן עטיי<br>- PTH BTOC       | - STATIC DE                  | PTH TO WATER                           | R) X WE           | LL CAPAC                 | IŦY               | ·            |                       |             |                             |                                                  |                              |
|                                               |                          | = 1                              | C - 0                             | Ft -9                       | 41 F0 ×                      | N II.                                  | gal/ft =          | lost-                    | ga                | al           |                       |             |                             |                                                  |                              |
| (only fill out if appl                        | сыму                     | - (                              | 20.59                             | -14                         | DI                           |                                        |                   | •                        |                   |              |                       |             |                             |                                                  |                              |
| QUIPMENT VOLUM                                | E PURGE: 1 E             | QUIPMENT VO                      | L. = PUMP V                       | OLUME + (TU                 | BING CAPACI                  | א זע YT                                | UBING LEN         |                          | OW CELL           |              |                       |             | <u></u>                     | _                                                |                              |
| (only fill out if app                         |                          | JA -                             | =                                 | gai = (                     | ×                            |                                        | +                 | gal                      | =                 | gal          |                       |             | ₩ <u></u>                   | /                                                |                              |
| NITIAL PUMP OR TUBING                         |                          | -11                              | FINAL PUMP C                      | R TUBING                    |                              | PURGI                                  | NG<br>TED AT:   ( | < 2D                     |                   | PURGIN       | AT:   0               |             | TAL VOLUME<br>IRGED (gasons | . O·                                             | 64                           |
| EPTH IN WELL (feat);                          | 45                       | alausi                           | DEPTH IN WEI                      |                             | 45<br>1 pH                   | TEMP.                                  | COND              | ·60 l                    | DISSOLVE          |              |                       |             | YTIGH                       | COLOR                                            | ODOR                         |
| TIME                                          | VOLUME<br>PURGED         | CUMUL.<br>VOLUME                 | RAT                               |                             | (standard<br>units)          | (°c)                                   |                   |                          | OXYGEN            | (m)          | n                     | (N)         | rUs)                        | {describe}                                       | {describe}                   |
| TIME                                          | (gallons)                | PURGEO<br>(gallons)              | (gpn                              | n) WATER                    |                              |                                        | ms/0              |                          | mg/L              |              |                       |             |                             |                                                  |                              |
| 1020                                          |                          |                                  | 0.04                              | 9,80                        | )                            |                                        |                   |                          |                   |              |                       |             |                             | Clean                                            | none                         |
| 1025                                          | 0.2                      | 0.2                              | 0.0                               | 1 9.91                      | 7.46                         |                                        | 5,4               | <u> </u>                 | 1.82              |              |                       | 17          |                             |                                                  | $\vdash$                     |
| 1098                                          | 0.12                     | ٥.36                             | 0.0                               | 10.25                       | 7.63                         |                                        | 5 A               | 13                       | 1.70              |              |                       | 18          | . 0                         | 1                                                |                              |
| 1032                                          | طا.٥                     | 0.4                              | 8 0.0                             | 9 11,2                      |                              |                                        |                   |                          | 1.68              | 62           |                       | <u> </u>    | 1                           | -                                                | $\vdash$ $\vdash$            |
| 1036                                          | 0.16                     | ١٥،6١                            | ( 0.0                             | 4 13.6                      | 8 7.60                       | 10.4                                   | 5.5               | 12                       | 1.6               | 101          | <u>.4</u>             | 16          | .3                          |                                                  |                              |
|                                               |                          |                                  |                                   |                             |                              |                                        |                   |                          |                   |              |                       |             |                             |                                                  |                              |
|                                               |                          |                                  |                                   |                             |                              |                                        |                   |                          |                   |              |                       |             |                             |                                                  |                              |
|                                               |                          |                                  |                                   |                             |                              |                                        |                   |                          |                   |              |                       |             |                             |                                                  |                              |
|                                               |                          |                                  |                                   |                             |                              |                                        |                   |                          |                   |              |                       |             |                             |                                                  |                              |
|                                               |                          |                                  |                                   |                             |                              |                                        |                   |                          |                   |              |                       |             |                             |                                                  |                              |
|                                               |                          |                                  |                                   |                             |                              |                                        |                   |                          |                   |              |                       |             |                             |                                                  |                              |
|                                               |                          |                                  |                                   |                             | 7                            | #~×/_                                  | <u></u>           |                          |                   |              |                       |             |                             |                                                  |                              |
|                                               |                          |                                  |                                   |                             |                              |                                        |                   |                          |                   |              | -                     |             |                             |                                                  |                              |
|                                               |                          |                                  |                                   |                             |                              |                                        | <u> </u>          | _}                       | -                 |              |                       |             |                             | <del>                                     </del> |                              |
|                                               |                          |                                  |                                   |                             |                              |                                        | ļ                 |                          |                   |              | $\rightarrow$         | ******      |                             | <del>                                     </del> | <del></del>                  |
|                                               |                          |                                  |                                   |                             |                              |                                        | <u> </u>          |                          |                   |              |                       |             |                             | $\vdash$                                         |                              |
|                                               |                          |                                  |                                   |                             |                              |                                        | <u></u>           | L                        |                   |              |                       |             |                             |                                                  | <u> </u>                     |
| WELL CAPACITY (C                              | Sallons Per Foo          | i): 0.75° = 0.0                  | 2; 1" = 0.04                      | •                           | 06; 2" = 0.1                 |                                        |                   | 5* = 1.0<br>" = 0.006;   | )2; 6⁻=<br>1/2"=( |              | " = 5.88<br>'8" = 0.0 |             |                             |                                                  |                              |
| TUBING INSIDE DIA                             | A, CAPACITY (            | 3al./Ft.): 1/8" =<br>B = Bailer; | = 0.0006; 3/<br>BP = Blade        | /16" = 0.0014;<br>der Pump; | 1/4" = 0.000<br>ESP = Electr | ic Submersible F                       |                   | P = Perist               |                   |              | Other (S              |             |                             |                                                  |                              |
|                                               |                          |                                  |                                   |                             | S                            | SAMPLING D                             | ATA               |                          |                   | SAMPLING     |                       |             | SAMPLING                    | ٠                                                |                              |
| SAMPLED BY (PRINT) /                          | AFFILIATION: A           | Willsor<br>Neilsor               | (ASL)                             | SAMPLER(S) SIG              | NATURE(S):                   | -X                                     | <u> </u>          |                          |                   | INITIATED AT |                       | 36          | ENDED AT:                   | 10                                               | 38                           |
| PUMP OR TUBING                                | 1517                     | 10111111                         | ( 4 - 7                           | TUBING                      |                              |                                        |                   | 1                        | FILTERED:         | Y            | (                     | د`ٰ ۵       | Filter Size                 |                                                  | mm                           |
| DEPTH IN WELL (feet):                         |                          | 45                               |                                   | MATERIAL CODE               | : PE<br>TUBIN                | G Y (N (repla                          | iced)             | l Fat                    | tration Equipr    | DUPLICATE:   | Y                     | (N          | ) _                         |                                                  |                              |
| CALL                                          | FIELD<br>PLE CONTAINER : | DECONTAMINATION                  | ON: PUMP                          | <u> </u>                    |                              | SAMPLE PRESERV                         |                   |                          |                   |              |                       |             |                             |                                                  | SAMPLE PUMP                  |
| aAA                                           |                          | ľ                                |                                   | PRESERVA                    | TIVE                         | YOTAL VOL                              | Ι,                | NAL pH (Sta              | nard Units)       | INTENDED A   | NALYSIS<br>ETHOD      | AND/OR      | SAMPLING EC                 | E                                                | FLOW RATE (mi<br>per minute) |
| SAMPLE 10 CODE                                | # CONTAINERS             | MATERIAL CODE                    | VOLUME (mL)                       | USED                        |                              | ADDED IN FIELD (                       |                   |                          | ,                 |              |                       |             |                             |                                                  |                              |
| ELSTH 10-001-                                 | <b>T_</b>                | 0-                               | 125~L                             |                             |                              |                                        |                   |                          |                   | EF           | A 537M                |             | AG                          | p                                                | 150                          |
| 6W-0115                                       | 2                        | PE                               | each                              |                             |                              |                                        |                   |                          |                   |              |                       |             |                             |                                                  |                              |
|                                               |                          |                                  |                                   |                             |                              | Son                                    |                   |                          |                   | _            | -                     |             |                             |                                                  |                              |
|                                               |                          |                                  |                                   |                             |                              |                                        | $\leftarrow$ $+$  |                          |                   |              |                       | -           | Chianten and Canal          |                                                  | <del></del>                  |
|                                               | <b>\</b>                 | <u></u>                          | <u> </u>                          |                             |                              |                                        | $\rightarrow$     | _                        |                   |              |                       |             |                             | ~                                                |                              |
|                                               |                          | <b>5</b> —                       |                                   |                             |                              |                                        |                   | $\overline{}$            | _                 | +            |                       |             |                             |                                                  |                              |
|                                               |                          |                                  | <u> </u>                          |                             |                              |                                        |                   |                          | _                 | 4            |                       |             |                             |                                                  |                              |
|                                               |                          |                                  |                                   |                             |                              |                                        |                   |                          |                   |              |                       |             |                             |                                                  |                              |
| REMARKS:                                      |                          |                                  |                                   |                             |                              |                                        |                   |                          |                   |              |                       |             |                             |                                                  |                              |
|                                               |                          |                                  |                                   |                             |                              | PP = Polypro                           |                   | a Gilicoco               | · T=Ta            | flor O =     | Olher                 | (Specify)   |                             |                                                  |                              |
| MATERIAL CODE<br>SAMPLING EQUIP               |                          |                                  | CG = Clear G<br>ter Peristaltic F |                             |                              | P = Bladder Pun                        | np; ESF           | = Electric               | Submersil         | ble Pump;    |                       |             |                             |                                                  |                              |
| SAMPLING EQUIP                                | militar CODEC            | RFPP = R                         | everse Flow P                     | adalatic Dums               | or Criteria for n            | raw Method (Tub<br>ange of variation o | oing Gravity      | Drain);<br>onsecutive_r  |                   | r (Specify)  |                       |             |                             |                                                  |                              |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016





| Installation: Ellisworth                          | AFB M2027                                               | .0003                             |                                |                                                  |                      | Sile:                          | Site 1                             | 0 - 1                     | JWI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>۲</u>                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        | 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |
|---------------------------------------------------|---------------------------------------------------------|-----------------------------------|--------------------------------|--------------------------------------------------|----------------------|--------------------------------|------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| WELL NO: NW 180                                   | PFC IDO                                                 | 2                                 |                                |                                                  | SA                   | MPLEID: E                      | SWH10                              | - 00                      | રે → 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | w - 03                          | 35                           | DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> 5</u>                              | -19-                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
|                                                   | <u> </u>                                                |                                   |                                |                                                  |                      | PU                             | RGING DA                           | TA                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| WELL<br>DIAMETER (inches):                        | 20.0                                                    | BUT TUB                           | ING<br>JETER (Inches):         | 1/40                                             | 0 40                 | L SCREEN INTE                  | ERVAL DEPTH:                       | 7/                        | ATIC DEPTH<br>WATER (fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RTOCh                           | 10.8                         | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OR BA                                  | E PUMP TYPE<br>VLER:                   | PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
| DIAMETER (inches):<br>WELL VOLUME PUR             | GE: 1 WELL                                              | /OLUME = (TO                      | TAL WELL                       | DEPTH (                                          | зтос –               | STATIC DEF                     | TH TO WATE                         | R) X \                    | WELL CAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PACITY                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| (only fill out if app                             | olicabie)                                               | = (                               | 40.46                          | ) Fi                                             | - 10                 | .85≈ ×                         | 0.16                               | galifit                   | - <del>-4.1</del><br>4∴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #3<br>73                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| EQUIPMENT VOLUM                                   | ME PURGE: 1 E                                           | QUIPMENT V                        | OL, = PUMP                     | VOLUME                                           | + (TUBI              | NG CAPACIT                     | Y X T                              | UBING L                   | NGTH) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FLOW CELL                       | .VOLUM                       | Ē /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sim$                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| (only fill out if app                             |                                                         | NA                                | _=                             | ĝal                                              | = (                  | ×                              | ft)                                |                           | <u>qal</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | 031                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | )                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| INITIAL PUMP OR TUBING<br>DEPTH IN WELL (feet):   | 35                                                      |                                   | FINAL PUMP<br>DEPTH IN W       |                                                  | G                    | 35                             |                                    | TED AT:                   | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                              | ED AT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 972 0                                  | OTAL VOLUME<br>URGED (gallon<br>BIDITY |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88<br>oper                    |
| TIME                                              | VOLUME<br>PURGEO<br>(gallons)                           | AOTAWĘ<br>CAWAT                   | RA                             | TE                                               | DEPTH<br>TO<br>WATER | pH<br>(standard<br>units)      | TEMP.                              |                           | ercm )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DISSOLVE<br>OXYGEN<br>mg/L      |                              | ORP<br>(mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        | ITUs)                                  | (describe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |
| 20.40                                             | (ganons)                                                | PURGEO<br>(gations)               |                                |                                                  | eet BTDC1            |                                |                                    | MO                        | <u>cr</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 0910                                              |                                                         | 0.16                              | 0.0                            |                                                  | 12.24                | 749                            | 10.3                               | <u>u.</u> -               | 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9                             | 5 7                          | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                     | ).2                                    | Clean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | none                          |
| 0914                                              | 0.14                                                    | 0.40                              | 0.0                            |                                                  |                      |                                | 10.4                               | 4.7                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 . 75                          |                              | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | .4                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
| 0920                                              | 0.24<br>6.20                                            |                                   |                                |                                                  | 17.08<br>13.71       | 7.45                           | 10.5                               | 4.7                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.70                            |                              | ,3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | 2                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 0747                                              | 0932 0.23 0.87 0.04 14.63 7.45 10.6 4.74 0.65 62.9 6.85 |                                   |                                |                                                  |                      |                                |                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1934 0.28 0.88 0.04 14.63 7.43 10.6 4.14 0.67 6.7 |                                                         |                                   |                                |                                                  |                      |                                |                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                   |                                                         |                                   |                                |                                                  |                      |                                |                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                   |                                                         |                                   |                                |                                                  |                      |                                |                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                   |                                                         |                                   |                                |                                                  |                      |                                |                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                   |                                                         |                                   |                                |                                                  |                      |                                |                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                   |                                                         |                                   |                                |                                                  |                      |                                | $\geq_{\mathcal{T}}$               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        | ├—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                      |
|                                                   |                                                         |                                   |                                |                                                  |                      | <_                             |                                    | CZ                        | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa | -                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                   |                                                         |                                   |                                |                                                  |                      |                                |                                    | <u> </u>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - And the latest designation of | STATE OF THE PERSON NAMED IN | Name and Address of the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Owner, which is the Ow |                                        |                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
|                                                   |                                                         |                                   |                                |                                                  |                      |                                | ļ                                  | <del> </del>              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                        | -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ************************************** | Santa Caracana                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                   |                                                         |                                   |                                |                                                  |                      | <u> </u>                       |                                    | ├                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                        | _                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th | -                             |
|                                                   |                                                         |                                   |                                |                                                  |                      |                                | <u></u>                            | <u></u>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | -+                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                             |
| WELL CAPACITY (C                                  | L                                                       |                                   | 45-00                          | 4. 43                                            | E* 0 0e:             | 27 = 0.18:                     | 3" = 0.37:                         | A* = 0.0                  | i5: 5°=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.02; 6" =                      | 1.47:                        | 12" = 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L<br>8                                 |                                        | <u>. I</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |
| WELL CAPACITY (C<br>TUBING INSIDE DIA             | Gallons Per Foo<br>A. CAPACITY (C                       | t): 0,/5°=0.02<br>Sat/Ft.): 1/8°= | z; 1 ≅ 0.0<br>• 0.0006:        | 4; 1.2:<br>3/16" = 0.                            | .0014;               | 1/4" = 0.0026                  | ; 5/16" = 0                        | .004;                     | 3/8" = 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6; 1/2" =                       | 0.010;                       | 5/8" = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| PURGING EQUIPM                                    | ENT CODES:                                              | B = Bailer;                       | BP = Blad                      | lder Pun                                         | ıρ; E                | SP = Electric                  | Submersible I                      |                           | PP = Pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ristaltic Pump                  | o; O                         | = Other (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Specify)                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| SAMPLED BY (PRINT) /                              | AFFICIATION:                                            | milis                             | (44)                           | SAMPLE                                           | R(S) SIGNA           |                                |                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | SAMPLING                     | AT: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 932                                    | SAMPLING<br>ENDED AT:                  | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 936                           |
| PUMP OR TUBING                                    |                                                         |                                   | 136                            | TUBING                                           |                      |                                |                                    |                           | FIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LD-FILTERED:                    | Y                            | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sim$                                 | Fitter Size                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mm                            |
| DEPTH IN WELL (feet):                             |                                                         | 35                                |                                | <u>.                                    </u>     | L CODE: P            |                                | - 1 CO                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fitration Equips                | ment Type:                   | re. [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _ N                                    | , <u>.</u>                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                   | FIELD I                                                 | DECONTAMINATION                   | N: PUMP                        | <del>т                                    </del> | <u> </u>             | TUBING                         | N (repla                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | DUPLICA                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                      |                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE PUMP                   |
| SAMPLE ID CODE                                    | # CONTAINERS                                            | MATERIAL CODE                     | VOLUME (mL)                    | PR                                               | ESERVATIV            | - 1                            | TOTAL VOL                          | -1                        | FINAL pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Starrard Units)                | INTENDE                      | D ANALYS<br>METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S ANDIOR                               | SAMPLING EC                            | COLL MICIA I € .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FLOW RATE (ml.<br>per minute) |
| ELSH110-002-                                      | 2                                                       | PE                                | 125mL                          |                                                  | USED                 |                                | ADDEO IN FIELO (                   | (1384)                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                              | EPA 5371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                      | AP                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150                           |
| GW-035                                            | 1                                                       | 10                                | each                           | <u> </u>                                         | _                    | $\checkmark$                   |                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| EUWHIO-002-<br>GW-935                             | 12                                                      | PE                                | Ident                          |                                                  |                      |                                | Sow                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | `                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | `                                      | <b>'</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V /                           |
| 6w-435                                            | <del>                                     </del>        |                                   | each                           | <u> </u>                                         |                      |                                |                                    | $\overline{}$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                   | <b>—</b>                                                |                                   |                                | <del> </del>                                     |                      |                                |                                    |                           | $\overline{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 2                                      | ${ }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |
|                                                   | 1                                                       | te                                | =                              | +                                                |                      |                                |                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\overline{}$                   | <b>j</b>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        | S.Ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\leq$                        |
|                                                   |                                                         |                                   |                                |                                                  |                      |                                |                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| REMARKS:                                          |                                                         |                                   |                                |                                                  |                      |                                |                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                   |                                                         |                                   | co = class /                   | lace.                                            | DE - Dal             | lyethylene;                    | PP = Polypro                       | opviene:                  | S ≈ Silico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | one; T = Te                     | eflon; C                     | ) = Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Specify)                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| MATERIAL CODE:<br>SAMPLING EQUIP                  |                                                         | APP = Aft                         | CG = Clear C<br>er Peristaltic | Pump;                                            | B = B                | aller; BP                      | = Bladder Pun                      | np; E                     | SP = Elect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ric Submersit                   | ble Pump                     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                   |                                                         | RFPP = Re                         | verse Flow I                   | Peristallic<br>Sta                               | Pump;                | SM = Strav<br>Criteria for ran | w Method (Tub<br>ge of variation o | ing Gravi<br>I last three | y Drain);<br>consecutiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O = Other                       | Opecity                      | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

B-5/19



Well completel

| installation: The AFE M20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27,000 EU                | SWAR M            | 4 KF                                           | B                   |                                   | Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5:h                                | lo       | - VIV                        | ンマレマ                        | (0                | )                |                     |                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|------------------------------------------------|---------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------|------------------------------|-----------------------------|-------------------|------------------|---------------------|---------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| WELL NO: MW (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                   | •                                              |                     | S/                                | WIPLE ID: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 01HLVZ                           | 003-     | - GW                         | -04                         | 53                | 59 04            | .TE: <b>(0</b>      | - 3 - 4                               | 8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                        |                   |                                                |                     | ×c                                | PU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IRGING DA                          | TA       |                              |                             |                   | 4                |                     |                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      |
| WELL<br>DIAMETER (inches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ۰۰ م.c                   | T(                | JBING<br>IAMETER (in                           | ches):              | /2" 59                            | L SCREEN INTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ERVAL DEPTH:                       |          | STATIC DEPTH<br>TO WATER (fe |                             | 5 <b>6</b>        | <b>B</b> 8       |                     | RGE PUMP TYPI<br>BAILER:              | ₽<br>₽     | אין                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| WELL VOLUME PU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | L VOLUME =        | TOTAL V                                        | VELL DEI            | PTH BTOC                          | - STATIC I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DEPTH TO WA                        |          |                              |                             |                   | ,,, -            |                     | 11.11.11.11.11                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| (only N∃ out if ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | păcable)                 | =                 | <sup>7</sup> 59, 1                             | 53                  | ₽ - <b>%</b>                      | ,48 F1) x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.163                              | gaVít    | . 0                          | .49                         | gal               |                  |                     |                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| EQUIPMENT VOLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ME PURGE: 1              | FOLIPMENT         | VOL = P                                        | UMP VOI             | DME + COL                         | ING CAPAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X YTK                              | TUBIN    | G LENGTH                     | + FLOW C                    | ELLV              | OLUME            |                     |                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| (only fill out if ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | N/A.              |                                                |                     | gal = (                           | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - Feb                              |          | gal                          | , E                         |                   | gal              | 4                   | سكس                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| INITIAL PUMP OR TUBING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 (1)                    |                   |                                                | PUMP OR TU          | JEING                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PURG                               | ING      | 100                          |                             |                   | PURGING          | l com               | TOTAL VOLUM                           | E 15       | .30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      |
| DEPTH IN WELL (feet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                       | самаг<br>[        |                                                | IN WELL (fe         | el):<br>DEPTH                     | 59<br>PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INITIA<br>TEMP                     | TED AT:  | (512                         | DISSOLV                     | FD                | ENDED AT:<br>ORP |                     | PURGED (gallor<br>JRBIDITY            | coLOR      | ODOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ł      |
| TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VOLUME<br>PURGED         | VOLUM             | €                                              | RATE                | то                                | (standard<br>units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (°c)                               |          | µ8/cm                        | OXYGE                       |                   | (mV)             | ŀ                   | (NTUs)                                | (describe) | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (gallons)                | PURGE<br>Jaallons | 3                                              | (gpm)               | WATER<br>Heet BTOC)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ļ                                  |          |                              | ang/L                       |                   |                  |                     | · · · · · · · · · · · · · · · · · · · |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| (512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | *                 | -                                              |                     | 56.29                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                  | 13       | 55                           | 7 6                         | 1                 | 172.1            |                     |                                       | 7.60       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -      |
| 15 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1                      | 0.2               |                                                | ე. <u>85</u><br>გენ | 15 / 167                          | 7.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.0                               | _        | 352                          | 0.0<br>D.C                  | <u> </u>          | 1467             | 0                   | R                                     | (arkil     | Mone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| 15 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 065                      | 0.2               | _                                              | \$ 105              | -X.47                             | 7.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.2                               |          | 59                           | 1.4                         | <del>+</del>      | 133.1            | 0                   | R                                     | 11         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well   |
| 1617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2005                     | 0.3               | $\overline{}$                                  | ٥.٥۶                | # X=                              | <del>-/</del> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                  |          | <u></u>                      |                             |                   |                  |                     |                                       | +=         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Afte   |
| 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                   |                                                |                     | AN                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |                              |                             |                   |                  |                     |                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /151   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | -                 | -                                              | en_                 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |                              |                             |                   |                  |                     |                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vector |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |                                                | - Children          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                           | <u> </u> |                              |                             |                   |                  |                     |                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |                                                |                     |                                   | The Real Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the Personal Property lies and the |                                    | 1        |                              |                             |                   |                  | ļ                   |                                       | <u> </u>   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                   |                                                |                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |                              |                             |                   |                  |                     |                                       | <u> </u>   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |                                                |                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |                              | -                           |                   | -                | <u> </u>            |                                       | 1          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |                                                |                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |                              |                             |                   |                  | _                   |                                       |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                   |                                                |                     | 1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |                              |                             |                   |                  |                     |                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |                                                |                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |                              |                             |                   |                  |                     |                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |                                                |                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |                              |                             |                   |                  |                     |                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |                                                |                     | <u> </u>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |                              |                             |                   |                  |                     |                                       | <u></u>    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| WELL CAPACITY (C<br>TUBING INSIDE DIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | •                 |                                                |                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          | = 0.65; 5<br>3/8" = 0        | 5" = 1.02;<br>.006:     1/. | 6" = 1<br>.2" = 0 |                  | = 5.88<br>" = 0.016 | 3                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| PURGING EQUIPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | B = Baller;       |                                                | : Bladder           |                                   | SP = Electri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ic Submersible                     | Pump;    |                              | Peristaltic Po              |                   |                  | er (Spec            |                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      |
| SAMPLED BY (PRINT) / A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EERIATION: A-L           | ALS.              | <i>C</i>                                       | SAMP                | LER(S) SIGNATL                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WIPEING DA                         | \        |                              |                             | SAMP1             | ING 1            | 17                  | SAMPLING                              | 151        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ]      |
| PUMP OR TUBING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u></u>                  | اميد +            | <u>(ቀነ                                    </u> | TUBIN               |                                   | anator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |          | FIEL                         | D-FILTERED:                 | INITIAT           | EDAT: 15         | <u> </u>            | ENDED AT:<br>Filter Size              | 101        | O<br>mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| DEPTH IN WELL (feet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> 5</u>                | 9                 |                                                |                     | RIAL CODE: PE                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |                              | Filtration Equipm           |                   |                  |                     |                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| SAMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FIELD<br>PLE CONTAINER S | DECONTAMINATION   | ION: P                                         | UMP Y               | $\bigcirc$                        | min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Y Nyreplaced                       |          |                              |                             | DUPLIC            | CATE: Y          | ( N                 | ر                                     | s          | MAPLE PUMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   | l                                              |                     | PRESERVATIVE                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL VOL                          |          |                              |                             | INTEN             | DED ANALYSIS     | S AND/OR            | SAMPLING EQ                           | UIPMENT F  | LOW RATE (mL<br>per minute)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| SAMPLE ID CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | # CONTAINERS             | MATERIAL CODE     | VOLUME (                                       | (mL)                | USED                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ODED IN FIELD (m                   | L)       | FINAL pH (S                  | tanard Units)               |                   |                  |                     |                                       |            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| ECOMHIO -DOJ-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W                        | PE                | NSV                                            | <u>ر ک</u>          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |                              |                             |                   | EPA 537M         | ı                   | API                                   |            | dob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| 64-059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ۵                        | 1 0               | eaci                                           | `-                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |                              |                             | <u> </u>          | _                |                     | 7,1                                   | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |                          |                   |                                                | +-                  |                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>}</del>                       |          |                              |                             | $\vdash$          | _                |                     | _                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>₹</u>                 |                   |                                                |                     | •                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                  |          |                              |                             | $\vdash$          |                  |                     | Š                                     | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |                                                |                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |                              |                             |                   |                  |                     |                                       | -          | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 1      |
| <del>**</del> /*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | YK Ian-                  | الدما وام         |                                                | 4                   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |                              | 7                           |                   |                  |                     |                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| REMARKS: XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | water (                  | evel bel          | ow m                                           | 01500               | 1,WL W                            | elea on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bor of                             | non      | · 000                        | יום מי                      | C r               | eading           | <b>.</b>            |                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |                                                |                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |          |                              | <u>-</u>                    | T 0               |                  |                     | -16 Å                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| MATERIAL CODES:<br>SAMPLING EQUIPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                   | CG = Cle<br>er Perista                         |                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PP = Polypr<br>= Bladder Pur       | np;      | ESP = Elec                   |                             | sible F           | ump;             | her (Spe            | ciry)                                 |            | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | RFPP = F          | Reverse F                                      |                     | taltic Pump;<br>tabilization Crit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | aw Method (Tu<br>of variation of b |          |                              |                             | her (S            | pecify)          |                     |                                       |            | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J      |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L, or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016



| DIAMETER (inches): 2.0   DIAMETER (inches): 74 00   14.94 R . 9.95 R   TO WATER (inches): 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER: 10 R BALER:  | Installation: Ellsworth                         | AFB M2027      | ,0003           |                 |                                                  |            | Site         | : 5>+e            | 11-                                              | SPRE          | ON YE            | 221              | -E T       | EST_       | ARE                 | <u>rt</u>       |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------|-----------------|-----------------|--------------------------------------------------|------------|--------------|-------------------|--------------------------------------------------|---------------|------------------|------------------|------------|------------|---------------------|-----------------|--------------------------------------------------|
| PURCHNOLOGY AND COLORS AS A SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF THE SAME CASE OF | WELL NO: MWI                                    | 30001          | 101             |                 |                                                  | SA         | MPLE ID:     | COWH 11           | - 00                                             | 1-6           | w-0              | 15               | DAT        | E: 5       | -20                 | - 18            |                                                  |
| Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Committee Care   Comm   |                                                 | <i>V</i>       |                 |                 |                                                  |            | P            | JRGING DAT        | ΓA                                               |               |                  |                  |            |            |                     |                 |                                                  |
| Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence   Compared Confidence    | WELL<br>DIAMETER (inches):                      | ૨.ઠ            | DIA             | METER (inches): | 1/4                                              | 10 4.      | 99 R -       | 9.95 R            | ro                                               | WATER (fe     | et BTOC):        | 13               | <u>.95</u> |            |                     | PP              |                                                  |
| COLUMENT VOLUME PURGE   EQUIPMENT VOL. = PUNDY VOLUME (*) (UNIS) CAPACITY X TURNO I FROTH) FLOW CELL VOLUME (*) (PUND CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY CAPACITY    | WELL VOLUME PUR                                 | GE: 1 WELL     |                 |                 |                                                  |            |              |                   |                                                  |               |                  |                  |            |            |                     |                 |                                                  |
| MINICA PRINT MATERIAL COLORS   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   S.   PRODUCTION   | (only foot if app                               | ficable)       | = (             | 20. 7           | - F1                                             | - 13       | 7.95°° *     | 0.163             | gaVft                                            | - 1.          | 02               | gal              |            |            |                     |                 |                                                  |
| The control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the    | EQUIPMENT VOLUM                                 | E PURGE: 18    | QUIPMENT V      | OL. = PUMP      | VOLUME                                           | + (TUBI    |              |                   | UBING LE                                         | NGTH) +       | FLOW CEL         | L VOLU           | IME        |            |                     |                 |                                                  |
| SECOND   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Compa   | (only fill out if app                           | šcable)        | NA              |                 | — gai                                            | = (        | ×            | Ft )              |                                                  | gar           |                  |                  | d          | $\leq$     | 24-                 |                 |                                                  |
| 1556    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560    1560   | INITIAL PUMP OR TUBING<br>DEPTH IN WELL (feet): | 15             |                 | 1               | - 0                                              | le         | 5            |                   | ED AT:                                           |               |                  | E                | INDED AT:  | <u>VIY</u> | PURGED (gallon      | s): <b>U</b> .  |                                                  |
| 15   5   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                |                 | 1               |                                                  |            | (standard    | 1                 |                                                  |               |                  | 1                |            |            |                     | l               |                                                  |
| \$5\$/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TIME                                            |                | PURGED          |                 | m)                                               | WATER      | units)       |                   | WZ                                               | <i>lon</i>    | mg/L             |                  |            |            |                     |                 | <u> </u>                                         |
| 10 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1556                                            | -              |                 | 0.0             | 04 1                                             | 4.00       |              |                   | -                                                |               |                  | _                |            |            |                     | <del>LLM-</del> | 1001                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1660                                            | 21.0           |                 |                 |                                                  |            | ···-         | <u> </u>          |                                                  |               | <u></u>          | -                |            |            |                     |                 | 1                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 0.6            |                 |                 |                                                  |            |              |                   |                                                  |               |                  |                  |            |            | <del>5 3</del>      |                 |                                                  |
| WELL CAPACITY (Calliane Per Fool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                |                 |                 |                                                  |            |              |                   |                                                  |               |                  |                  |            |            |                     | Maca            |                                                  |
| WELL CAPACITY (Gallons Per Feol): 0.75' = 0.02;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 7                                            |                |                 |                 |                                                  |            |              |                   |                                                  |               |                  |                  |            |            | 28                  | T               | <del>                                     </del> |
| WELL CAPACITY (Gallons Per Foot): 0.75° = 0.02; 1° = 0.04; 1.25° = 0.06; 2° = 0.16; 3° = 0.37; 4° = 0.05; 5° = 1.02; 6° = 1.47; 12° = 5.88  TUBING INSIDE DIA, CAPACITY (Gallons, Per Foot): 0.75° = 0.00; 18° = 0.0014; 14° = 0.0038; 54° = 0.004; 38° = 0.0016; 12° = 0.010; 56° = 0.016  PURGING EQUIPMENT CODES: B = Ballor; BP = Bladder Pump; ESP = Electic Submersible Pump; O = 0.009; 12° = 0.010; 56° = 0.016  SAMPLING DATA  SAMPLE OF (PRINT) AFFALATION: A 1.41 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1614                                            | D · [ 6        | 0.40            | , 0.0           | , -1                                             | 9.00       | 1.1.         | 10.0              |                                                  | .,,           | 0.0              |                  |            |            | 00                  |                 |                                                  |
| WELL CAPACITY (Gallons Per Foot): 0.75° = 0.02; 1° = 0.04; 1.25° = 0.06; 2° = 0.16; 3° = 0.37; 4° = 0.05; 5° = 1.02; 6° = 1.47; 12° = 5.88  TUBING INSIDE DIA, CAPACITY (Gallons, Per Foot): 0.75° = 0.00; 18° = 0.0014; 14° = 0.0038; 54° = 0.004; 38° = 0.0016; 12° = 0.010; 56° = 0.016  PURGING EQUIPMENT CODES: B = Ballor; BP = Bladder Pump; ESP = Electic Submersible Pump; O = 0.009; 12° = 0.010; 56° = 0.016  SAMPLING DATA  SAMPLE OF (PRINT) AFFALATION: A 1.41 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                |                 |                 |                                                  |            |              |                   |                                                  |               |                  |                  |            |            |                     |                 |                                                  |
| WELL CAPACITY (Gallons Per Foot): 0.75° = 0.02; 1° = 0.04; 1.25° = 0.06; 2° = 0.16; 3° = 0.37; 4° = 0.05; 5° = 1.02; 6° = 1.47; 12° = 5.88  TUBING INSIDE DIA, CAPACITY (Gallons, Per Foot): 0.75° = 0.00; 18° = 0.0014; 14° = 0.0038; 54° = 0.004; 38° = 0.0016; 12° = 0.010; 56° = 0.016  PURGING EQUIPMENT CODES: B = Ballor; BP = Bladder Pump; ESP = Electic Submersible Pump; O = 0.009; 12° = 0.010; 56° = 0.016  SAMPLING DATA  SAMPLE OF (PRINT) AFFALATION: A 1.41 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                |                 |                 |                                                  |            |              |                   |                                                  |               |                  |                  |            |            |                     |                 |                                                  |
| WELL CAPACITY (Gallons Per Foot): 0.75° = 0.02; 1° = 0.04; 1.25° = 0.06; 2° = 0.16; 3° = 0.37; 4° = 0.05; 5° = 1.02; 6° = 1.47; 12° = 5.88  TUBING INSIDE DIA, CAPACITY (Gallons, Per Foot): 0.75° = 0.00; 18° = 0.0014; 14° = 0.0038; 54° = 0.004; 38° = 0.0016; 12° = 0.010; 56° = 0.016  PURGING EQUIPMENT CODES: B = Ballor; BP = Bladder Pump; ESP = Electic Submersible Pump; O = 0.009; 12° = 0.010; 56° = 0.016  SAMPLING DATA  SAMPLE OF (PRINT) AFFALATION: A 1.41 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                |                 |                 |                                                  |            |              |                   |                                                  |               |                  |                  |            |            |                     |                 |                                                  |
| WELL CAPACITY (Gallons Per Foot): 0.75° = 0.02; 1° = 0.04; 1.25° = 0.06; 2° = 0.16; 3° = 0.37; 4° = 0.05; 5° = 1.02; 6° = 1.47; 12° = 5.88  TUBING INSIDE DIA, CAPACITY (Gallons, Per Foot): 0.75° = 0.00; 18° = 0.0014; 14° = 0.0038; 54° = 0.004; 38° = 0.0016; 12° = 0.010; 56° = 0.016  PURGING EQUIPMENT CODES: B = Ballor; BP = Bladder Pump; ESP = Electic Submersible Pump; O = 0.009; 12° = 0.010; 56° = 0.016  SAMPLING DATA  SAMPLE OF (PRINT) AFFALATION: A 1.41 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                |                 |                 | $\neg$                                           |            |              | $\overline{\Box}$ |                                                  |               |                  |                  |            |            |                     | ļ               |                                                  |
| WELL CAPACHY (YOUR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR C   |                                                 |                |                 |                 |                                                  |            | Vag.         |                   |                                                  |               |                  |                  |            |            |                     |                 | ļ                                                |
| WELL CAPACHY (YOUR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR C   |                                                 |                |                 |                 |                                                  |            | ļ            |                   | _                                                |               |                  |                  |            | <u> </u>   |                     | -               |                                                  |
| WELL CAPACHY (YOUR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR C   |                                                 |                |                 |                 |                                                  |            |              |                   |                                                  | _             |                  |                  |            | <u> </u>   |                     | <del> </del>    |                                                  |
| WELL CAPACHY (YOUR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR C   |                                                 |                |                 |                 |                                                  |            | ļ            |                   | <del>                                     </del> |               | -                | $\rightarrow$    | _          | <u> </u>   |                     | -               |                                                  |
| WELL CAPACHY (YOUR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR COLUMN FOR C   |                                                 |                |                 |                 |                                                  |            | <u></u>      |                   | <del> </del> -                                   |               | ļ                |                  |            |            |                     |                 | <del>                                     </del> |
| TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0008; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.0014; 3/8" = 0.005; 1/2" = 0.016; 5/8" = 0.016  PDRGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Bladder Pump; BP = Peristalitic Pump; O = Other (Specify)  SAMPLING DATA  SAMPLING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Bladder Submersible Pump; O = Other (Specify)  PDRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WELL OVEROLEN (C                                | allege Bor Foo | 0. 0.75. = 0.00 | ): 1° = 0.04    | · 12                                             | 5" = 0.06: | 2' = 0.16    | i: 3° = 0.37;     | 4" = 0,6                                         | i5; 5°=       | 1.02; 6°=        | = 1,47;          | 12" = 5.8  | 8          |                     | $\overline{}$   |                                                  |
| SAMPLING DATA  SAMPLED BY (PRINT) AFFLATION: A: WITES  ALTERIA CODE: PE  SAMPLED BY (PRINT) AFFLATION: A: WITES  SAMPLED BY (PRINT) AFFLATION: A: WITES  SAMPLED BY (PRINT) AFFLATION: A: WITES  FIELD DECONTAMINATION: PUMP Y (N ) TUBING Y (N (replaced))  SAMPLE CONTAMINATION: PUMP Y (N ) TUBING Y (N (replaced))  SAMPLE POWER SPECIFICATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  NITENDED ANALYSIS ANDIOR SAMPLING EQUIPMENT INTENDED ANALYSIS ANDIOR SAMPLED ANALYSI |                                                 |                |                 | 0.0006; 3       | /16" = 0.                                        | 0014;      | 1/4" = 0.002 | 6; 5/16° = 0.     |                                                  |               |                  |                  |            |            |                     |                 |                                                  |
| SAMPLED BY (PRINT)! AFFILIATION: M. nc 1350 (AC) SAMPLER(S) SIGNATURE(S): WIND SAMPLED AT: 16 14 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 ENDEAT: 16 18 END | PURGING EQUIPM                                  | ENT CODES:     | B = Bailer;     | BP = Blad       | der Pum                                          | ip; E      |              |                   |                                                  | PP = Pe       | nstaluc Pum      | ρ; '             | o ≃ Omer ( | эреску,    |                     |                 |                                                  |
| PUMP OR TUBING DEPTH IN WELL (feet):  FIELD DECONTAMINATION: PUMP Y (N replaced)  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PROBLEMATION: USED  ADDED IN FIELD (ni.)  FINAL pH (Starnerd Undex)  INTERDED ANALYSIS ANDOR SAMPLING EQUIPMENT INTERDED ANALYSIS ANDOR SAMPLING EQUIPMENT CODE: FOR minutely  FREMARKS:  MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylane; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristalic Pump; B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric Submersible Pump; SEP = Electric | SAMPLED BY (PRINT) / /                          | AFFILIATION: A | will's          | [ASI]           | SAMPLE                                           | R(S) SIGNA |              | <del>47</del>     |                                                  |               |                  | SAMPL<br>INITIAT | ED AT: 16  | 14         |                     | 16              | 18                                               |
| PELO DECONTAMBRATION: PLMP Y N TUBRIG Y N (replaced)  SAMPLE DOCORE  SAMPLE POSSERVATION  SAMPLE PRESERVATION  NITERIOED ANALYSIS AND/OR SAMPLING EQUIPMENT CODE  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standrd Units)  FINAL pH (Standr |                                                 | <u> </u>       | <u>, usimo</u>  | (1130)          | TUBING                                           |            |              |                   |                                                  | FIE           | D-FILTERED:      |                  | Υ (        | $\sim$     | Fülter Size         |                 | mm                                               |
| SAMPLE POLICIES  SAMPLE POLICIES  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  TOTAL VOL.  ADDED IN FIELD (ml.)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (Started Units)  FINAL pH (S | 1                                               | •              |                 |                 | <u> </u>                                         |            |              | Y (Waste          | =                                                |               | Filtration Equip |                  |            | ( (        | 7                   |                 |                                                  |
| REMARKS:    MATERIAL CODEs: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polyyropylene; S = Silicone; T = Tellon; O = Other (Specify)   SAMPLING EQUIPMENT CODEs: APP = After Portistalic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; SM = Straw Method (Tubing Gravity Orain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAM                                             |                |                 | N: PUMP         | Ť                                                |            |              |                   |                                                  |               |                  |                  |            |            | <u> </u>            | s               | AMPLE PUMP                                       |
| REMARKS:  MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristalitic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PPP = Reverse Flow Peristalitic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                |                 | VOLUME (mL)     | PRI                                              |            | - 1          |                   |                                                  | FINAL pH (    | Stanard Units)   | INTEN            |            |            | SAMPLING EQ<br>CODE | UIPMENT         | LOW RATE (ml.<br>per minute)                     |
| REMARKS:  MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                |                 |                 |                                                  | USED       |              | ADDED IN FIELD (  | ni.)                                             |               |                  | <del> </del>     |            |            |                     | ,               | 160                                              |
| REMARKS:  MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;  PEPP = Reverse Flow Peristallic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6W-015                                          | 2              | PE              |                 |                                                  |            |              |                   |                                                  |               | いつひ              |                  |            |            |                     |                 |                                                  |
| REMARKS:  MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylane; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;  PEPP = Reverse Flow Peristaltic Pump; Sfraw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                |                 |                 |                                                  |            |              | Jan .             |                                                  |               |                  | `                | <b>\</b>   |            |                     |                 |                                                  |
| REMARKS:  MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylane; S = Silicone; T = Teflon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;  PEPP = Reverse Flow Peristaltic Pump; Sfraw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 | <u> </u>       |                 |                 |                                                  |            |              |                   | $\prec$                                          |               |                  | ╁                |            | _          | $\leftarrow$        |                 |                                                  |
| MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Tellon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;  SPEP = Reverse Flow Peristallic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                | 2               |                 | ├                                                |            |              |                   | <del>- 1</del>                                   | $\overline{}$ |                  | ╁┈               |            |            | 100                 | <b>&gt;</b>     |                                                  |
| MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Tellon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;  SPEP = Reverse Flow Peristallic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                | <u> </u>        | 7               | <del>                                     </del> |            |              |                   |                                                  |               |                  | <u> </u>         |            |            | <u> </u>            |                 |                                                  |
| MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Tellon; O = Other (Specify)  SAMPLING EQUIPMENT CODES: APP = After Peristallic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;  SPEP = Reverse Flow Peristallic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 | .L             |                 |                 |                                                  | ,          | 1            |                   |                                                  |               |                  | 1                |            |            |                     | <u></u>         |                                                  |
| MATERIAL CODES: AG = Arteer Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Gl | REMARKS:                                        |                |                 |                 |                                                  |            |              |                   |                                                  |               |                  |                  |            |            |                     |                 |                                                  |
| MATERIAL CODES: AG = Arteer Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Glass, CG = Gl |                                                 |                |                 |                 |                                                  |            |              |                   |                                                  |               |                  |                  |            |            |                     |                 |                                                  |
| SAMPLING EQUIPMENT CODES, REPD = Reverse Flow Peristatiic Pump: SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |                |                 |                 |                                                  |            |              |                   |                                                  |               |                  |                  |            | (Specify   | '}                  |                 |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLING EUUIP                                  | MEINE CODES    |                 |                 | eristaltic                                       | Pump:      | SM = Stra    | w Method (Tubi    | ng Gravity                                       | y Drain);     | O = Othe         |                  |            |            |                     |                 |                                                  |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

M2027.0003

Ja 05/20

C-159



| NOTE   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   | installation: Ellsworth              | h AFB M20      | 27.0003         |                                                  |                  |                              | Sit          | * Sitc                                           | 11-           | SPRH          | 7~0                                    | 55(£        | TEST          | KREM              |              |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|-----------------|--------------------------------------------------|------------------|------------------------------|--------------|--------------------------------------------------|---------------|---------------|----------------------------------------|-------------|---------------|-------------------|--------------|--------------------------------------------------|
| PURCHNO DATA  PURCH CALLAGE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL  | WELL NO: MW                          | 18PFC          | 1102            |                                                  |                  | s                            | AMPLE ID:    | ELSWI                                            | (11-          | 062- C        | w 6                                    | 15          | OATE:         | ५ - २०            | -18          |                                                  |
| 126.3   10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5   |                                      |                |                 |                                                  |                  |                              | P            | URGING DA                                        | TΑ            |               |                                        |             |               |                   |              |                                                  |
| 126.3   10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5   | NELL                                 | 3.0            | (1              | USING                                            | \/\              | (b) WE                       | LL SCREEN IN | TERVAL DEPTH:                                    |               | STATIC DEPT   | H STOCK                                | 10.91       | Pi            | JRGE PUMP TYPE    | 0            |                                                  |
| 126.3   10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5    10.5   | NAMETER (INCRES):<br>WELL VOLUME PUF | RGE: 1 WELL    | .VOLUME≃ (      | TOTAL WEL                                        | L DEPT           | H BTOC                       | STATIC DE    | EPTH TO WAT                                      | R) X          | WELL CA       | PACITY                                 | 101 11      | ļº.           | K BALEK;          |              |                                                  |
| Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   C   |                                      |                |                 |                                                  |                  |                              |              |                                                  |               |               |                                        |             |               |                   |              |                                                  |
| March   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sectio   | (, /                                 | ,,             |                 | , 90°                                            | 7                | . 10                         | .71." "      | 0.167                                            |               | 112           | כס                                     | a-          |               |                   |              |                                                  |
| TYPE, PRINGE OR TURNOS    Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOCK   Fig. 18 INVALS, DOC | EQUIPMENT VOLUM                      | VIE PURGE: 1   | EQUIPMENT       | VOL. = PUM                                       | P VOLU           | ME + (TUB                    | NG CAPAC     | TY X                                             | UBING         | LENGTH) +     | FLOW CE                                | L VOLUME    |               |                   |              |                                                  |
| The second point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The present point   The p   | (only fill out if ap                 | pticable)      | N               | IA =                                             |                  | gal <u>= (</u>               | x            | Ft)                                              | +             | gal           | ш                                      | 93          | in            |                   |              |                                                  |
| Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   Personal Description   | NETTÀ PILLE OR TITUR                 | 9              |                 |                                                  | IP OR TU         | BING 4                       |              | PURC                                             | IING          |               |                                        | PURGI       | NG            | TOTAL VOLUME      |              | -                                                |
| THE PROBLEM PRINCES BY WATER OF THE PROBLEM PRINCES BY WATER OF THE PROBLEM PRINCES BY WATER BY BENCHMAN TON PAPER OF THE PROBLEM PRINCES COUNTER BY WATER BY BENCHMAN TON PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAPER OF THE PAP | DEPTH IN WELL (feet):                | { '            |                 | DEPTH IN                                         | WELL (fee        | et):                         |              | INITIA                                           | TEO AT:       |               |                                        |             |               | PURGED (gallor    | s): <i>O</i> | T                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 741.5                                |                | j               | 1                                                |                  |                              | {standard    | 1                                                | _ ا           | COND.         | ŧ                                      |             | 1             | •                 |              | 1                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rme.                                 |                | PURGE           | io a                                             |                  | WATER                        | units)       | ``"                                              | m             | S/cm          | 1                                      |             | "             | <b>(</b> 1-1-1-1) | (======      | (0.000.100)                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14422                                |                | Inaligh         |                                                  | 64               |                              |              | <del>                                     </del> | Ι.            |               | -                                      |             | _   -         |                   | Clear        | none                                             |
| HACK   0.14   0.52   0.54   1.05   7.95   10.4   0.40   1.40   17.4   30.4     HACK   0.14   0.40   0.00   11.05   7.93   10.3   0.40   0.79   167.3   49.9     HACK   0.12   0.10   0.00   11.05   7.93   10.3   0.40   0.79   167.3   49.9     HACK   0.00   0.00   11.05   7.93   10.3   0.40   0.79   167.3   49.9     HACK   0.00   0.00   11.05   7.93   10.3   0.40   0.79   167.3   49.9     HACK   0.00   0.00   11.05   7.93   10.3   0.40   0.77   167.3   49.9     HACK   0.00   0.00   11.05   7.93   10.3   0.40   0.77   167.3   49.9     HACK   0.00   0.00   11.05   7.93   10.3   0.40   0.77   167.3   49.9     HACK   0.00   0.00   11.05   7.93   10.3   0.40   0.77   167.3   49.9     HACK   0.00   0.00   11.05   7.93   10.3   0.40   0.77   167.3     HACK   0.00   0.00   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00     HACK   0.00   0.00   0.00   0.00       | 14412                                | 0.11.          | ~ 10            |                                                  |                  |                              | 2.0          | 10.9                                             | 0.4           | 104           | 1.4                                    | 5 176       | ,9 1          | 31                | 1            | 1                                                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1460                                 |                | <del></del>     | <del></del>                                      |                  |                              |              |                                                  |               |               |                                        |             |               |                   |              | <del>                                     </del> |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1425                                 |                |                 |                                                  |                  | 11.05                        |              |                                                  |               |               | 0.                                     | 20 167      |               |                   |              |                                                  |
| VELL CAPACITY (Gallors Per Feor): 0.75" = 0.02; 11 = 0.04; 1.25" = 0.08; 2" = 0.18; 3" = 0.71; 4" = 0.65; 5" = 1.02; 6" = 1.41; 12" = 5.88   USINO IMPRIED AND APPLICATION (Galleris): 100" = 0.0016; 316" = 0.0016; 110" = 0.0016; 110" = 0.0016; 110" = 0.016; 110" = 0.0016; 110" = 0.016; 110" = 0.0016; 110" = 0.016; 110" = 0.0016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" = 0.016; 110" =   | 1453                                 | <del></del>    | <del></del>     | -                                                |                  |                              |              |                                                  | U             | -410          | 0.:                                    |             |               | 5.2               | $\Box$       |                                                  |
| VELL CAPACITY (Gallons Per Feor): 0.75' = 0.02; 11' = 0.04; 1.25' = 0.05; 2' = 0.18; 3' = 0.37; 4' = 0.65; 5' = 1.02; 6' = 1.47; 12' = 5.85  UBINON INDICE DIA, CAPACITY (Gallon): 110' = 0.00006; 31'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6' = 0.0014; 14" = 0.0005; 51'6'' = 0.0014; 14" = 0.0005; 51'6'' = 0.0014; 14" = 0.0005; 51'6'' = 0.0005; 51'6'' = 0.0005; 51'6'' = 0.0005; 51'6'' = 0.0005; 51'6'' = 0.0005; 51'6'' = 0.0005; 51'6'' = 0.0005; 51'6'' = 0.0005; 51'6'' = 0.0005; 51'6'' = 0.0005; 51'6'' = 0.0005; 51'6'' = 0.0 |                                      |                |                 |                                                  |                  |                              |              |                                                  |               |               | 0.7                                    |             | <del></del>   | 73.2              | 1            | <del>   -</del>                                  |
| UBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0008; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.004; 3/6" = 0.008; 1/2" = 0.010; 5/8" = 0.016  URGING EQUIPMENT CODES: B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristallic Pump; O = Other (Specify)  SAMPLING DATA  AMPLED BY (FRINT) / AFFILIATION:   Mil. Mr.   Mil.   Mil. Mr.   Mil.   Mil. Mr.   Mil.   Mil.   Mil. Mr.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.    |                                      | 0,00           | V.W.            | <del>ٽ اٽ</del>                                  | <del></del>      | 11100                        | <u> </u>     | 1                                                | Ť             |               |                                        |             |               |                   |              |                                                  |
| UBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0008; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.004; 3/6" = 0.008; 1/2" = 0.010; 5/8" = 0.016  URGING EQUIPMENT CODES: B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristallic Pump; O = Other (Specify)  SAMPLING DATA  AMPLED BY (FRINT) / AFFILIATION:   Mil. Mr.   Mil.   Mil. Mr.   Mil.   Mil. Mr.   Mil.   Mil.   Mil. Mr.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.    |                                      |                |                 |                                                  | $\neg$           |                              |              | · · · · · · · · · · · · · · · · · · ·            |               |               |                                        |             |               |                   |              |                                                  |
| UBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0008; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.004; 3/6" = 0.008; 1/2" = 0.010; 5/8" = 0.016  URGING EQUIPMENT CODES: B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristallic Pump; O = Other (Specify)  SAMPLING DATA  AMPLED BY (FRINT) / AFFILIATION:   Mil. Mr.   Mil.   Mil. Mr.   Mil.   Mil. Mr.   Mil.   Mil.   Mil. Mr.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.    |                                      |                |                 |                                                  | =                | _                            |              | 1                                                | <u> </u>      |               |                                        |             |               |                   |              |                                                  |
| UBING INSIDE DIA. CAPACITY (Gall/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.004; 3/8" = 0.008; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.016; 1/2" = 0.016; 1/2" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1 |                                      |                |                 |                                                  |                  | -                            |              | $\bot$                                           | 17            | )             |                                        |             |               |                   |              |                                                  |
| UBING INSIDE DIA. CAPACITY (Gall/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.004; 3/8" = 0.008; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.016; 1/2" = 0.016; 1/2" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 5/8" = 0.016; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1/2" = 0.010; 1 |                                      |                |                 |                                                  | $\neg$           |                              |              |                                                  |               |               |                                        |             |               |                   |              |                                                  |
| UBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0008; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.004; 3/6" = 0.008; 1/2" = 0.010; 5/8" = 0.016  URGING EQUIPMENT CODES: B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristallic Pump; O = Other (Specify)  SAMPLING DATA  AMPLED BY (FRINT) / AFFILIATION:   Mil. Mr.   Mil.   Mil. Mr.   Mil.   Mil. Mr.   Mil.   Mil.   Mil. Mr.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.    |                                      |                |                 |                                                  | $\neg$           |                              |              |                                                  | Ĺ             |               |                                        |             |               |                   |              |                                                  |
| UBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0008; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.004; 3/6" = 0.008; 1/2" = 0.010; 5/8" = 0.016  URGING EQUIPMENT CODES: B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristallic Pump; O = Other (Specify)  SAMPLING DATA  AMPLED BY (FRINT) / AFFILIATION:   Mil. Mr.   Mil.   Mil. Mr.   Mil.   Mil. Mr.   Mil.   Mil.   Mil. Mr.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.    |                                      |                |                 |                                                  |                  |                              |              |                                                  |               |               |                                        |             |               |                   |              |                                                  |
| UBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.0014; 3/8" = 0.008; 1/2" = 0.010; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5 |                                      |                |                 |                                                  | $\dashv$         |                              |              | <del> </del>                                     |               |               |                                        |             |               |                   |              |                                                  |
| UBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0008; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.004; 3/6" = 0.008; 1/2" = 0.010; 5/8" = 0.016  URGING EQUIPMENT CODES: B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristallic Pump; O = Other (Specify)  SAMPLING DATA  AMPLED BY (FRINT) / AFFILIATION:   Mil. Mr.   Mil.   Mil. Mr.   Mil.   Mil. Mr.   Mil.   Mil.   Mil. Mr.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.    |                                      |                |                 |                                                  | $\neg$           |                              | <u> </u>     |                                                  |               |               |                                        |             | $\neg$        |                   |              |                                                  |
| UBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0008; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.004; 3/6" = 0.008; 1/2" = 0.010; 5/8" = 0.016  URGING EQUIPMENT CODES: B = Baller; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristallic Pump; O = Other (Specify)  SAMPLING DATA  AMPLED BY (FRINT) / AFFILIATION:   Mil. Mr.   Mil.   Mil. Mr.   Mil.   Mil. Mr.   Mil.   Mil.   Mil. Mr.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.   Mil.    |                                      |                |                 |                                                  |                  |                              |              | <u> </u>                                         |               |               |                                        |             |               |                   |              |                                                  |
| UBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0028; 5/16" = 0.0014; 3/8" = 0.008; 1/2" = 0.010; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5/8" = 0.016; 5 |                                      |                |                 |                                                  |                  |                              |              |                                                  |               |               |                                        |             |               |                   | **********   |                                                  |
| PP = Bailer; BP = Bladder Pump; ESP = Elactifs Submersible Pump; PP = Peristallic Pump; O = Cliher (Specify)  SAMPLING DATA  AMPLED BY (PRINT) / AFFILIATION: PUMP / N TUBING / N (replaced)  SAMPLE CONTAINERS PECIFICATION  SAMPLE CONTAINERS MATERIAL CODE: PE PERISERVATIVE  SAMPLE DECOCE B CONTAINERS MATERIAL CODE / VOLUME (m.)  PRESERVATIVE  USED  ADDED IN FIELD (m.)  FINAL ph (Stuard Units)  FINAL ph (Stuard Units)  FINAL ph (Stuard Units)  EPA 537M  APPL  ISO  SAMPLER (Specify)  SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLE PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  FOR YEAR SAMPLER PUMP  F | VELL CAPACITY (G                     | allons Per Foo | t): 0.75' ≈ 0.0 | 02; 1° = 0.1                                     | 04; 1.           | 25" = 0.06;                  | 2" = 0.16;   | 3" = 0,37;                                       | 4" = C        | ).65; 5" =    | 1.02; 6" =                             | 1.47; 12*   | = 5.88        |                   |              |                                                  |
| SAMPLING DATA  AMPLED BY (PRINT) / AFFILIATION: THE COLOR OF TUBING SAMPLER (S) SIGNATURE (S): MATERIAL CODE: PE  TUBING MATERIAL CODE: PE  FIELD DECONTAMINATION: PUMP Y N TUBING Y N (replaced)  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  INTENDED ANALYSIS AND/OR SAMPLING EQUIPMENT FLOW RATE (mt)  PRESERVATIVE USED ADDED IN FIELD (mt.)  SAMPLE DATA  FINAL PH (Stand Units)  FINAL PH (Stand Units)  EPA 537M  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP (500  APP |                                      |                |                 |                                                  |                  |                              |              |                                                  |               |               |                                        |             |               |                   |              |                                                  |
| TUBING EPTH IN WELL (feet):  FIELD DECONTAMINATION:  PUMP FIELD DECONTAMINATION:  PUMP FIELD DECONTAMINATION:  PUMP FIELD DECONTAMINATION:  PUMP FIELD DECONTAMINATION:  PUMP FIELD DECONTAMINATION:  PUMP FIELD DECONTAMINATION:  PUMP FIELD DECONTAMINATION:  PUMP FIELD DECONTAMINATION:  PUMP FIELD DECONTAMINATION:  PUMP FIELD PETH V (replaced)  DUPLICATE:  V N FINAL PH (Stunard Uritin)  FINAL PH (Stunard Uritin)  FINAL PH (Stunard Uritin)  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL PH  FINAL | URGING EQUIPME                       | INT CODES:     | b = baller;     | BP = 818                                         | idder Pu         | mp; £8                       |              |                                                  |               | PP = Per      | stalic Puni                            | ); U=U      | пет (ореску)  |                   |              |                                                  |
| UMP OR TUBING EPTH IN WELL (feet):  FIELD DECONTAMINATION:  PUMP Y N TUBING SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PUMP SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SA | AMPLED BY (PRINT) / A                | FFILIATION:    | willis /        | 121                                              | SAMPL            | ER(S) SIGNAT                 | URE(S):      | A                                                | $\overline{}$ |               |                                        | SAMPLING    | 1500          | 1                 | 150          | <u> </u>                                         |
| PELL (feet):  PIELD DECONTAMINATION: PUMP Y N TUBING Y N (replaced)  SAMPLE CONTAINER SPECIFICATION  SAMPLE DCODE  PAESERVATIVE  SAMPLE DCODE  PAESERVATIVE  SAMPLE DCODE  PAESERVATIVE  SAMPLE DCODE  PAESERVATIVE  SAMPLE DCODE  PAESERVATIVE  SAMPLE DCODE  SAMPLE DCODE  PAESERVATIVE  SAMPLE DCODE  PAESERVATIVE  SAMPLE DCODE  SAMPLE DCODE  SAMPLE DCODE  SAMPLE DCODE  SAMPLE DATAL VOL  ADDED IN FIELD (mL)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FINAL pH (Stanard Units)  FI |                                      |                | Weilson (       | 77-)                                             | TUBING           | 3                            |              | //                                               |               | FIELI         | D-FILTERED:                            |             |               |                   | ,            |                                                  |
| SAMPLE PUMP SAMPLE DUMP SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  SAMPLE PRESERVATION  TOTAL VOL. ADDED IN FIELD (mil.)  FINAL pH (Standrd Units)  EPA 537M  APP  (50)  EMARKS:  ATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Tellon; O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | 15             | )               |                                                  | 1                |                              |              |                                                  |               |               | Filtration Equipr                      |             |               |                   |              |                                                  |
| SAUPLEID CODE B CONTAINERS MATERIAL CODE VOLUME (ml.) PRESERVATIVE USED ADDED IN FIELD (ml.) FINAL pH (Stanard Units) METHOD ANALYSIS AND/OR SAMPLING EQUIPMENT FLOW RATE (ml.) PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                |                 | ON: PUMF                                         | , <sub>Y</sub> ( | и )                          |              | - ' '                                            |               |               |                                        | DUPLICATE:  | Υ             |                   |              |                                                  |
| SMORED CODE DECORTAINERS MATERIAL CODE VOLUME (ml.) PRESERVATIVE USED ADDED IN FIELD (ml.) FINAL pH (Stanard Units) METHOD CODE Per minute)  EMARKS:  IATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMP                                 | LE CONTAINER 8 | PECIFICATION    |                                                  | <u> </u>         | $\underline{\hspace{0.1cm}}$ |              |                                                  | TION          | T             |                                        | INTENDED AN | ALYSIS AND/OF | SAMPLING EQL      |              |                                                  |
| EMARKS:  AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE (DICODE                       | # CONTAINERS   | MATERIAL CODE   | VOLUME (ml.                                      | ) P              |                              | - 1          |                                                  |               | FINAL pH (S   | itanard Units)                         |             |               |                   |              |                                                  |
| EMARKS:  IATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7941811 -AND-A                       |                | <del> </del>    | 1) ( .                                           | $\vdash$         | USED                         | ^            | DUED IN HELD (I                                  |               | <b></b>       |                                        |             |               |                   |              |                                                  |
| EMARKS:  IATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | 2              | PE              | rasac                                            | `                |                              |              |                                                  |               |               |                                        | EPA         | 537M          | APP               |              | 50                                               |
| EMARKS:  IATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>``</del>                        |                |                 | 1000                                             | ╁                |                              | $\forall$    |                                                  |               |               |                                        |             |               | 1                 |              |                                                  |
| IATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Sillicone; T = Teflon; O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                |                 |                                                  |                  |                              | ?            | Sow                                              |               |               |                                        | _           |               |                   | 1            |                                                  |
| IATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Sillicone; T = Teflon; O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | $\overline{}$  | 5               |                                                  | 1                |                              |              | _                                                | $\overline{}$ | i             | ······································ |             |               |                   |              |                                                  |
| IATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Sillicone; T = Teflon; O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | 2              |                 | <del>                                     </del> | 1                |                              |              |                                                  |               |               |                                        |             |               | 7                 |              |                                                  |
| IATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Sillicone; T = Teflon; O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                |                 | $\overline{}$                                    | 1                |                              |              |                                                  |               |               | _                                      |             |               |                   |              |                                                  |
| IATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Sillicone; T = Teflon; O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                |                 | ·                                                |                  |                              |              |                                                  |               | <u> </u>      |                                        |             |               | .E                |              |                                                  |
| IATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Sillicone; T = Teflon; O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EMARKS:                              |                |                 |                                                  |                  |                              |              |                                                  |               |               |                                        |             |               |                   |              |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                |                 |                                                  |                  |                              |              |                                                  |               |               |                                        |             |               |                   |              | :                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATERIAL CODES:                       | AG = An        | nber Glass:     | CG = Clear C                                     | Blass:           | PE = Polvi                   | sthyjene:    | PP = Polyprop                                    | ylene:        | S = Silicon   | e; T≖Tef                               | lon; O=O    | ther (Specify | l                 |              |                                                  |
| AMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Baller; BP = 8ladder Pump; ESP = Electric Submersible Pump;  RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                | APP = Afte      | er Peristallic                                   | Pump;            | B = Bail                     | er; BP =     | Bladder Pump                                     | Ë             | SP = Electric | Submersib                              | e Pump;     |               |                   |              |                                                  |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

M2027.0003

An 05/20

20 C-160



| Installation: Ellsworth                       | h AFB M202                    | 17.0003          |                                  |                                                |                        | Site                         | · Sife                        | (1 -                                             | - SPKI                       | AY NO              | 770              | LE 1                     | <b>₹</b> \$1  | MEE                        | 7          |                             |
|-----------------------------------------------|-------------------------------|------------------|----------------------------------|------------------------------------------------|------------------------|------------------------------|-------------------------------|--------------------------------------------------|------------------------------|--------------------|------------------|--------------------------|---------------|----------------------------|------------|-----------------------------|
| MELLINO: WW(                                  | 3PFC 11                       | 03               |                                  |                                                | S/                     | MPLE ID: (                   | · Sife                        | 11                                               | ৩০ <u>২</u> -                | 6W-                | 07               | <b>≥</b> 0               | TE: 5-        | -20-1                      | 8          |                             |
| 1                                             |                               |                  |                                  |                                                |                        | PU                           | JRGING DA                     | TA                                               |                              |                    |                  |                          |               |                            |            |                             |
| WELL<br>DIAMETER (Inches):<br>WELL VOLUME PUR | 2.0"                          | TU<br>Di         | JBING<br>AMETER (Inche           | <sub>ه):</sub> الأو                            | (60 XS.                | L SCREEN IN                  | IS.IS ft                      |                                                  | STATIC DEPTI<br>TO WATER (fo | H<br>set BTOC);    | 3.               | 55                       |               | RGE PUMP TYPE<br>BAILER:   | PP         | •                           |
| WELL VOLUME PUR                               | RGE: 1 WELL                   |                  |                                  |                                                |                        |                              |                               |                                                  |                              |                    |                  |                          |               |                            |            |                             |
| (only fill out if ap                          | p%cable)                      | =                | 15,                              | {                                              | Ft -13.                | <b>\$</b> 5 ₽) ×             | 0.163                         | gal/lit                                          | - ( ·                        | .93                | gal              |                          |               |                            |            |                             |
| EQUIPMENT VOLUM<br>(only fill out if ap       |                               | THAMPIUDA        |                                  | VOLU                                           | JME+(TUB)              | NG CAPACI                    | TY X T                        | UBING                                            | LENGTH) +                    | FLOW CE            | L VOL            | gal (                    | An            |                            |            |                             |
| NITIAL PUMP OR TUBIN                          | G                             | •                | FINAL PUM                        | P OR TU                                        | JBING                  | <u> </u>                     | PURG                          | ING                                              | 1/01                         | t                  |                  | PURGING                  | I COLL        | TOTAL VOLUM                |            | 410                         |
| DEPTH IN WELL (feet):                         |                               | COMOL            | DEPTH IN I                       |                                                |                        | <i>∂</i> 0<br>™              |                               | TED AT:                                          | 1521                         | DISSOLV            | ren.             | ENDED AT:                |               | PURGED (gallor<br>JROIDITY | s): COLOR  | QO<br>ODOR                  |
| пы∈                                           | VOLUME<br>PURGED<br>(gallons) | VOLUMI<br>PURGE  | E 6                              | ATE<br>spm)                                    | TO<br>WATER            | eri<br>(standard<br>धर्मा(s) | (°c)                          |                                                  | µSTCHF €                     | OXYGE<br>nig/L     |                  | (mV)                     |               | (NTUs)                     | (describe) | 1                           |
| 1524                                          |                               | tualions         |                                  | ۳۵                                             | (3,55)                 | 1                            |                               | -                                                |                              |                    | _                |                          |               |                            | Leak       | 1014                        |
| 1528                                          | 0.14                          | 7).0             | 0                                | ٠οЧ                                            | 14.10                  | 7.78                         |                               |                                                  | . 95                         | 4.4                | C                | 148.9                    |               | 8.1                        | 1          |                             |
| 1530                                          | 80.0                          | 0.2              | <u>0</u>                         | νσ.                                            | 14.45                  |                              | 18.5                          |                                                  | 95                           | 4.0                |                  | -150.1                   | -             | 3                          | ᆚ          |                             |
| 1532                                          | 0.08                          | 0.3              |                                  | 91                                             | 14.8                   | 7.87                         |                               |                                                  | .94                          | 3.9                |                  | 7/58.3                   |               | <u> 36</u>                 | Cloudy     |                             |
| 1634                                          | 0.03                          | 0 .년(            | ) 0                              | .64                                            | 14.91                  | 7.85                         | 10.4                          | 0                                                | .94                          | 4.6                | 00               | 170.6                    | l l           | 92                         | TO         | 4                           |
|                                               |                               |                  |                                  |                                                |                        |                              | +                             | ······································           |                              |                    |                  |                          |               |                            |            |                             |
|                                               |                               |                  |                                  |                                                |                        |                              | <u> </u>                      |                                                  |                              |                    |                  |                          |               |                            |            |                             |
|                                               |                               |                  |                                  |                                                |                        | /                            |                               |                                                  |                              |                    |                  |                          |               |                            |            |                             |
|                                               |                               |                  |                                  |                                                |                        | Z                            | LN Y                          | ,                                                |                              |                    |                  |                          |               |                            |            |                             |
|                                               |                               |                  |                                  |                                                |                        |                              |                               |                                                  |                              |                    |                  |                          |               |                            |            |                             |
|                                               |                               |                  |                                  |                                                |                        |                              |                               |                                                  |                              |                    |                  |                          |               |                            |            |                             |
|                                               |                               |                  |                                  |                                                |                        |                              | ļ                             |                                                  |                              |                    |                  |                          |               |                            |            |                             |
|                                               |                               |                  |                                  |                                                |                        |                              |                               |                                                  |                              |                    |                  |                          |               |                            |            |                             |
|                                               |                               |                  |                                  |                                                |                        |                              |                               |                                                  |                              |                    |                  |                          | $\rightarrow$ |                            | -          |                             |
|                                               |                               |                  |                                  |                                                |                        |                              |                               | <del>                                     </del> |                              |                    |                  |                          |               |                            |            |                             |
| WELL CAPACITY (G                              | alions Per Foo                | (): 0,75' = 0,0  | 2; 1° = 0.0                      | 4; 1.                                          | .25° = 0.06;           | 2" = 0,16;                   | 3" = 0.37;                    | 4" = 0.                                          | 85; 5° ± 1                   | 1.02; 6"=          | 1.47;            | 12" = 5.8                | 8             | ,                          |            |                             |
| TUBING INSIDE DIA                             |                               |                  |                                  |                                                | 0.0014; 1              |                              |                               |                                                  | 3/8" = 0.006                 |                    |                  | 5/8" = 0.<br>O = Other ( |               |                            |            |                             |
| PURGING EQUIPME                               |                               | B = Bailer;      | 8P = 8la                         | der Pu                                         | ımp; ES                |                              | Submersible Po<br>MPLING DA   |                                                  | PP = Pen                     | staltic Pum        | υ;               | O = Other (-             | орасну)       |                            |            |                             |
| SAMPLED BY (PRINT) / A                        | AFFILIATION: M                | 1.William        | `                                | SAMPL                                          | .ER(S) SIGNAT          | JRE(S):                      | CA-                           |                                                  |                              |                    | SAMPL<br>INITIAT | ED AT:                   | 524           | SAMPLING<br>ENDED AT:      | 152        | 6                           |
| PUMP OR TUBING                                | _                             |                  |                                  | TUBING                                         | G.                     |                              |                               |                                                  | FIELD                        | D-FILTERED:        | L                | Y (                      | N             | Fitter Size                |            | mm                          |
| DEPTH IN WELL (feet):                         |                               | DECONTAMINATIO   | ON: PUMP                         | <u>.                                      </u> | RIAL CODE: PE          | TUBING                       | Y N (replace                  | ~ ~                                              |                              | Pitration Equipo   | nent Typ         |                          | N             |                            |            |                             |
| SAMP                                          | LE CONTAINER S                |                  | JH. PORP                         | Τ                                              | <u> </u>               |                              | MPLE PRESERVA                 |                                                  |                              |                    |                  |                          |               |                            |            | MPLE PUMP                   |
| SAMPLE ID CODE                                | # CONTAINERS                  | MATERIAL CODE    | VOLUME (mL)                      | Р                                              | RESERVATIVE            | 1                            | TOTAL VOL                     | L)                                               | FINAL pH (S                  | tanard Units)      | INTEN            | DED ANALYSII<br>METHOD   | S AND/OR      | SAMPLING EQU<br>CODE       | JIPMENT FI | .OW RATE (mL<br>per minute) |
| E(3WH11-003-                                  | 2                             | P &              | (25mL                            |                                                |                        |                              |                               |                                                  |                              |                    |                  | EPA 537M                 | !             | MPI                        | ,          | 150                         |
| CM-930                                        | 2                             | 76               | each                             | <u> </u>                                       |                        | _                            |                               |                                                  |                              |                    |                  |                          |               | 1171                       |            | 170                         |
|                                               |                               |                  |                                  |                                                |                        | >                            | SAN                           |                                                  |                              |                    |                  |                          | _             |                            |            |                             |
|                                               | -                             | <del>/ 2</del> 2 |                                  |                                                |                        |                              |                               |                                                  |                              |                    |                  |                          |               | ZZ.                        |            |                             |
|                                               |                               |                  | 4                                |                                                |                        |                              |                               |                                                  |                              |                    |                  |                          |               |                            | 2          |                             |
|                                               |                               |                  |                                  |                                                |                        |                              |                               |                                                  |                              |                    |                  |                          |               |                            |            |                             |
| REMARKS:                                      |                               |                  |                                  |                                                |                        |                              |                               |                                                  |                              |                    |                  |                          |               |                            |            |                             |
|                                               |                               |                  |                                  |                                                |                        |                              |                               |                                                  |                              |                    |                  |                          |               |                            |            |                             |
| MATERIAL CODES:<br>SAMPLING EQUIPM            |                               |                  | CG = Clear G<br>or Peristaltic F |                                                | PE = Polye<br>B = Balk |                              | PP = Polyprop<br>Bladder Pump |                                                  | S = Silicone<br>P = Electric |                    |                  | O = Other (              | Specify)      |                            |            |                             |
|                                               |                               |                  | verse Flow P                     | eristalli                                      | ic Pump;               | SM = Straw                   | Method (Tubin                 | g Gravit                                         |                              | O = Other readings | (Speci           | fy)                      |               |                            |            |                             |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

M2027.0003

OS/20 C-161

3/6/19



| Installation; Elisworl                        | h AFB M20                     | 27.0003                             |                 |                        |                | Site:                     | 5ik                                  | lá           | -13                 | wild                      | ing                   |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
|-----------------------------------------------|-------------------------------|-------------------------------------|-----------------|------------------------|----------------|---------------------------|--------------------------------------|--------------|---------------------|---------------------------|-----------------------|--------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| WELL NO: MW                                   | BIFCIA                        | 201                                 |                 |                        | S              | AMPLE ID: FZ              | 51 je<br>5WH11                       | 2-0          | 001-                | 6W-                       | 0 32                  | DA                 | TE:      | 4-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -12                                              | 7                                                |
|                                               |                               |                                     |                 |                        |                | PU                        | RGING DA                             | TA           |                     |                           |                       |                    |          | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                                                  |
| WELL  DIAMETER (inches):  WELL VOLUME PU      | 2.6"                          | TI                                  | UBING           | 1/4                    | OD 20          | LL SCREEN INT             | ERVAL DEPTH:                         |              | STATIC DEPTI        | of BTOCY                  | 3.5                   | 5                  |          | BAILER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                                                  |
| WELL VOLUME PL                                | RGE: 1 WELL                   | .VOLUME = (                         | TOTAL WE        | LL DEPT                | H BTOC -       | STATIC DE                 | TH TO WATE                           | R) X         | WELL CA             | PACITY                    | -,-                   |                    | 19.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| (only NI out if a                             |                               |                                     |                 |                        |                |                           | 0.163                                |              |                     |                           | gal                   |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| EQUIPMENT VOLU<br>(only fill out if a         |                               | EQUIPMENT '                         | VOL. = PU!<br>= |                        |                |                           | Υ Χ Τ<br><b>3</b> ζ Fι)              |              |                     | FLOW CEL                  | _                     |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| INITIAL PUMP OR TUBI<br>DEPTH IN WELL (feet): | · 3 2                         | <del></del>                         |                 | IMP OR TO              | eat);          | 32                        |                                      | TED AT:      | 121                 |                           | PU                    | RGING<br>DED AT:   |          | TOTAL VOLUM<br>PURGED (gallor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1s): 57                                          | 75                                               |
| YIME                                          | VOLUME<br>PURGEO<br>(gallons) | CUMUL<br>VOLUM<br>PURGE<br>(gallens | E<br>D          | PURGE<br>RATE<br>{gpm} | DEPTH TO WATER | pH<br>(standard<br>units) | ТЕМР.<br>( <sup>о</sup> С)           |              | COND.               | D(SSOLV<br>OXYGE)<br>mg/L | - 1                   | (mV)               | 1        | JRBIDITY<br>(NTUs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COLGR<br>(describe                               | ODOR<br>(describe)                               |
| 1210                                          |                               | - TOATIONS                          |                 | .05                    | 13.55          | -                         |                                      | -            |                     |                           |                       |                    | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Goa                                              | 17000                                            |
| 1215                                          | 0.25                          | 0.2                                 | 5 0             | ٠05                    | 13.62          | 7.45                      | 11.6                                 | 19.          | 45                  | 7.4                       | 5 1                   | 89.2               |          | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tus                                              | 1 1                                              |
| 1220                                          | 0.45                          | 0.7                                 | 0 0             | .09                    | 14.20          | 4.45                      | 11.5                                 | 19           | 50                  | 7.4                       | 0 j                   | 93.0               | _        | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                               |                                                  |
| 1225                                          | 0.85                          | 1.19                                |                 | .09                    | 19.72          | 7.50                      | 11.5                                 | 19           | .37                 | 8.37                      | 2 /                   | 94.3               | ·        | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                  |
| 1230                                          | 0.45                          | 1.6                                 |                 | .09                    | 21.01          | 7,51                      | //.3                                 | 19.          | 57                  | 8.3                       | 5 Z                   | 91.7               | 18       | <u>'5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sqcup \bot$                                    |                                                  |
| 1235                                          | 0.45                          | 2.0                                 |                 | 1.09                   | 242            | <u> 250</u>               | 11.3                                 |              | 52                  | 7.33                      |                       | 89.3               | 10       | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sqcup$                                         | $\perp \perp$                                    |
| 1245                                          | 0.9                           | 2.9                                 |                 |                        | 25.94          | 750                       | 11.4                                 |              | .53                 | 8.31                      |                       | <i>?7.0</i>        | 4        | <u>,                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | $\vdash$                                         |
| 1255                                          | 0.9                           | 3.8                                 | 2 4             | 2,09                   | 26.75          | 7.51                      | 11.9                                 | 19           | .50                 | 7.3:                      | 3 /                   | 75.2               | ر/       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u></u>                                          | -4                                               |
|                                               |                               |                                     |                 |                        |                |                           |                                      |              |                     |                           |                       |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | <u> </u>                                         |
|                                               |                               |                                     |                 |                        |                |                           |                                      | <u> </u>     |                     |                           |                       |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del> | <u> </u>                                         |
|                                               |                               | ļ                                   |                 |                        |                | -                         | <u> </u><br>                         |              |                     |                           |                       |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                | <del>                                     </del> |
| ļ                                             | <u> </u>                      | ļ                                   |                 |                        |                |                           | -                                    | $\mathbb{Z}$ | _                   |                           | _                     |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
|                                               |                               | <b></b>                             |                 |                        |                |                           |                                      | 1            | <del>) &gt;  </del> |                           |                       |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| -                                             |                               | <u> </u>                            |                 |                        |                |                           |                                      |              |                     |                           |                       |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
|                                               |                               |                                     |                 |                        |                |                           |                                      |              |                     |                           |                       |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
|                                               |                               |                                     |                 | ·····                  | <u> </u>       |                           |                                      |              |                     |                           | _                     |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| WELL CAPACITY (                               | Gallons Per Foo               | t): 0.75" = 0.0                     | 2; 1"=0         | .04; 1                 | .25" = 0.06;   | 2" = 0.16;                | 3" = 0.37;                           | 4° = 0.      | .65; 5" = 1         | ,02; 6*=                  | 1.47;                 | 12" = 5,8          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | <u> </u>                                         |
| TUBING INSIDE DIV                             |                               |                                     |                 |                        |                |                           |                                      |              | 3/8" = 0.006        |                           |                       | 5/8" = 0.          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| PURGING EQUIPM                                | ENT CODES;                    | B = Bailer;                         | BP≃BI           | adder P                | ımp; ES        |                           | Submersible Po<br>MPLING DA          |              | PP ≈ Pen            | staltic Pump              | ; U=                  | Other (S           | эреспу)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| SAMPLED BY (PRINT) /                          | AFFILIATION: A.               | willis                              |                 | SAMP                   | LER(S) SIGNAT  | URE(S):                   | M                                    |              |                     |                           | SAMPLING<br>INITIATED | 12                 | 55       | SAMPLING<br>ENDED AT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /25                                              | 7                                                |
| PUMP OR TUBING                                |                               |                                     |                 | TUBIN                  | G              | <u> </u>                  |                                      |              | FIELD               | -FILTERED:                | Υ                     |                    |          | Filter Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ······································           | mm                                               |
| DEPTH IN WELL (feet):                         | 32                            |                                     |                 |                        | RIAL CODE: PE  |                           |                                      | _            |                     | itration Equipm           |                       |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| SAN                                           | FIELD I                       | DECONTAMINATION                     | ON: PUM         | P Y (                  | N )            | TUBING                    | Y N (replace                         | HON )        |                     |                           | DUPLICATE             | Ē: Y               | ("       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s,                                               | AMPLE PUMP                                       |
| SAMPLE ID CODE                                | # CONTAINERS                  | MATERIAL CODE                       | VOLUME (m       | L) F                   | RESERVATIVE    | 1                         | TOTAL VOL                            | L)           | FINAL pH (SI        | lanard Units)             | INTENDED              | ANALYSIS<br>METHOD | AND/OR   | SAMPLING EQU<br>CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KPMENT F                                         | LOW RATE (ml.<br>per minute)                     |
| 037<br>13- 00(-en-                            | 2                             | PE                                  | 125m<br>ومدثر   |                        |                |                           |                                      |              |                     |                           | E                     | PA 537M            |          | APF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                | 350                                              |
|                                               |                               |                                     |                 |                        |                | >                         | San                                  |              |                     |                           | /                     |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
|                                               | la_                           |                                     |                 |                        |                |                           |                                      |              |                     |                           |                       |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
|                                               | 7                             |                                     |                 |                        |                |                           |                                      |              |                     |                           |                       |                    |          | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA | $\bigcup$                                        | Ĩ                                                |
|                                               |                               |                                     |                 |                        |                |                           |                                      |              |                     |                           |                       |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\rightarrow$                                    |                                                  |
| REMARKS:                                      |                               |                                     |                 |                        |                |                           |                                      |              |                     |                           |                       |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| MATERIAL CODES                                | : <u>A</u> G = An             | nber Glass; (                       | CG ≃ Clear      | Glass:                 | PE = Polye     | thylene: F                | PP = Polypropy                       | viene:       | S = Silicone        | : T=Teff                  | on; O:                | = Olher (          | Specify) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| SAMPLING EQUIP                                |                               | APP = Afte                          | r Peristaltic   | Pump;                  | B = Baile      | er, BP=I                  | Bladder Pump                         | E            | SP = Electric       | Submersible               | e Pump;               | (                  | ,,       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |
| L                                             | ······                        | RFPP ≈ Re                           | versa Flow      |                        |                |                           | dethod (Tubing<br>of variation of la |              |                     | O = Other (               | opecity)              |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

N 5/10



| WELL NO: MIA                                   | IN AFB M20:      | 202                              |                          |                                        | S                    | AMPLE ID:       | F 109                         | 16                                    | ) -c                     | <u> </u>                | <u>7.9</u>       | 28<br>88                   | TE: U  | 1221                        | 2 2 1 2           |                                              |
|------------------------------------------------|------------------|----------------------------------|--------------------------|----------------------------------------|----------------------|-----------------|-------------------------------|---------------------------------------|--------------------------|-------------------------|------------------|----------------------------|--------|-----------------------------|-------------------|----------------------------------------------|
| )v\yw                                          | BT FC            | 101                              |                          | ·········                              |                      |                 | IRGING DA                     |                                       | 7-6                      | 0L-                     | .ساد             | <u>- 1660 </u>             |        | 1661                        | 4010              |                                              |
| WELL                                           | 211              |                                  | JBING                    | . 3                                    | /2"ID "X             | LL SCREEN INT   |                               |                                       | TATIC DEPT               |                         | 25               | . 26                       |        | RGE PUMP TY                 |                   | _                                            |
| DIAMETER (inches):<br>WELL VOLUME PU           | PRGE: 1 WELL     |                                  | IAMETER (Inc<br>FOTAL WE | LL DEPT                                | H BTOC -             | STATIC DE       | <b>10 «Լ</b> ታ፣<br>PTH TO WAT |                                       | O WATER (F<br>WELL CA    |                         |                  |                            | lot    | BAILER:                     | 0.2 00.           | 2                                            |
| (only fill out if a                            |                  |                                  |                          |                                        |                      |                 |                               |                                       | ±(3.                     |                         | gal              |                            |        |                             |                   |                                              |
|                                                |                  |                                  |                          |                                        |                      |                 |                               |                                       |                          |                         |                  |                            |        |                             |                   |                                              |
| EQUIPMENT VOLU                                 |                  | EQUIPMENT Y                      | VOL. = PUł               |                                        |                      |                 | Y X<br><b>45</b> Ft)          |                                       |                          |                         |                  |                            |        |                             |                   |                                              |
|                                                |                  |                                  |                          |                                        |                      | , <b>906</b> ×  | 75 10                         |                                       | . <b>2</b> G ga          | · 0.                    | 47               |                            |        |                             |                   |                                              |
| INITIAL PUMP OR TUBIN<br>DEPTH IN WELL (feel): | <sup>16</sup> 45 |                                  |                          | UMP OR TU<br>N WELL (fa                |                      | 45              | PURC                          | SING<br>YTED AT:                      | 141                      | 4                       |                  | PURGING<br>ENDED AT:       | 5 0,2  | TOTAL VOLU!<br>PURGED (gall | 1E 3.             | 48                                           |
| TIME                                           | VOLUME<br>PURGEO | CUMUL                            | 1                        | PURGE<br>RATE                          | DEPTH<br>TO          | pH<br>(standard | TEMP.                         | C                                     | DND.                     | DHSSOL<br>OXYG          |                  | ORP<br>(mV)                | Т      | URBIOTY<br>(NTUs)           | (describe)        | - cook                                       |
| TIME                                           | (galtons)        | PURGEI<br>(gallons               | .                        | (mqp)                                  | WATER<br>(reet BTOC) | unils)          | ( )                           | m3/                                   | on                       | mg/I                    |                  | (1114)                     |        | (IETOS)                     | (describe)        | (describe)                                   |
| 1414                                           |                  |                                  |                          | ,.0რ                                   | 29.79                |                 |                               |                                       | <del></del>              |                         |                  | _                          |        |                             | Cloud             | none                                         |
| 1422                                           | 0.4              | 0.4                              |                          | ۰o 5                                   | 33.82                | 7.20            | 13.8                          | Lt.                                   | 04                       | 5.1                     | o                | 190.9                      |        | 65                          |                   |                                              |
| 1427                                           | 0.25             | 0,6                              |                          | <u>.05</u>                             | 33.88                | 11119           | 14.1                          | 1                                     | 10                       | 5.0                     |                  | 1931                       |        | 89                          | $\bot \downarrow$ |                                              |
| 1433                                           |                  | 0.952                            |                          | <u>&gt;.05</u>                         | 34.77                | 7.21            | 14.0                          | · · · · · · · · · · · · · · · · · · · | .05                      |                         | 4                | 191.9                      |        | 39                          | +                 |                                              |
| 1440                                           | 0.90             | 2.45                             |                          | 0.09                                   | 35.38                | 7.22            | 14.3                          | <del></del>                           | <u>05</u><br>97          | 5.3<br>5.3              |                  | 184.9                      |        | 197<br>58                   | ++                | H                                            |
| 1500                                           | 0.00             | 3.39                             |                          | ).0°                                   | 35.41                | 7.20            | 14.6                          |                                       | 03                       | 5.3                     |                  | 188.9                      |        | <u>23</u>                   | +                 |                                              |
| 1502                                           | 0.10             | 3.4                              |                          |                                        | 30.08                | 7.20            |                               | 11.                                   | ,                        | 5.20                    |                  | 1863                       |        | <del>99</del>               | $+ \pm$           | <u>                                     </u> |
| 100%                                           | 0.,0             |                                  | <u> </u>                 | ,,,,,                                  | 20.01                | ·               | <u> </u>                      | 1                                     | <u> </u>                 | _ ≥ .«.                 |                  | 100.0                      |        |                             |                   |                                              |
|                                                |                  |                                  |                          |                                        |                      |                 |                               |                                       |                          |                         |                  |                            |        |                             |                   |                                              |
|                                                |                  |                                  |                          |                                        |                      |                 |                               |                                       |                          |                         |                  |                            |        |                             |                   |                                              |
|                                                |                  |                                  |                          |                                        |                      |                 |                               |                                       |                          |                         |                  |                            |        |                             |                   |                                              |
|                                                |                  |                                  |                          |                                        | -4                   | <del></del>     |                               |                                       | ,                        |                         |                  |                            |        |                             |                   |                                              |
|                                                |                  |                                  |                          |                                        | $\longrightarrow$    |                 |                               |                                       |                          |                         |                  |                            |        |                             |                   |                                              |
|                                                |                  |                                  |                          |                                        |                      |                 |                               |                                       |                          |                         |                  |                            | _      |                             |                   |                                              |
|                                                |                  |                                  |                          |                                        |                      |                 |                               |                                       |                          |                         |                  |                            |        |                             |                   |                                              |
| WELL CAPACITY (G                               | Salions Per Foo  | l): 0,75" = 0,02                 | 2; 1" = 0                | .04; 1.                                | .25* = 0.06;         | 2" = 0.16;      | 3" = 0.37;                    | 4" = 0.6                              | 5; 5°=                   | 1.02; 6" =              | = 1.47;          | 12" = 5.86                 | }      |                             |                   |                                              |
| FUBING INSTOE DIA<br>PURGING EQUIPMI           |                  | 3al./Ft.): 1/8" ≈<br>B = Bailer; |                          | 3/16" =<br>adder Pu                    |                      |                 | 5/16" = 0,0<br>Submersible P  |                                       | /8" = 0,006<br>PP = Peri | ; 1/2" =<br>stallic Pum |                  | 5/8" = 0.6<br>O = Other (S |        |                             |                   |                                              |
|                                                |                  |                                  |                          | <del>`</del>                           |                      | SAI             | MPLING DA                     |                                       |                          |                         |                  |                            |        |                             |                   |                                              |
| AMPLED 8Y (PRINT) / /                          | AFFILIATION: 🛝   | MIDM. N                          | illoon(4                 | P) AMPL                                | ER(S) SIGNAT         | JRE(S)          | w)                            |                                       |                          |                         | SAMPI<br>INITIAT | ED AT: 15                  | 2      | SAMPLING<br>ENDED AT:       | 156               | 14                                           |
| UMP OR TUBING<br>EPTH IN WELL (feet):          | 45               |                                  |                          | TUBING                                 | IAL CODE: PE         |                 |                               |                                       | 1                        | >FILTERED:              |                  | •                          | ַ עַּ  | Filter Size                 |                   | mm                                           |
| EF ITT IN TYPEC (ISEL).                        |                  | DECONTAMINATIO                   | N: PUM                   |                                        | (N)                  | TUBING          | Y (N (replace                 | ed)                                   |                          | Thation Equip           | DUPLIC           |                            | (N     | $\rightarrow$               |                   |                                              |
| SAMP                                           | PLE CONTAINER S  | PECIFICATION                     |                          |                                        | <u> </u>             | SAM             | PLE PRESERVA                  | TION                                  |                          |                         |                  |                            |        |                             |                   | MPLE PUMP                                    |
| SAMPLE ID CODE                                 | # CONTAINERS     | MATERIAL CODE                    | VOLUME (mi               | L) Pi                                  | RESERVATIVE          |                 | TOTAL VOL                     |                                       | FINAL pH (S              | tanerd Units)           | INTEN            | METHOD                     | ANUIUK | SAMPLING EQ<br>CODE         | UPMENT FL         | per minute)                                  |
| 112-002-660-                                   |                  |                                  | 12526                    | $\overline{}$                          | USED                 | AD              | DED IN FIELD (m               | L)                                    |                          |                         | -                |                            |        |                             |                   |                                              |
| 045                                            | 2                | PE                               | each                     | .                                      |                      |                 |                               |                                       |                          |                         |                  | EPA 537M                   |        | D<br>Monson                 | ,  -              | 250                                          |
|                                                |                  |                                  |                          |                                        |                      |                 |                               |                                       |                          |                         | /                |                            |        |                             |                   |                                              |
|                                                |                  |                                  |                          |                                        |                      |                 | XCW                           |                                       |                          |                         | <u> </u>         |                            | /      |                             |                   |                                              |
|                                                |                  |                                  |                          | <del> </del>                           |                      |                 |                               | $\Rightarrow$                         | _                        |                         | <u> </u>         |                            |        | 1                           |                   | <b></b>                                      |
|                                                | 1                |                                  | <u> </u>                 |                                        |                      |                 | <del></del>                   |                                       |                          | _                       | <del> </del>     |                            |        | _                           | $\rightarrow$     |                                              |
|                                                |                  |                                  |                          | 1                                      |                      | 1               |                               |                                       |                          |                         | <u> </u>         |                            |        |                             |                   | ~                                            |
|                                                |                  |                                  |                          |                                        |                      |                 |                               |                                       |                          |                         |                  |                            |        |                             |                   |                                              |
| EMARKS:                                        |                  |                                  |                          |                                        |                      |                 |                               |                                       |                          |                         |                  |                            |        |                             |                   |                                              |
| HEMARKS;                                       |                  |                                  |                          | ······································ |                      |                 |                               |                                       |                          |                         |                  |                            |        |                             |                   |                                              |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity; all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

(N 4/22/18



|                                              |                                         |                                 |                                       |               |                  |                 | - 1 .                                            |                      |                        | 1111                      |                                                  | ~~.                        | 150                |                              |                              |                                                    |
|----------------------------------------------|-----------------------------------------|---------------------------------|---------------------------------------|---------------|------------------|-----------------|--------------------------------------------------|----------------------|------------------------|---------------------------|--------------------------------------------------|----------------------------|--------------------|------------------------------|------------------------------|----------------------------------------------------|
| Installation: Ellswort                       | h AFB M20                               | 27,0003                         |                                       |               |                  | Situ            | Sile                                             | 12                   | <u>- Bu</u>            | <u>uldin</u>              | <u> 9</u> 8                                      | 876                        | 10                 |                              |                              |                                                    |
| MELL NO: WM                                  | 113 PF                                  | <u>C 1203</u>                   | 5                                     |               | Sa               | AMPLE ID        |                                                  | 13-0                 | <del>03</del> -        | 6W (                      | <del>316</del>                                   | D/                         | АТЕ: Ц             | -22-1                        | 7                            |                                                    |
|                                              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                 |                                       |               |                  | PU              | JRGING DA                                        | TA ELS               | SNHIS                  | <u> 4 – 003</u>           | - 60                                             | U-\$16                     |                    |                              |                              |                                                    |
| WELL<br>DIAMETER (Inches):<br>WELL VOLUME PU | 3.0 '                                   | r ]                             | TUBING                                | 3/            | 'TD 12           | LL SCREEN IN    | TERVAL DEPTH:                                    | s                    | TATIC DEP<br>O WATER ( | TH CONTRACT               | 16                                               | 7.87                       |                    | RGE PUMP TYP                 |                              |                                                    |
| WELL VOLUME PU                               | RGE: 1 WELL                             | VOLUME = (                      | TOTAL WE                              | LL DEPT       | H BTOC -         | STATIC DE       | PTH TO WAT                                       | ER) X                | WELL CA                | PACITY                    | - 1                                              |                            | lok                | BAILER:                      |                              |                                                    |
| (only El out if as                           |                                         |                                 |                                       |               |                  |                 | 0.163                                            |                      |                        |                           | nal .                                            |                            |                    |                              |                              |                                                    |
|                                              |                                         |                                 |                                       | ' ' '         | ,                | ቼ (''' ^        | 0.147                                            | gern                 | D.                     | 42                        | Яч                                               |                            |                    |                              |                              |                                                    |
| EQUIPMENT VOLU                               | ME PURGE: 1                             | EQUIPMENT                       | VOL, = PU                             | AP VOLU       | JME + (TUBI      | NG CAPACI       | TY X                                             | TUBING L             | ENGTH)                 | + FLOW CE                 | LL VOL                                           | UME                        |                    |                              | ,                            |                                                    |
| (only fill out if as                         | plicable)                               |                                 | я                                     | 0             | gal = ( <b>(</b> | .006 ×          | 16 Ft)                                           | ۰۰,                  | 20 gal                 | - D                       | -29                                              | gal                        |                    |                              |                              |                                                    |
| initial pump or tubin                        | G (1                                    |                                 | FINAL PL                              | MP OR TO      | IBING            |                 | PURG                                             | SING                 |                        |                           | ,                                                |                            | <del>سامه به</del> | TOTAL VOLUM                  | Œ                            |                                                    |
| DEPTH IN WELL (feet):                        | <u>ما ا</u>                             | •                               |                                       | WELL (fe      |                  | 16              |                                                  | ATED AT:             | 153                    | 8                         |                                                  | ENDED AT:                  | 555                | TOTAL VOLUM<br>PURGED (gailo | ns): ()                      | ·85                                                |
| TIME                                         | VOLUME                                  | CUMU                            |                                       | PURGE<br>RATE | DEPTH<br>YO      | pH<br>(standard | TEMP.                                            | CC                   | ND.                    | DISSOL                    | 1                                                | ORP                        | т                  | URBIDITY                     | COLOR                        | ODOR                                               |
| IIME                                         | PURDED<br>(gailons)                     | VOLUK<br>PÜRGE                  | :D                                    | (gpm)         | WATER            | units)          | (°C)                                             | m5/                  | /_ ~~                  | OXYGI<br>mg/L             | - 1                                              | (mV)                       |                    | (NTUs)                       | (describe)                   | (describe)                                         |
| 1537                                         |                                         | /galign                         |                                       | . 05          | (Reet BTOC)      |                 | <del>                                     </del> | 1.7                  | <u> </u>               |                           |                                                  |                            | _                  |                              | Class at                     |                                                    |
| 1647                                         | 0.20                                    | 0                               |                                       | ,05           | 13.45            | 7,50            | 11.8                                             | 16                   | ا ما                   | 10.0                      | 2                                                | 2074                       | 1                  | 67                           | Clear                        | none                                               |
| 1546                                         | 0.20                                    | 0, 4                            |                                       | , 05          | 13.99            | 7.50            |                                                  |                      | 20                     | 9.5                       |                                                  | 2007                       |                    | 08                           | 1                            |                                                    |
| 1550                                         | <del></del>                             | 0.4                             |                                       | .05           | 14.35            | 7.49            |                                                  |                      | .00                    |                           |                                                  |                            | <del></del>        |                              | Cloud                        | <del>-   -   -   -   -   -   -   -   -   -  </del> |
|                                              | 0-20                                    |                                 |                                       | _             | <del> </del>     | -               |                                                  |                      | 01                     | 9,4                       |                                                  | 197.3                      | <u> </u>           | 121                          |                              | <del>                                     </del>   |
| 155 <b>5</b>                                 | 0.25                                    | 0.                              | 2) 10                                 | .0 <u>5</u>   | 14.7             | 7.45            | 111.3                                            | 17.                  | <u> </u>               | 9.4                       | 0                                                | 91.3                       |                    | 100                          |                              |                                                    |
|                                              | <u> </u>                                |                                 |                                       |               |                  |                 | 1                                                | -                    |                        |                           |                                                  |                            |                    |                              | ļ                            |                                                    |
|                                              |                                         |                                 | -+                                    |               |                  |                 | ļ                                                | <u> </u>             |                        |                           |                                                  |                            |                    |                              | ļ                            | <u> </u>                                           |
|                                              |                                         |                                 |                                       |               |                  | <del>,</del>    | <del> </del>                                     |                      |                        |                           |                                                  |                            |                    |                              | <u> </u>                     | <u> </u>                                           |
|                                              |                                         |                                 |                                       |               |                  |                 | ļ                                                |                      |                        |                           |                                                  |                            |                    |                              |                              |                                                    |
|                                              |                                         |                                 |                                       |               |                  | /               |                                                  |                      |                        |                           |                                                  |                            |                    |                              | <u> </u>                     |                                                    |
|                                              |                                         |                                 |                                       |               |                  |                 | DOL                                              |                      |                        |                           |                                                  |                            |                    |                              |                              |                                                    |
|                                              |                                         |                                 |                                       |               |                  |                 |                                                  |                      | <u> </u>               |                           |                                                  |                            |                    |                              |                              |                                                    |
|                                              |                                         |                                 |                                       |               |                  |                 |                                                  |                      |                        |                           | $\rightarrow$                                    |                            |                    |                              |                              |                                                    |
|                                              |                                         |                                 |                                       |               |                  |                 |                                                  |                      |                        |                           |                                                  |                            |                    |                              |                              |                                                    |
|                                              |                                         |                                 |                                       |               |                  |                 |                                                  |                      |                        |                           |                                                  |                            |                    |                              |                              |                                                    |
|                                              |                                         |                                 | <u> </u>                              |               |                  |                 |                                                  |                      |                        |                           |                                                  |                            |                    |                              |                              |                                                    |
|                                              |                                         |                                 |                                       |               |                  |                 |                                                  |                      |                        |                           |                                                  |                            |                    |                              |                              |                                                    |
| WELL CAPACITY (G                             |                                         |                                 |                                       |               |                  |                 | 3" = 0.37;                                       | 4" = 0.65            | ; 5 <b>"</b> =         | 1.02; 6" =                | ± 1.47;                                          | 12" = 5,8                  | В                  |                              |                              |                                                    |
| TUBING INSIDE DIA<br>PURGING EQUIPME         | , CAPACITY (C<br>NT CODES:              | Bal./Ft.): 1/8":<br>B = Bailer; |                                       |               |                  |                 | 5/16" = 0.0<br>Submersible P                     |                      | 8" = 0.006             | i; 1/2" =<br>istaltic Pum |                                                  | 5/8" = 0.0<br>0 = Other (5 |                    |                              | ·····                        |                                                    |
|                                              |                                         | o danen                         | 5, 5,                                 |               | ,,,p1            |                 | MPLING DA                                        |                      | 31 100                 | oluko i ujil              | <u> </u>                                         | 2 30101 (                  | -pccii,7/          |                              |                              |                                                    |
| SAMPLEO BY (PRINT) / A                       | FFILIATION: 🙏                           | .willis<br>·NeilSon             | (AS)                                  | SAMP1         | ER(6) SIGNATI    | JRE(S):         |                                                  |                      |                        |                           | SAMPLI                                           | NG 15                      | 55                 | SAMPLING<br>ENDED AT:        | 155                          | 57                                                 |
| PUMP OR TUBING                               | 17                                      |                                 |                                       | TUBING        | 3                |                 |                                                  |                      | FIELI                  | D-FILTERED:               | )                                                |                            | $\bigcap_{N}$      | Filter Size                  | ,,,,                         | mm                                                 |
| DEPTH IN WELL (feet):                        | 16                                      |                                 |                                       |               | IAL CODE: PE     |                 |                                                  | _                    |                        | Pitration Equip           | ~                                                |                            |                    | \                            |                              |                                                    |
| SAMP                                         | FIELD D<br>LE CONTAINER SI              | ECONTAMINATION                  | ON: PUM                               | PY            | <u> </u>         | TUBING          | Y (replace                                       |                      |                        |                           | DUPLICA                                          | ATE: Y                     | / <sub>n</sub>     |                              | Isa                          | MPLE PUMP                                          |
|                                              |                                         |                                 |                                       | P             | RESERVATIVE      | 1               | TOTAL VOL                                        | 1                    |                        |                           | INTEND                                           | ED ANALYSIS                | AND/OR             | SAMPLING EQU                 | JPMENT FL                    | OW RATE (mL                                        |
| SAMPLE ID CODE                               | # CONTAINERS                            | MATERIAL CODE                   | VOLUME (ml                            | -}            | USED             | AD              | DED IN FIELD (m                                  |                      | FINAL pH (S            | tanard Units)             |                                                  | METHOD                     |                    | CODE                         |                              | per minute)                                        |
| EUSWHIZ-W3-                                  |                                         |                                 | HAGML                                 | $\forall$     |                  | - 1             | oco mi mao ja                                    | -                    |                        |                           | <del>                                     </del> |                            |                    |                              | -                            |                                                    |
| CM-016                                       | 2                                       | PΕ                              | each                                  |               |                  |                 |                                                  |                      |                        |                           |                                                  | EPA 537M                   |                    | APP                          |                              | 200                                                |
|                                              |                                         |                                 | • • • • • • • • • • • • • • • • • • • |               |                  |                 |                                                  |                      |                        |                           | _                                                |                            |                    |                              | T                            |                                                    |
|                                              |                                         |                                 |                                       | -             |                  | 2               | Son                                              |                      |                        |                           |                                                  |                            |                    |                              |                              |                                                    |
|                                              |                                         |                                 |                                       | _             |                  | ****            |                                                  | $ egthinspace{-1pt}$ |                        |                           |                                                  |                            |                    |                              |                              |                                                    |
|                                              | <b>8</b>                                |                                 |                                       |               |                  |                 |                                                  | $\Box$               | $\overline{}$          |                           |                                                  |                            | 7                  |                              | ${ <\hspace{-1.5pt} \vdash}$ |                                                    |
|                                              |                                         |                                 | 7                                     | 1             |                  |                 |                                                  |                      |                        |                           |                                                  |                            |                    | <del></del>                  | 7                            | _                                                  |
|                                              | 1                                       |                                 |                                       |               |                  |                 |                                                  |                      |                        |                           |                                                  |                            |                    |                              |                              |                                                    |
| REMARKS:                                     |                                         |                                 |                                       |               |                  |                 |                                                  |                      |                        |                           |                                                  |                            |                    |                              |                              |                                                    |
|                                              |                                         |                                 |                                       |               |                  |                 |                                                  |                      |                        |                           |                                                  |                            |                    |                              |                              |                                                    |
| MATERIAL CODES:                              | AG = Am                                 | ber Glass; (                    | CG = Clear (                          | Slass:        | PE = Polyel      | ibvlene: [      | P = Polypropy                                    | dene: Q              | = Silicon              | r; T≃Tef                  | lon: (                                           | ) ≃ Other (S               | Snecify            |                              |                              |                                                    |
| SAMPLING EQUIPM                              |                                         | APP = Afte                      | r Peristattic                         | Pump;         | B = Baile        | r, BP≖l         | Bladder Pump;                                    | ESP                  | = Electric             | Submersibl                | e Pump                                           | ;                          | r1/                |                              |                              |                                                    |
|                                              |                                         | RFPP = Re                       | verse Flow I                          |               |                  |                 | dethod (Tubing<br>of variation of la             |                      |                        | O = Other                 | (Specify                                         | )                          |                    |                              |                              |                                                    |

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saluration; optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: March 14, 2016

Q 4/22/18

# SEDIMENT / SURFACE WATER / GROUNDWATER (GRAB)

| Project Name:                           | Site Inspections of AFFF                | Areas (USACE Omaha | a District)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
|-----------------------------------------|-----------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| ASL Project No:                         | M2027.0003                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Installation:                           | Ellsworth AFB                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Date:                                   | 4-26-18                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Sample Technician(s):                   | A.Willis                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                         | NH 02-004                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Location Description:                   |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 3500', 240° 5Wo                         | of Building 7219                        | between ROW        | guand Row 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                   |
| Type(s) of Sample (circ                 | •                                       | Sediment           | Surface Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Groundwater         |
| Sample Collected from                   | m (circle one):                         | Channel/Ditch      | Holding Pond/Lagoor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lake/Pond           |
|                                         |                                         | River/Stream       | Trench                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Other 6-143         |
|                                         | MS/MSD                                  | SEDIMENT SAN       | IPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| Sample ID:                              | ERZMHOS-004-SD-                         | OP Sample (        | Collection Time: 【나나                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 115                 |
|                                         |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Sample Depth:                           |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -/organics          |
| Collection Method:<br>Sample Container: |                                         |                    | nalysis/Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA 537M<br>NONE    |
| Sample Container.                       | J, & SOME TO                            |                    | Preservative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NONE                |
|                                         |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                         | ms/ms)<br>= 125mH02-004-5pd             | SURFACE WATER      | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| Comple ID:                              | -442-400-60416213<br>30-w2-400-60416213 | 90) Sample (       | Collection Time: 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                   |
|                                         | 0-0,5                                   |                    | Collection Time: リリリー llection Method: しん                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| Analysis/Method:                        |                                         | <del></del>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125ml PE            |
| Preservative:                           | NONE                                    |                    | lity (circle one): Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sloudy Turbid Other |
|                                         |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 1000,000,000,000,000,000,000,000,000,00 | G                                       | ROUNDWATER SAME    | PLE (GRAB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|                                         |                                         | A COLOR            | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                     |
| Sample ID:                              |                                         | Sample (           | Collection Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| Sample Depth:                           |                                         | Col                | lection Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Analysis/Method:                        | EPA 537M                                | Sar                | nple Container:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Preservative:                           | NONE                                    | Water Qua          | lity (circle one): Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cloudy Turbid Other |
|                                         |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| COMMENTS:                               |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                         |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                         |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                         |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                         |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                                         |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |

# SEDIMENT / SURFACE WATER / GROUNDWATER (GRAB)

| Project Name:          | Site Inspections of AFFF | Areas (USA                              | ACE Omaha  | District)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
|------------------------|--------------------------|-----------------------------------------|------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|
| ASL Project No:        | M2027.0003               |                                         |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
| Installation:          | Ellsworth AFB            |                                         |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** |              |
| Date:                  | 5-16-18                  | *************************************** |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
| Sample Technician(s):  |                          |                                         |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
| Station ID: SWIS       | 1 PFC 1004               |                                         |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
| Location Description:  |                          |                                         |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
| 475'5E of B.           | ulding 3005              |                                         |            |                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |              |
| Type(s) of Sample (cir |                          | Sedime                                  | ent )      | Surface V                             | /ater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | Groundwater  |
| Sample Collected fro   | m (circle one):          | Channel/                                | Ditch      | Holding Po                            | nd/Lagoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ı                                       | _ake/Pond    |
|                        |                          | River/Strea                             | m          | Trench                                | <b>&gt;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | Other        |
|                        |                          | SEDI                                    | MENT SAM   | PLE                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
| Sample ID:             | ELSWH10-004-5D           | - œI                                    | Sample C   | ollection Time:                       | 094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                       |              |
| Sample Depth:          |                          |                                         | -          | nt Description:                       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *************************************** |              |
| Collection Method:     |                          |                                         |            | alysis/Method:                        | 0194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA :                                   | 537M         |
| Sample Container:      |                          |                                         | _ , "      | Preservative:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO                                      |              |
| ·                      | ·                        |                                         | -          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
|                        |                          |                                         |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
|                        |                          | SURFAC                                  | E WATER S  | AMPLE                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
| Sample ID:             | ELSWHID-004-5W           | -001                                    | Sample C   | ollection Time:                       | 094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                       |              |
| Sample Depth:          | 0-0,5'                   |                                         | Coll       | ection Method:                        | GRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ıβ                                      | •            |
| Analysis/Method:       | EPA 537M                 |                                         | -<br>San   | nple Container:                       | 2,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5ml cacl                                |              |
| Preservative:          | NONE                     |                                         | Water Qual | ity (circle one): <b>(</b>            | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cloudy                                  | Turbid Other |
|                        |                          |                                         |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
|                        | G                        | ROUNDWA                                 | TER SAMP   | LE (GRAB)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
|                        |                          |                                         |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
| Sample ID:             |                          |                                         | Sample C   | ollection Time: _                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
| Sample Depth:          |                          |                                         | -          | ection Method:                        | STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN C |                                         |              |
| Analysis/Method:       |                          |                                         | -          | ple Container:                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |              |
| Preservative:          | NONE                     |                                         | Water Qual | ity (circle one):                     | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cloudy                                  | Turbid Other |
|                        |                          |                                         |            | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
| COMMENTS: 6            | PSI                      |                                         |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
|                        |                          |                                         |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
|                        |                          |                                         |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
|                        |                          |                                         |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
|                        |                          |                                         |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |              |
|                        |                          |                                         |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | l            |

C-166 5/19

# SAMPLE COLLECTION LOG SEDIMENT / SURFACE WATER / GROUNDWATER (GRAB)

| Project Name:          | Site inspections of AFI | -F Areas (US                            | SACE Omar | ia District)         |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|------------------------|-------------------------|-----------------------------------------|-----------|----------------------|---------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| ASL Project No:        | M2027.0003              |                                         |           |                      | · · · · · · · · · · · · · · · · · · · |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Installation:          | Ellsworth AFB           |                                         |           |                      |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Date:                  | 5/16/18                 | •                                       |           |                      |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Sample Technician(s):  | A.Willis                |                                         |           |                      |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Station ID: 5W I       | 3PFC1106                | *************************************** |           |                      |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Location Description:  |                         |                                         |           |                      |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 1300°, 2805WoF         | Pump house #2           |                                         |           |                      |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Type(s) of Sample (cir | cle all that apply):    | Sedim                                   | ient      | Surface W            | ater                                  | )              | Groundw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ater                                    |
| Sample Collected fro   | m (circle one):         | Channe                                  | l/Ditch)  | Holding Por          | nd/Lagoon                             |                | Lake/Pond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l                                       |
|                        |                         | River/Stre                              | eam       | Trench               |                                       |                | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
|                        |                         | SE                                      | DIMENT SA | MPLE                 |                                       |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| Sample ID:             | ELSWHII-006-            | 50-001                                  | Sample    | Collection Time:     | 090                                   | 5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Sample Depth:          | 6-0.5'                  |                                         | <br>Sedi  | ment Description:    | organ                                 | ic sil         | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| Collection Method:     |                         |                                         |           | Analysis/Method:     |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Sample Container:      | 1,250mL                 |                                         |           | Preservative:        |                                       |                | ONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
|                        |                         |                                         |           |                      |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** |
|                        | ELSWH11-006-            |                                         | · · ·     | e Collection Time:   | 090                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                        | 0-0.51                  | -                                       |           | ollection Method:    | great                                 |                | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *************************************** |
|                        | EPA 5371                | νI                                      |           | ample Container:     |                                       | 25ml<br>Cloudy | Turbid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Other                                   |
| Preservative:          | NONE                    |                                         | vvater Qi | uality (circle one): | Clear                                 | Cloudy         | Turbia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Other                                   |
|                        |                         | GROUNDW                                 | VATER SAM | /IPLE (GRAB)         |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                        |                         |                                         |           |                      |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Sample ID:             |                         |                                         | Sample    | Collection Time: _   |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ···                                     |
| Sample Depth:          |                         |                                         |           | ollection Method:    |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Analysis/Method:       |                         | /                                       |           | ample Container: _   |                                       |                | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th |                                         |
| Preservative:          | NONE                    |                                         | Water Q   | uality (circle one): | Clear                                 | Cloudy         | Turbid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Other                                   |
|                        |                         |                                         |           |                      |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| COMMENTS:              | PSV                     |                                         |           |                      |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                        |                         |                                         |           |                      |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                        |                         |                                         |           |                      |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                        |                         |                                         |           |                      |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                        |                         |                                         |           |                      |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                        |                         |                                         |           |                      |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |

Co187/19

# SAMPLE COLLECTION LOG SEDIMENT / SURFACE WATER / GROUNDWATER (GRAB)

| Project Name:           | Site Inspections of AFFF | Areas (USA                              | ACE Omaha I  | District)                               |                |            |                 |                                         |
|-------------------------|--------------------------|-----------------------------------------|--------------|-----------------------------------------|----------------|------------|-----------------|-----------------------------------------|
| ASL Project No:         | M2027.0003               |                                         |              |                                         |                |            |                 |                                         |
| Installation:           | Ellsworth AFB            |                                         |              |                                         |                |            |                 |                                         |
| Date:                   | 4-22-18                  | *************************************** |              |                                         |                |            |                 | <del></del>                             |
| Sample Technician(s):   | A. Willis / M. Neil:     | 500                                     |              | *************************************** |                |            |                 |                                         |
|                         | fows-and-out Poll #30    |                                         | 5WIRF        | PFC 020412                              | 04 S           | ite 12 - I | Buildin         | g 88240                                 |
| Location Description:   |                          |                                         |              |                                         |                |            |                 | 0                                       |
| 3225', 210° 5W          | of building 7230         | ncar R                                  | ow 90        |                                         |                |            |                 |                                         |
| Type(s) of Sample (circ |                          | Sedime                                  |              | Surface V                               | <u>Vater</u>   |            | Groundw         | ater                                    |
| Sample Collected from   | m (circle one):          | Channel/                                | Ditch        | Holding Po                              | ond/Lagoo      | on l       | _ake/Ponc       |                                         |
|                         |                          | River/Strea                             | m            | Trench                                  |                |            | Other <u>Cu</u> | lvert                                   |
|                         |                          | SEDI                                    | MENT SAME    | PLE                                     |                |            |                 |                                         |
| Sample ID:              | ELSWHIZ-004- 5 1         | 100°C                                   | Sample C     | ollection Time:                         | 161            | 5          |                 |                                         |
| Sample Depth:           |                          |                                         | Sedime       | nt Description:                         | 5and           | u silt     |                 | ·                                       |
| Collection Method:      | - A                      |                                         |              | alysis/Method:                          | <b>Q</b> = 13, | EPA :      | 537M            |                                         |
| Sample Container:       | 1,250mL PE               |                                         | -            | Preservative:                           |                | NO         | NE              |                                         |
|                         |                          |                                         |              |                                         |                |            |                 |                                         |
|                         |                          | OUDEAG                                  | - WATER 6    |                                         |                |            |                 |                                         |
|                         |                          | SURFAC                                  | E WATER S    | AMPLE                                   |                | _          |                 |                                         |
| Sample ID:              | ELSW/H12-004-Sh          | <u> </u>                                | Sample Co    | ollection Time:                         | 161            | 5          |                 |                                         |
| Sample Depth:           | •                        |                                         | -            | ection Method:                          | 6R1            |            |                 |                                         |
| Analysis/Method:        |                          |                                         | _            | ple Container:                          |                |            |                 |                                         |
| Preservative:           | NONE                     |                                         | _Water Quali | ty (circle one):                        | Clear          | Cloudy     | Turbid          | Other                                   |
| -                       |                          | DOUNDW/                                 | ATED CAMPI   | E (CDAD)                                |                |            |                 |                                         |
|                         |                          | KOUNDWA                                 | ATER SAMPI   | LE (GRAB)                               |                |            |                 |                                         |
| Sample ID:              |                          |                                         | (Sample)Co   | offection Time:                         |                |            |                 |                                         |
| Sample Depth:           | 1                        |                                         | Colle        | ction Method:                           |                |            |                 | <u> </u>                                |
| Analysis/Method:        |                          |                                         | -            | ple Container: _                        |                |            |                 |                                         |
| Preservative:           | NONE                     |                                         | Water Quali  | ty (circle one):                        | Clear          | Cloudy     | Turbid          | Other                                   |
|                         |                          |                                         |              |                                         |                |            |                 |                                         |
| COMMENTS:               |                          |                                         |              |                                         |                |            |                 |                                         |
|                         |                          |                                         |              |                                         |                |            |                 |                                         |
|                         |                          |                                         |              | Span Span                               | J 41           | 22/18      |                 |                                         |
|                         |                          |                                         |              |                                         |                | ,          |                 |                                         |
|                         |                          |                                         |              |                                         |                |            |                 | *************************************** |
|                         |                          |                                         |              |                                         |                |            |                 | i                                       |

3/6/19



# **Depth To Water Record**

Project Name: SI of AFFF Areas Omaha

ASL Project No: M2027.0003

Installation: Ellsworth AFB

Date: 6/ks 1,2,2,4,5,6,7,8,9, 11,12 on 6-1-18 / 5/k 12 6-4-18

Sample Technician: A.willis, D. Vojak

Sheet: 1 of 2

| Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0101          | Well:                                      | MW18PFC0102            | Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0103           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0945                 | Time:                                      | 002                    | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0952                  |
| DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.62 FT BTOC        | DTW:                                       | 22,39 FT BTOC          | DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.69 FT BTOC         |
| Final TD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f Well: 21.91        | Final TD of                                | Well: 40.36            | Final TD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well: 22,28           |
| Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0201          | Well:                                      | MW18PFC0202            | Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0203           |
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1058                 | Time:                                      | 1044                   | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1052                  |
| DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14,07 FT BTOC        | DTW;                                       | /3,02 FT BTOC          | DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4,47 FT BTOC          |
| Final TD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f Well: <u>39,28</u> | Final TD of                                | Well: 39,31            | Final TD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well: 18.20           |
| Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0204          | Well:                                      | MW18PFC0205            | Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1334                 | Time:                                      | 1321                   | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1326                  |
| DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33:74 FT BTOC        | DTW:                                       | 22,97 FT BTOC          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19,51 FT BTOC         |
| Final TD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well: <u>44.04</u>   | Final TD of                                | Well: <u>33.47</u>     | Final TD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well: 19.87           |
| Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0207          |                                            | ★ MW18PFC0301          | Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0302           |
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1315                 |                                            | 0858                   | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0901                  |
| DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | २०.५२ FT BTOC        | DTW:                                       | ₹. 91 FT BTOC          | DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.28 FT BTOC         |
| Final TD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well: <u>33.84</u>   | Final TD of                                | Well: <u>( 3 · 9-7</u> | Final TD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well: / 9,58          |
| Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0303          | Well:                                      | MW18PFC0401            | Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0402           |
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0905                 | Time:                                      | 1440                   | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1429                  |
| DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9,32 FT BTOC         |                                            |                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.28 FT BTOC         |
| CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF  | Well: 14.90          | 0004/16/904000/E/0212-02-62-12/02043-03/03 | Well: 34.66            | THE STREET CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE P | Well: <u>43.76</u>    |
| Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0403          | Well:                                      | MW18PFC0501            | Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0502           |
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1432                 | Time:                                      | 6748                   | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0752                  |
| DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.41 FT BTOC        | _                                          | 19.46 FT BTOC          | 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.43 FT BTOC         |
| Final TD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well: 38,92          | Final TD of                                | Well: <u>34.69</u>     | Final TD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well: <u>29.61</u>    |
| Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0601          | Well:                                      | MW18PFC0602            | Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0603           |
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6350                 | Time:                                      | 0919                   | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0934                  |
| DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13 17 FT BTOC        |                                            | /0.77 FT BTOC          | DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>14:</i> 92 FT BTOC |
| OWNERS AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE | Well: 18.79          | Final TD of                                | Well: 19.08            | Final TD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well: <u>59,55</u>    |
| Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0701          | Well:                                      | MW18PFC0702            | Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0703           |
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1020                 | Time:                                      | 1016                   | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1025                  |
| DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.66 FT BTOC        | DTW:                                       | /3.96 FT BTOC          | DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /5,4/ FT BTOC         |
| Final TD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well: 39./3          |                                            | Well: 24,23            | Final TD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well: 24,07           |
| Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0801          | Well:                                      | MW18PFC0802            | Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW18PFC0803           |
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1545                 | Time:                                      | 1543                   | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1540                  |
| DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.36 FT BTOC        |                                            | 14,7/ FT BTOC          | ŧ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /5,07 FT BTOC         |
| Final TD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well: 51.09          | Final TD of                                | Well: 49.26            | Final TD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well: 49.83           |

\* 0301 had stunding water in vault up to TOC



# **Depth To Water Record**

Project Name: SI of AFFF Areas Omaha

ASL Project No: M2027.0003

Installation: Ellsworth AFB

Date: sitc 1,2,3,4,5,6,7,8,9,11,12 6-1-18/5,10 6-4-18

Sample Technician: A, willis, J. Vojak

Sheet: 2 of 2





# Appendix D Laboratory Case Narratives Data Validation Report and Analytical Data Sheets

# **DATA VALIDATION REPORT**

# M2027.0003 (Omaha) Ellsworth AFB

SAMPLE DELIVERY GROUP: B894616, B897127, B8A6782, B8B1135, B8C0381, B8C4298, B8D4761, B8J4786

# **Prepared for**

Aerostar SES LLC

May 21, 2018, Revised August 13, 2018

MEC<sup>x</sup>, Inc. 8864 Interchange Drive Houston, Texas 77054

www.mecx.net







# **TABLE OF CONTENTS**

| ACRO | ONYMS AI | ND ABBREVIATIONS                                                          | iii |
|------|----------|---------------------------------------------------------------------------|-----|
| l.   | INTRO    | DUCTION                                                                   | 1   |
| II.  | Sampl    | e Management                                                              | 8   |
| III. | Metho    | od Analysis- Perfluorinated Compounds by Modified EPA Method 537 Modified | 12  |
|      | III.1.   | Holding Times                                                             | 12  |
|      | III.2.   | Calibration                                                               | 12  |
|      |          | III.2.1. Initial Calibration                                              | 12  |
|      |          | III.2.2. Continuing Calibration                                           | 12  |
|      | III.3.   | Quality Control Samples                                                   | 12  |
|      |          | III.3.1. Method Blanks                                                    | 12  |
|      |          | III.3.2. Laboratory Control Samples                                       | 12  |
|      |          | III.3.3. Matrix Spike/Matrix Spike Duplicate                              | 12  |
|      | III.4.   | Field QC Samples                                                          | 14  |
|      |          | III.4.1. Field Blanks and Equipment Blanks                                | 14  |
|      |          | III.4.2. Field Duplicates                                                 | 16  |
|      | III.5.   | Internal Standards Performance                                            | 17  |
|      |          | III.5.1. Extracted Internal Standard Recovery                             | 17  |
|      |          | III.5.2. Injected Internal Standard Recovery                              | 18  |
|      | III.6.   | Compound Identification                                                   | 19  |
|      | III.7.   | Compound Quantification and Reported Detection Limits                     | 20  |
|      | III.8.   | System Performance                                                        | 23  |
| IV.  | Summ     | nary and Conclusions                                                      | 24  |
|      | IV.1.    | Precision                                                                 | 24  |
|      | IV.2.    | Accuracy                                                                  | 24  |
|      | IV.3.    | Representativeness                                                        | 24  |



| V. | Refere | nces          | . 25 |
|----|--------|---------------|------|
|    | 14.5.  | Completeness  | . 24 |
|    | IV/ 5  | Completeness  | 2/   |
|    | IV.4.  | Comparability | . 24 |

# **TABLES**

- 1 Sample Identification
- 2 Data Qualifier Reference
- 3 Reason Code Reference
- 4 FB/EB detects
- 5 FD RPDs
- 6 Extracted Internal Standards
- 7 Injected Internal Standards

M2027.0003 D-3 3/6/19



#### **ACRONYMS AND ABBREVIATIONS**

°C Celsius % Percent

%D percent difference
B blank contamination
CB calibration blank
CCAL continuing calibration

CCV continuing calibration verification

COC chain of custody

CLP Contract Laboratory Program

DL detection limit

EPA US Environmental Protection Agency

ER equipment rinsate

FB field blank
FD field duplicate
ICAL initial calibration

ICV initial calibration verification

IS internal standard J estimated value

LCS laboratory control sample

LOD limit of detection
LOQ limit of quantification

MB method blank MS matrix spike

MSD matrix spike duplicate

ND nondetect

PARCC precision, accuracy, representativeness, comparability, completeness

PFC perfluorinated compound

QAPP Quality Assurance Program Plan

QC quality control

QSM Quality Systems Manual

R rejected

RPD relative percent difference
RRF relative response factor
RSD relative standard deviation
SDG sample delivery group

TB trip blank
U not detected

UJ not detected; associated value is an estimate

M2027.0003 D-4 3/6/19



# I. INTRODUCTION

Task Order Title: M2027.0003 (Omaha) Ellsworth AFB

**Contract:** W9128F-15-D-0051 **MEC<sup>x</sup> Project No.:** 1529.001H.01

Sample Delivery Group: B894616, B897127, B8A6782, B8B1135, B8C0381, B8C4298, B8D4761,

B8J4786

Project Manager: Jenny Vance

Matrix: Soil/Water

QC Level: Stage 2B, Stage 4

No. of Samples: 151

Laboratory: Maxxam

**TABLE 1 - SAMPLE IDENTIFICATION** 

| Sample Name        | Lab Sample<br>Name | Matrix | Collection       | Method | Validation<br>Level |
|--------------------|--------------------|--------|------------------|--------|---------------------|
| ELSWH08-001-SO-030 | GNR551             | SO     | 2018-04-23 15:05 | E537M  | Stage 2B            |
| ELSWH08-001-SS-001 | GNR550             | SO     | 2018-04-23 09:55 | E537M  | Stage 2B            |
| ELSWH08-002-SO-040 | GNR548             | SO     | 2018-04-23 08:30 | E537M  | Stage 2B            |
| ELSWH08-002-SO-940 | GNR549             | SO     | 2018-04-23 08:30 | E537M  | Stage 2B            |
| ELSWH08-002-SS-001 | GNR546             | SO     | 2018-04-22 14:45 | E537M  | Stage 2B            |
| ELSWH08-003-SO-046 | GNR569             | SO     | 2018-04-22 09:40 | E537M  | Stage 2B            |
| ELSWH08-003-SS-001 | GNR568             | SO     | 2018-04-21 14:25 | E537M  | Stage 2B            |
| ELSWH08-004-SO-051 | GNR571             | SO     | 2018-04-22 14:25 | E537M  | Stage 2B            |
| ELSWH08-004-SS-001 | GNR566             | SO     | 2018-04-21 11:40 | E537M  | Stage 2B            |
| ELSWH10-001-SS-001 | GNR552             | SO     | 2018-04-24 11:00 | E537M  | Stage 2B            |
| ELSWH12-001-SO-023 | GNR561             | SO     | 2018-04-19 17:10 | E537M  | Stage 2B            |
| ELSWH12-001-SS-001 | GNR559             | SO     | 2018-04-19 15:05 | E537M  | Stage 2B            |
| ELSWH12-001-SS-901 | GNR560             | SO     | 2018-04-19 15:05 | E537M  | Stage 2B            |
| ELSWH12-002-GW-045 | GNR553             | WG     | 2018-04-22 15:02 | E537M  | Stage 2B            |
| ELSWH12-002-SO-036 | GNR558             | SO     | 2018-04-19 11:35 | E537M  | Stage 2B            |
| ELSWH12-002-SS-001 | GNR557             | SO     | 2018-04-19 09:57 | E537M  | Stage 2B            |
| ELSWH12-003-GW-016 | GNR554             | WG     | 2018-04-22 15:55 | E537M  | Stage 4             |

M2027.0003 D-5 3/6/19



| Sample Name        | Lab Sample<br>Name | Matrix | Collection       | Method | Validation<br>Level |
|--------------------|--------------------|--------|------------------|--------|---------------------|
| ELSWH12-003-SO-006 | GNR564             | SO     | 2018-04-20 14:30 | E537M  | Stage 4             |
| ELSWH12-003-SS-001 | GNR565             | SO     | 2018-04-20 09:57 | E537M  | Stage 2B            |
| ELSWH12-004-SD-001 | GNR555             | SE     | 2018-04-22 16:15 | E537M  | Stage 4             |
| ELSWH12-004-SW-001 | GNR556             | WS     | 2018-04-22 16:15 | E537M  | Stage 4             |
| ELSWH-RS-001       | GNR562             | WQ     | 2018-04-19 16:45 | E537M  | Stage 2B            |
| ELSWH-RS-002       | GNR563             | WQ     | 2018-04-20 14:25 | E537M  | Stage 2B            |
| ELSWH-RS-003       | GNR567             | WQ     | 2018-04-21 14:20 | E537M  | Stage 2B            |
| ELSWH-RS-004       | GNR570             | WQ     | 2018-04-22 14:22 | E537M  | Stage 2B            |
| ELSWH-RS-005       | GNR547             | WQ     | 2018-04-23 08:25 | E537M  | Stage 2B            |
| ELSWH02-001-SO-030 | GOF439             | SO     | 2018-04-26 12:57 | E537M  | Stage 2B            |
| ELSWH02-002-SO-031 | GOF438             | SO     | 2018-04-25 15:25 | E537M  | Stage 2B            |
| ELSWH02-003-GW-013 | GOF448             | WG     | 2018-04-26 15:41 | E537M  | Stage 2B            |
| ELSWH02-003-SO-004 | GOF437             | SO     | 2018-04-25 11:00 | E537M  | Stage 2B            |
| ELSWH02-004-SD-001 | GOF444             | SE     | 2018-04-26 14:40 | E537M  | Stage 2B            |
| ELSWH02-004-SD-901 | GOF445             | SE     | 2018-04-26 14:40 | E537M  | Stage 2B            |
| ELSWH02-004-SW-001 | GOF446             | WS     | 2018-04-26 14:40 | E537M  | Stage 2B            |
| ELSWH02-004-SW-901 | GOF447             | WS     | 2018-04-26 14:40 | E537M  | Stage 2B            |
| ELSWH08-002-GW-045 | GOF443             | WG     | 2018-04-26 13:45 | E537M  | Stage 2B            |
| ELSWH08-003-GW-045 | GOF442             | WG     | 2018-04-26 11:39 | E537M  | Stage 2B            |
| ELSWH10-001-SO-040 | GOF435             | SO     | 2018-04-24 15:35 | E537M  | Stage 2B            |
| ELSWH12-001-GW-032 | GOF441             | WG     | 2018-04-25 12:55 | E537M  | Stage 2B            |
| ELSWH-RS-006       | GOF434             | WQ     | 2018-04-24 15:25 | E537M  | Stage 2B            |
| ELSWH-RS-007       | GOF436             | WQ     | 2018-04-25 10:53 | E537M  | Stage 2B            |
| ELSWH-RS-008       | GOF440             | WQ     | 2018-04-26 12:40 | E537M  | Stage 2B            |
| ELSWH02-001-GW-035 | GQI097             | WG     | 2018-05-04 12:31 | E537M  | Stage 2B            |
| ELSWH02-002-GW-035 | GQ1096             | WG     | 2018-05-04 09:31 | E537M  | Stage 2B            |
| ELSWH02-006-GW-030 | GQ1099             | WG     | 2018-05-04 13:50 | E537M  | Stage 4             |
| ELSWH02-006-SO-024 | GQI081             | SO     | 2018-05-01 11:50 | E537M  | Stage 2B            |
| ELSWH02-006-SS-001 | GQI079             | SO     | 2018-05-01 09:20 | E537M  | Stage 4             |



| Sample Name        | Lab Sample<br>Name | Matrix | Collection       | Method | Validation<br>Level |
|--------------------|--------------------|--------|------------------|--------|---------------------|
| ELSWH02-007-SS-001 | GQI092             | SO     | 2018-05-03 10:40 | E537M  | Stage 2B            |
| ELSWH02-008-SS-001 | GQI090             | SO     | 2018-05-02 14:19 | E537M  | Stage 2B            |
| ELSWH05-001-GW-030 | GQI098             | WG     | 2018-05-04 15:26 | E537M  | Stage 2B            |
| ELSWH05-001-SO-028 | GQI086             | SO     | 2018-05-02 09:45 | E537M  | Stage 2B            |
| ELSWH05-001-SS-001 | GQI084             | SO     | 2018-05-02 07:42 | E537M  | Stage 2B            |
| ELSWH05-002-GW-025 | GQI095             | WG     | 2018-05-03 16:30 | E537M  | Stage 2B            |
| ELSWH05-002-SO-020 | GQI083             | SO     | 2018-05-01 15:32 | E537M  | Stage 2B            |
| ELSWH05-002-SS-001 | GQI082             | SO     | 2018-05-01 13:35 | E537M  | Stage 2B            |
| ELSWH05-003-SO-009 | GQI088             | SO     | 2018-05-02 11:45 | E537M  | Stage 2B            |
| ELSWH05-003-SO-909 | GQI089             | SO     | 2018-05-02 11:45 | E537M  | Stage 2B            |
| ELSWH05-003-SS-001 | GQI087             | SO     | 2018-05-02 10:49 | E537M  | Stage 2B            |
| ELSWH06-002-SO-010 | GQI111             | SO     | 2018-05-05 14:15 | E537M  | Stage 2B            |
| ELSWH06-002-SS-001 | GQI110             | SO     | 2018-05-05 13:15 | E537M  | Stage 4             |
| ELSWH06-003-SO-054 | GQI109             | SO     | 2018-05-05 11:40 | E537M  | Stage 2B            |
| ELSWH06-003-SS-001 | GQI107             | SO     | 2018-05-05 08:08 | E537M  | Stage 2B            |
| ELSWH08-001-GW-044 | GQI094             | WG     | 2018-05-01 11:41 | E537M  | Stage 2B            |
| ELSWH09-003-SO-028 | GQI101             | SO     | 2018-05-04 09:57 | E537M  | Stage 2B            |
| ELSWH09-003-SS-001 | GQI093             | SO     | 2018-05-04 08:00 | E537M  | Stage 2B            |
| ELSWH10-002-SO-029 | GQI106             | SO     | 2018-05-04 17:10 | E537M  | Stage 2B            |
| ELSWH10-002-SS-001 | GQI105             | SO     | 2018-05-04 15:22 | E537M  | Stage 2B            |
| ELSWH11-003-SO-015 | GQI103             | SO     | 2018-05-04 13:00 | E537M  | Stage 2B            |
| ELSWH11-003-SS-001 | GQI102             | SO     | 2018-05-04 11:00 | E537M  | Stage 2B            |
| ELSWH11-005-SS-001 | GQI104             | SO     | 2018-05-04 13:15 | E537M  | Stage 2B            |
| ELSWH-RS-009       | GQI080             | WQ     | 2018-05-01 11:40 | E537M  | Stage 2B            |
| ELSWH-RS-010       | GQI085             | WQ     | 2018-05-02 08:00 | E537M  | Stage 2B            |
| ELSWH-RS-011       | GQI091             | WQ     | 2018-05-03 09:32 | E537M  | Stage 2B            |
| ELSWH-RS-012       | GQI100             | WQ     | 2018-05-04 09:52 | E537M  | Stage 2B            |
| ELSWH-RS-013       | GQI108             | WQ     | 2018-05-05 11:35 | E537M  | Stage 2B            |
| ELSWH02-005-SO-034 | GRF770             | SO     | 2018-05-07 13:05 | E537M  | Stage 2B            |



| Sample Name         | Lab Sample<br>Name | Matrix | Collection       | Method | Validation<br>Level |
|---------------------|--------------------|--------|------------------|--------|---------------------|
| ELSWH03-002-GW-017  | GRF780             | WG     | 2018-05-10 14:21 | E537M  | Stage 2B            |
| ELSWH03-002-SO-011  | GRF766             | SO     | 2018-05-06 13:50 | E537M  | Stage 2B            |
| ELSWH03-002-SO-911  | GRF767             | SO     | 2018-05-06 13:50 | E537M  | Stage 2B            |
| ELSWH03-003-GW-016  | GRF779             | WG     | 2018-05-10 13:21 | E537M  | Stage 2B            |
| ELSWH03-003-SO-011  | GRF768             | SO     | 2018-05-06 15:03 | E537M  | Stage 2B            |
| ELSWH03-004-SO-011  | GRF771             | SO     | 2018-05-07 16:05 | E537M  | Stage 4             |
| ELSWH06-001-GW-018  | GRF778             | WG     | 2018-05-09 11:33 | E537M  | Stage 4             |
| ELSWH06-001-SO-012  | GRF765             | SO     | 2018-05-06 10:40 | E537M  | Stage 2B            |
| ELSWH06-001-SS-001  | GRF764             | SO     | 2018-05-06 10:13 | E537M  | Stage 2B            |
| ELSWH06-002-GW-018  | GRF776             | WG     | 2018-05-09 10:35 | E537M  | Stage 2B            |
| ELSWH06-002-GW-918  | GRF777             | WG     | 2018-05-09 10:35 | E537M  | Stage 2B            |
| ELSWH06-003-GW-055  | GRF775             | WG     | 2018-05-07 16:21 | E537M  | Stage 2B            |
| ELSWH06-004-SO-035  | GRF762             | SO     | 2018-05-06 09:10 | E537M  | Stage 2B            |
| ELSWH06-004-SS-001  | GRF760             | SO     | 2018-05-06 07:45 | E537M  | Stage 2B            |
| ELSWH06-004-SS-901  | GRF761             | SO     | 2018-05-06 07:45 | E537M  | Stage 2B            |
| ELSWH07-001-SO-029  | GRF773             | SO     | 2018-05-08 12:56 | E537M  | Stage 2B            |
| ELSWH07-001-SS-001  | GRF772             | SO     | 2018-05-08 08:50 | E537M  | Stage 2B            |
| ELSWH07-002-SS-001  | GRF759             | SO     | 2018-05-09 14:10 | E537M  | Stage 4             |
| ELSWH07-004-SO-013  | GRF747             | SO     | 2018-05-08 14:00 | E537M  | Stage 2B            |
| ELSWH07-004-SS-001  | GRF774             | SO     | 2018-05-08 13:20 | E537M  | Stage 2B            |
| ELSWH11-001-SO-012  | GRF755             | SO     | 2018-05-09 10:48 | E537M  | Stage 2B            |
| ELSWH11-001-SS-001  | GRF754             | SO     | 2018-05-09 10:00 | E537M  | Stage 2B            |
| ELSWH11-002-SO-010  | GRF751             | SO     | 2018-05-09 09:35 | E537M  | Stage 2B            |
| ELSWH11-002-SS-001  | GRF750             | SO     | 2018-05-09 08:42 | E537M  | Stage 2B            |
| ELSWH11-004-SO-012  | GRF757             | SO     | 2018-05-09 11:25 | E537M  | Stage 2B            |
| ELSWH11-004-SS-001  | GRF756             | SO     | 2018-05-09 11:11 | E537M  | Stage 2B            |
| ELSWH11-005-SO-013  | GRF758             | SO     | 2018-05-09 12:45 | E537M  | Stage 2B            |
| ELSWH11H-002-SO-910 | GRF752             | SO     | 2018-05-09 09:35 | E537M  | Stage 2B            |
| ELSWH-RS-014        | GRF763             | WQ     | 2018-05-06 09:05 | E537M  | Stage 2B            |



| Sample Name                 | Lab Sample<br>Name | Matrix | Collection       | Method | Validation<br>Level |
|-----------------------------|--------------------|--------|------------------|--------|---------------------|
| ELSWH-RS-015                | GRF769             | WQ     | 2018-05-07 13:01 | E537M  | Stage 2B            |
| ELSWH-RS-016                | GRF749             | WQ     | 2018-05-08 13:55 | E537M  | Stage 2B            |
| ELSWH-RS-017                | GRF753             | WQ     | 2018-05-09 09:30 | E537M  | Stage 2B            |
| ELSWH-RS-018                | GRF781             | WQ     | 2018-05-10 12:15 | E537M  | Stage 2B            |
| ELSWH-SB-001                | GRF748             | WQ     | 2018-05-08 14:15 | E537M  | Stage 2B            |
| ELSWH01-001-GW-015          | GTF558             | WG     | 2018-05-20 09:25 | E537M  | Stage 2B            |
| ELSWH01-001-GW-915          | GTF559             | WG     | 2018-05-20 09:25 | E537M  | Stage 2B            |
| ELSWH01-001-SO-013          | GTF550             | SO     | 2018-05-17 09:47 | E537M  | Stage 4             |
| ELSWH01-001-SO-913          | GTF551             | SO     | 2018-05-17 09:47 | E537M  | Stage 2B            |
| ELSWH01-001-SS-001          | GTF547             | SO     | 2018-05-17 08:33 | E537M  | Stage 2B            |
| ELSWH01-001-SS-901          | GTF548             | SO     | 2018-05-17 08:33 | E537M  | Stage 2B            |
| ELSWH01-002-SO-012          | GTF543             | SO     | 2018-05-16 13:30 | E537M  | Stage 2B            |
| ELSWH01-002-SS-001          | GTF542             | SO     | 2018-05-16 12:50 | E537M  | Stage 2B            |
| ELSWH01-003-SO-025          | GTF541             | SO     | 2018-05-15 16:00 | E537M  | Stage 2B            |
| ELSWH01-003-SS-001          | GTF540             | SO     | 2018-05-15 14:10 | E537M  | Stage 2B            |
| ELSWH01-004-SO-012          | GTF545             | SO     | 2018-05-16 14:30 | E537M  | Stage 2B            |
| ELSWH01-004-SS-001          | GTF544             | SO     | 2018-05-16 13:40 | E537M  | Stage 2B            |
| ELSWH01-MW930107-GW-<br>034 | GTF530             | WG     | 2018-05-16 15:54 | E537M  | Stage 2B            |
| ELSWH02-007-GW-018          | GTF537             | WG     | 2018-05-18 11:27 | E537M  | Stage 4             |
| ELSWH02-008-GW-029          | GTF535             | WG     | 2018-05-18 10:16 | E537M  | Stage 2B            |
| ELSWH02-008-GW-929          | GTF536             | WG     | 2018-05-18 10:16 | E537M  | Stage 2B            |
| ELSWH03-001-SO-009          | GTF552             | SO     | 2018-05-17 13:25 | E537M  | Stage 2B            |
| ELSWH04-002-SO-035          | GTF533             | SO     | 2018-05-18 10:30 | E537M  | Stage 2B            |
| ELSWH04-002-SS-001          | GTF532             | SO     | 2018-05-18 08:45 | E537M  | Stage 4             |
| ELSWH07-001-GW-035          | GTF525             | WG     | 2018-05-15 12:55 | E537M  | Stage 2B            |
| ELSWH07-002-SO-013          | GTF534             | SO     | 2018-05-09 16:10 | E537M  | Stage 2B            |
| ELSWH07-003-SO-016          | GTF539             | SO     | 2018-05-15 11:50 | E537M  | Stage 2B            |
| ELSWH07-003-SS-001          | GTF538             | SO     | 2018-05-15 10:15 | E537M  | Stage 2B            |



| Sample Name        | Lab Sample<br>Name | Matrix | Collection       | Method | Validation<br>Level |
|--------------------|--------------------|--------|------------------|--------|---------------------|
| ELSWH10-001-GW-045 | GTF556             | WG     | 2018-05-19 10:36 | E537M  | Stage 2B            |
| ELSWH10-002-GW-035 | GTF553             | WG     | 2018-05-19 09:32 | E537M  | Stage 2B            |
| ELSWH10-002-GW-935 | GTF554             | WG     | 2018-05-19 09:32 | E537M  | Stage 2B            |
| ELSWH10-004-SD-001 | GTF528             | SE     | 2018-05-16 09:45 | E537M  | Stage 4             |
| ELSWH10-004-SW-001 | GTF529             | WS     | 2018-05-16 09:45 | E537M  | Stage 2B            |
| ELSWH11-001-GW-015 | GTF562             | WG     | 2018-05-20 16:14 | E537M  | Stage 2B            |
| ELSWH11-002-GW-015 | GTF560             | WG     | 2018-05-20 15:00 | E537M  | Stage 2B            |
| ELSWH11-003-GW-020 | GTF561             | WG     | 2018-05-20 14:34 | E537M  | Stage 2B            |
| ELSWH11-006-SD-001 | GTF526             | SE     | 2018-05-16 09:00 | E537M  | Stage 2B            |
| ELSWH11-006-SW-001 | GTF527             | WS     | 2018-05-16 09:00 | E537M  | Stage 2B            |
| ELSWH-RS-019       | GTF524             | WG     | 2018-05-15 09:10 | E537M  | Stage 2B            |
| ELSWH-RS-020       | GTF546             | WQ     | 2018-05-16 12:49 | E537M  | Stage 2B            |
| ELSWH-RS-021       | GTF549             | WQ     | 2018-05-17 09:35 | E537M  | Stage 2B            |
| ELSWH-RS-022       | GTF531             | WG     | 2018-05-18 08:40 | E537M  | Stage 2B            |
| ELSWH-RS-023       | GTF555             | WQ     | 2018-05-19 09:55 | E537M  | Stage 2B            |
| ELSWH-RS-024       | GTF557             | WQ     | 2018-05-20 08:10 | E537M  | Stage 2B            |
| ELSWH01-003-GW-035 | GUB621             | WG     | 2018-05-21 11:02 | E537M  | Stage 2B            |
| ELSWH01-004-GW-018 | GUB622             | WG     | 2018-05-21 15:11 | E537M  | Stage 2B            |
| ELSWH02-005-GW-040 | GUB625             | WG     | 2018-05-23 14:35 | E537M  | Stage 2B            |
| ELSWH03-001-GW-015 | GUB627             | WG     | 2018-05-24 12:09 | E537M  | Stage 2B            |
| ELSWH04-001-SO-029 | GUB619             | so     | 2018-05-22 14:57 | E537M  | Stage 2B            |
| ELSWH04-001-SS-001 | GUB618             | so     | 2018-05-22 12:52 | E537M  | Stage 2B            |
| ELSWH04-003-SO-027 | GUB616             | SO     | 2018-05-18 14:10 | E537M  | Stage 2B            |
| ELSWH04-003-SS-001 | GUB608             | so     | 2018-05-18 12:18 | E537M  | Stage 2B            |
| ELSWH04-004-SO-031 | GUB609             | SO     | 2018-05-18 15:15 | E537M  | Stage 2B            |
| ELSWH04-005-SO-020 | GUB610             | SO     | 2018-05-18 16:15 | E537M  | Stage 4             |
| ELSWH07-002-GW-021 | GUB624             | WG     | 2018-05-21 17:15 | E537M  | Stage 4             |
| ELSWH07-003-GW-021 | GUB623             | WG     | 2018-05-21 16:21 | E537M  | Stage 2B            |
| ELSWH09-001-SO-005 | GUB615             | SO     | 2018-05-21 14:30 | E537M  | Stage 2B            |



| Sample Name         | Lab Sample<br>Name | Matrix | Collection       | Method | Validation<br>Level |
|---------------------|--------------------|--------|------------------|--------|---------------------|
| ELSWH09-001-SS-001  | GUB614             | SO     | 2018-05-21 12:12 | E537M  | Stage 2B            |
| ELSWH09-002-SO-005  | GUB620             | SO     | 2018-05-21 10:25 | E537M  | Stage 2B            |
| ELSWH09-002-SS-001  | GUB612             | SO     | 2018-05-21 08:55 | E537M  | Stage 2B            |
| ELSWH09-002-SS-901  | GUB613             | SO     | 2018-05-21 08:55 | E537M  | Stage 2B            |
| ELSWH-RS-025        | GUB611             | WQ     | 2018-05-21 08:45 | E537M  | Stage 2B            |
| ELSWH-RS-026        | GUB617             | WQ     | 2018-05-22 10:55 | E537M  | Stage 2B            |
| ELSWH-RS-027        | GUB626             | WQ     | 2018-05-23 13:40 | E537M  | Stage 2B            |
| ELSWH04-001-GW-032  | GWJ144             | WG     | 2018-05-31 17:46 | E537M  | Stage 2B            |
| ELSWH04-002-GW-038  | GWJ141             | WG     | 2018-05-31 14:12 | E537M  | Stage 2B            |
| ELSWH04-003-GW-033  | GWJ140             | WG     | 2018-05-31 11:50 | E537M  | Stage 4             |
| ELSWH09-001-GW-033A | GWJ143             | WG     | 2018-05-31 16:02 | E537M  | Stage 2B            |
| ELSWH09-002-GW-030A | GWJ142             | WG     | 2018-05-31 15:32 | E537M  | Stage 2B            |
| ELSWH10-003-GW-059  | GWJ146             | WG     | 2018-06-03 15:17 | E537M  | Stage 2B            |
| ELSWH10-003-SO-050  | GWJ151             | SO     | 2018-05-31 12:00 | E537M  | Stage 2B            |
| ELSWH10-003-SS-001  | GWJ150             | SO     | 2018-05-24 13:12 | E537M  | Stage 2B            |
| ELSWH-RS-028        | GWJ149             | WQ     | 2018-05-24 13:09 | E537M  | Stage 2B            |
| ELSWH-RS-030        | GWJ145             | WQ     | 2018-06-03 14:50 | E537M  | Stage 2B            |
| ELSWH-RS-29         | GWJ139             | WQ     | 2018-05-31 11:10 | E537M  | Stage 2B            |
| ELSWH-WS-001        | GWJ148             | SO     | 2018-06-03 18:00 | E537M  | Stage 2B            |
| ELSWH-WW-001        | GWJ147             | WG     | 2018-06-03 18:00 | E537M  | Stage 2B            |
| ELSWH02-004-SD-901A | HJG660             | SE     | 2018-07-31 09:20 | E537M  | Stage 2B            |
| ELSWH02-004-SW-001A | HJG661             | WS     | 2018-07-31 09:15 | E537M  | Stage 2B            |
| ELSWH02-004-SW-901A | HJG662             | WS     | 2018-07-31 09:15 | E537M  | Stage 2B            |
| ELSWH02-004-SD-001A | HJG659             | SE     | 2018-07-31 09:20 | E537M  | Stage 2B            |
| ELSWH-RS-001A       | HJG658             | WQ     | 2018-07-31 09:05 | E537M  | Stage 2B            |



#### II. SAMPLE MANAGEMENT

According to the case narratives and the chains-of-custody (COCs) provided by the laboratory for sample delivery groups (SDGs) B894616, B897127, B8A6782, B8B1135, B8C0381, B8C4298, B8D4761 and B8J4786:

- Cooler temperatures recorded on the COCs indicated all samples were received at temperatures within the control limits of ≤10°C.
- Field and laboratory personnel signed and dated the COCs.
- Some COC corrections were made by overwriting the original entry, rather than lining out.
- The case narratives for these SDGs and the COCs noted custody seals were present and intact on the coolers upon receipt at the laboratory.
- In SDG B8B1135, sample containers for ELSWH03-002-SO-911 were labelled as ELSWH03-002-GW-911. The sample was a soil, the client was notified and the sample was logged in according to the correct identification on the COC.
- SDG B8C0381 soil and water samples were reported in separate pdf sample packages due to the size.

M2027.0003 D-12 3/6/19



# **TABLE 2 - DATA QUALIFIER REFERENCE**

| Qualifier | Definition                                                                                                                                                                                                 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R         | The sample results are rejected because of serious deficiencies in the ability to analyze the sample and to meet quality control (QC) criteria. The presence or absence of the analyte cannot be verified. |
| U         | The analyte was analyzed for but was nondetect (ND) above the reported sample quantification limit.                                                                                                        |
| В         | The reported concentration is less than 5 times the concentration reported in an associated field or lab blank.                                                                                            |
| J         | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                       |
| UJ        | The material was analyzed for but was ND. The associated value is an estimate and may be inaccurate or imprecise.                                                                                          |

# **TABLE 3 - REASON CODE REFERENCE**

| Reason<br>Code | Definition                                                                       |
|----------------|----------------------------------------------------------------------------------|
| 01             | Sample received outside of 4+/-2 degrees Celsius (°C)                            |
| 01A            | Improper sample preservation                                                     |
| 02             | Holding time exceeded                                                            |
| 02A            | Extraction                                                                       |
| 02B            | Analysis                                                                         |
| 03             | Instrument performance – outside criteria                                        |
| 03A*           | Bromofluorobenzene (BFB)                                                         |
| 03B*           | Decafluorotriphenylphosphine (DFTPP)                                             |
| 03C*           | dichlorodiphenyltrichloroethane (DDT) and/or endrin % breakdown exceeds criteria |
| 03D            | Retention time windows                                                           |
| 03E            | Resolution                                                                       |
| 04             | ICAL results outside specified criteria                                          |
| 04A            | Compound mean RRF QC criteria not met                                            |
| 04B            | Individual % RSD criteria not met                                                |
| 04C            | $r < 0.995 \text{ or } r^2 < 0.99$                                               |
| 04D            | ICAL % Recovery                                                                  |
| 05             | Continuing calibration results outside specified criteria                        |
| 05A            | Compound mean RRF QC criteria not met                                            |

M2027.0003 D-13 3/6/19



| Reason<br>Code | Definition                                                                      |
|----------------|---------------------------------------------------------------------------------|
| 05B            | Compound % Difference QC criteria not met                                       |
| 06             | Result qualified as a result of the 5x/10x blank correction                     |
| 06A            | Method or preparation blank                                                     |
| 06B            | ICB or CCB                                                                      |
| 06C            | ER                                                                              |
| 06D            | ТВ                                                                              |
| 06E            | FB                                                                              |
| 07             | Surrogate recoveries outside control limits                                     |
| 07A            | Sample                                                                          |
| 07B            | Associated MB or LCS                                                            |
| 08             | MS/MSD/Duplicate results outside criteria                                       |
| 08A            | MS and/or MSD recovery not within control limits (accuracy)                     |
| 08B            | % RPD outside acceptance criteria (precision)                                   |
| 09*            | Post digestion spike outside criteria graphite furnace atomic absorption (GFAA) |
| 10             | Internal standards outside specified control limits                             |
| 10A            | Recovery                                                                        |
| 10B            | Retention time                                                                  |
| 11             | LCS recoveries outside specified limits                                         |
| 11A            | Recovery                                                                        |
| 11B            | % RPD (if run in duplicate)                                                     |
| 12*            | Interference check standard                                                     |
| 13*            | Serial dilution                                                                 |
| 14*            | Tentatively identified compounds                                                |
| 15             | Quantification                                                                  |
| 16             | Multiple results available; alternate analysis preferred                        |
| 17             | Field duplicate RPD criteria is exceeded                                        |
| 18*            | Percent difference between original and second column exceeds QC criteria       |
| 19             | Professional judgment was used to qualify the data                              |
| 20*            | Pesticide clean-up checks                                                       |
| 21             | Target compound identification                                                  |
| 22*            | Radiological calibration                                                        |

M2027.0003 D-14 3/6/19



| Reason<br>Code | Definition                                                                  |
|----------------|-----------------------------------------------------------------------------|
| 23*            | Radiological quantification                                                 |
| 24             | Reported result and/or lab qualifier revised to reflect validation findings |

<sup>\*</sup>Indicates that this code is not expected to apply to the evaluation of PFAS analyses

M2027.0003 D-15 3/6/19



#### III. METHOD ANALYSIS- PERFLUORINATED COMPOUNDS BY MODIFIED EPA METHOD 537 MODIFIED

K. Zilis of MEC<sup>x</sup> reviewed these SDGs May22-August 12, 2018.

#### **III.1. HOLDING TIMES**

All samples were extracted within 28 days of collection and analyzed within 45 days of extraction.

# III.2. CALIBRATION

Calibration criteria were met except for the outliers noted below.

# III.2.1. INITIAL CALIBRATION

Initial calibration criteria were met. Recoveries were within 70-130% for the lowest level of each initial calibration and 75-125% for the remaining levels, and all correlation coefficient  $r^2$  values were within the control limit of  $\geq$ 0.990 or r values  $\geq$ 0.995. Applicable %RSDs were within the control limit of  $\leq$ 20%. The calculated peak asymmetry factors were within the control range of 0.8-1.5. MEC<sup>X</sup> noted the laboratory utilized as the calibration method a weighted (1/X) linear initial calibration standard curve not forced through zero.

#### 11.2.2. CONTINUING CALIBRATION

The initial calibration verification (ICV) and continuing calibration verification (CCV) recoveries were within the control limits of 75-125%. Low-level check standard (ICS) recoveries were within the control limits of 70-130%.

#### **III.3. QUALITY CONTROL SAMPLES**

#### III.3.1. METHOD BLANKS

The method blanks associated with the analyses of the soil and water samples had no target analyte detects above the respective soil and water detection limits (DLs).

#### III.3.2. LABORATORY CONTROL SAMPLES

LCS recoveries were within the control limits of 70-130%, and RPDs for water LCS/LCSD pairs were within the control limit of ≤30%.

# 111.3.3. MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Outliers affecting parent sample data and qualifications assigned are noted below. Qualifications were not assigned for recovery outliers not occurring in both the MS and MSD, or for RPD outliers or high recoveries if the outlier compound was not detected in the parent sample. If the parent sample concentration of an analyte exceeded 4× the spike amount, recoveries and the RPD were not evaluated. With exceptions noted below, recoveries and RPDs affecting sample data were within the control limits of 70-130% and ≤30%, respectively.

# SDG B894616

MS/MSD analyses were performed on soil sample ELSWH12-001-SS-001. Recoveries were outside of QC limits for PFHxS and PFOS. Both analytes were present in the native sample, PFOS was present at greater than 4x the spike concentration. Qualifications were not assigned for PFHxS as only the MSD recovery exceeded QC limits.

M2027.0003 D-16 3/6/19



Matrix spikes were not requested or performed for water samples.

# SDG B897127

MS/MSD analyses were performed on soil sample ELSWH02-004-SD-001 and on water sample ELSWH02-004-SW-001. All soil sample MS/MSD recoveries were compliant except for the PFBS RPD at 31%. Spike recoveries were 79 and 108%. This compound was not detected in the sample and no qualifiers were applied.

Recoveries were above the control limits of 70-130% for PFTrDA in the MS and MSD of the water sample, at 137% and 133%, respectively. The 13C2-PFTeDA internal standard recovery in the native sample analysis, as well as both matrix spikes was below QC limits and results for associated compounds PFTeDA and PFTrDA were previously qualified for the internal standard recovery. These compounds were not detected in the sample.

# SDG B8A6782

MS/MSD analyses were performed on soil samples ELSWH05-003-SO-009 and ELSWH06-002-SO-010. All recoveries and RPDs affecting sample data were within the control limits of 70-130% and ≤30%, respectively.

# SDG B8B1135

MS/MSD analyses were performed on soil samples ELSWH11-002-SO-010 and ELSWH06-004-SS-001, and water sample ELSWH06-002-GW-018. All recoveries and RPDs for the ELSWH11-002-SO-010 matrix spikes were within the control limits of 70-130% and ≤30%, respectively, with the following exceptions. The recovery of PFOS was high in sample ELSWH06-004-SS-001 in the MS and MSD at 142 and 167%. This compound was detected in the sample at 29 ug/L and was qualified as estimated. The water matrix spike PFDS recovery was low at 54% below the control limits of 70-130%. In addition, extracted internal standards MPFDoDA and MPFTrDA had low recoveries at 46 and 49% respectively, with lower control limit of 50%. The MSD internal standard and target compound recoveries were within control limits but the RPD was high at 44% with a control limit of 30%. The undetected result for PFDS in sample ELSWH06-002-GW-018 was qualified as estimated for the precision measure outlier.

# SDG B8C0381

As designated on the COC, soil samples ELSWH01-001-SS-001 and ELSWH01-001-SO-013, and water sample ELSWH01-001-GW-015 were used for the matrix spike and matrix spike duplicate analyses. Due to high concentrations of target compounds in the sample, a matrix duplicate was performed instead of MS/MSD for samples ELSWH01-001-SS-001 and ELSWH01-001-GW-015. Recoveries and the RPD were not evaluated for 8:2 FTS and PFOS in the spike analyses for ELSWH01-001-SO-013 because the native sample concentrations were greater than 4 times the spiked amount.

#### SDG B8C4298

Samples were not designated on the COC for matrix spike analysis. Matrix spikes were performed on soil sample ELSWH04-005-SO-020. Matrix spikes were not performed on a water sample. Water QC batch 5557332 was shared with SDG B8C0381 (see above) and due to high concentrations of target compounds in SDG B8C0381 sample ELSWH01-001-GW-015, a matrix duplicate was performed instead of MS/MSD.

M2027.0003 D-17 3/6/19



#### SDG B8D4761

Samples were not designated on the COC for matrix spike analysis. Matrix spikes were performed on water sample ELSWH10-003-GW-059. Soil MS/MSD analysis was not performed on a project sample and precision data was not available.

# SDG B8J4786

MS/MSD analyses were performed on soil sample ELSWH02-004-SD-001A and water sample ELSWH02-004-SW-001A. All recoveries and RPDs were compliant.

# III.4. FIELD QC SAMPLES

MEC<sup>x</sup> evaluated field QC samples, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. MEC<sup>x</sup> used the remaining detects to evaluate the associated site samples. Findings associated with field QC samples are summarized below.

# 11.4.1. FIELD BLANKS AND EQUIPMENT BLANKS

Field blanks and equipment blanks are listed in the table below. There were no reported detections above the LOD in any of the blanks.

# **Table 4-FB/EB Detects**

# SDG B894616

| Field or Equipment Blank | Detects | Concentration<br>μg/L | LOQ<br>μg/L |
|--------------------------|---------|-----------------------|-------------|
| ELSWH-RS-001             | none    | N/A                   | N/A         |
| ELSWH-RS-002             | none    | N/A                   | N/A         |
| ELSWH-RS-003             | none    | N/A                   | N/A         |
| ELSWH-RS-005             | none    | N/A                   | N/A         |

#### SDG B897127

| Field or Equipment Blank | Detects | Concentration<br>μg/L | LOQ<br>μg/L |
|--------------------------|---------|-----------------------|-------------|
| ELSWH-RS-006             | none    | N/A                   | N/A         |
| ELSWH-RS-007             | none    | N/A                   | N/A         |
| ELSWH-RS-008             | none    | N/A                   | N/A         |

# SDG B8A6782

| Field or Equipment Blank | Detects | Concentration<br>μg/L | LOQ<br>μg/L |
|--------------------------|---------|-----------------------|-------------|
| ELSWH-RS-009             | none    | N/A                   | N/A         |
| ELSWH-RS-010             | none    | N/A                   | N/A         |
| ELSWH-RS-011             | none    | N/A                   | N/A         |
| ELSWH-RS-012             | none    | N/A                   | N/A         |
| ELSWH-RS-013             | none    | N/A                   | N/A         |

M2027.0003 D-18 3/6/19



# **SDG B8B1135**

| Field or Equipment Blank | Detects | Concentration μg/L | LOQ<br>μg/L |
|--------------------------|---------|--------------------|-------------|
| ELSWH-RS-014             | none    | N/A                | N/A         |
| ELSWH-RS-015             | none    | N/A                | N/A         |
| ELSWH-RS-016             | none    | N/A                | N/A         |
| ELSWH-RS-017             | none    | N/A                | N/A         |
| ELSWH-RS-018             | none    | N/A                | N/A         |
| ELSWH-SB-001             | none    | N/A                | N/A         |

# SDG B8C0381

| Field or Equipment Blank | Detects | Concentration μg/L | LOQ<br>μg/L |
|--------------------------|---------|--------------------|-------------|
| ELSWH-RS-019             | none    | N/A                | N/A         |
| ELSWH-RS-020             | none    | N/A                | N/A         |
| ELSWH-RS-021             | none    | N/A                | N/A         |
| ELSWH-RS-022             | none    | N/A                | N/A         |
| ELSWH-RS-023             | none    | N/A                | N/A         |
| ELSWH-RS-024             | none    | N/A                | N/A         |

# SDG B8C4298

| Field or Equipment Blank | Detects | Concentration μg/L | LOQ<br>μg/L |
|--------------------------|---------|--------------------|-------------|
| ELSWH-RS-025             | none    | N/A                | N/A         |
| ELSWH-RS-026             | none    | N/A                | N/A         |
| ELSWH-RS-027             | PFHxS   | 0.0081 J           | 0.02        |

Adjusting for matrix,  $0.0081 \,\mu\text{g/L} \,\text{PFHxS} * 0.125 \,\text{L/} 0.0025 \,\text{kg} = 0.405 \,\mu\text{g/kg}$ . PFHxS has been qualified based on the equipment blank results up to 5x this value, or  $2.02 \,\mu\text{g/kg}$ .

# SDG B8D4167

| Field or Equipment Blank | Detects | Concentration μg/L | LOQ<br>μg/L |
|--------------------------|---------|--------------------|-------------|
| ELSWH-RS-028             | none    | N/A                | N/A         |
| ELSWH-RS-029             | none    | N/A                | N/A         |
| ELSWH-RS-030             | 6:2 FTS | 0.012 J            | 0.02        |

6:2 FTS was not detected in any of the soil samples and no qualifiers have been applied.

# SDG B8J4786

| Field or Equipment Blank | Detects | Concentration μg/L | LOQ<br>μg/L |
|--------------------------|---------|--------------------|-------------|
| ELSWH-RS-001A            | none    | N/A                | N/A         |

M2027.0003 D-19 3/6/19



#### III.4.2. FIELD DUPLICATES

Field duplicate pairs are listed below. RPDs for detections above the LOQ were within the control limit of  $\leq$ 30%, and detects below the LOQ, in one or both samples of a pair, were within the control limit of  $\pm$ LOQ, with exceptions noted in the table below. Results for the outlier target analytes were qualified as estimated (J for detects or UJ for nondetects) in both samples of a pair.

# **Table 5-FD RPDs**

# SDG B894616

| Parent Sample      | Field Duplicate    | Target Analyte | RPD Outliers |
|--------------------|--------------------|----------------|--------------|
| ELSWH08-002-SO-040 | ELSWH08-002-SO-940 | N/A            | None         |
| ELSWH12-001-SS-001 | ELSWH12-001-SS-901 | PFOS           | 40%          |

# SDG B897127

| Parent Sample      | Field Duplicate    | Target Analyte | RPD Outliers |
|--------------------|--------------------|----------------|--------------|
| ELSWH02-004-SD-001 | ELSWH02-004-SD-901 | PFOS           | 45%          |
| ELSWH02-004-SW-001 | ELSWH02-004-SW-901 | N/A            | None         |

# **SDG B8A6782**

| Parent Sample      | Field Duplicate    | Target Analyte | RPD Outliers |
|--------------------|--------------------|----------------|--------------|
| ELSWH05-003-SO-009 | ELSWH05-003-SO-909 | N/A            | None         |

# SDG B8B1135

| Parent Sample      | Field Duplicate     | Target Analyte | RPD Outliers |
|--------------------|---------------------|----------------|--------------|
| ELSWH06-002-GW-018 | ELSWH06-002-GW-918  | N/A            | None         |
| ELSWH06-004-SS-001 | ELSWH06-004-SS-901  | PFOA           | 40%          |
| ELSWH03-002-SO-011 | ELSWH03-002-SO-911  | PFHxS          | 49%          |
| ELSWH11-002-SO-010 | ELSWH11H-002-SO-910 | N/A            | None         |

# SDG B8C0381

| Parent Sample      | Field Duplicate      | Target Analyte | RPD Outliers |
|--------------------|----------------------|----------------|--------------|
|                    |                      | 6:2 FTS        | 89%          |
|                    |                      | PFBS           | ±LOQ         |
|                    |                      | PFBA           | 98%          |
|                    |                      | PFHpA          | ±LOQ         |
| ELSWH02-008-GW-029 | ELSWH02-008-GW-929   | PFHS           | 83%          |
|                    |                      | PFHxA          | 94%          |
|                    |                      | PFOA           | 100%         |
|                    |                      | PFOS           | 88%          |
|                    |                      | PFPeA          | 93%          |
| ELSWH01-001-SS-001 |                      | 6:2 FTS        | 166%         |
|                    | ELSWH01-001-SS-901   | 8:2 FTS        | 55%          |
|                    | EF244 U01-001-22-201 | PFHS           | 130%         |
|                    |                      | PFOA           | ±LOQ         |

M2027.0003 D-20 3/6/19



| Parent Sample        | Field Duplicate      | Target Analyte | RPD Outliers |
|----------------------|----------------------|----------------|--------------|
|                      |                      | PFOS           | 54%          |
|                      |                      |                |              |
| ELSWH01-001-SO-013   | ELSWH01-001-SO-913   | None           | None         |
| ELSWH01-001-GW-015   | ELSWH01-001-GW-915   | PFHeA          | 34%          |
| EF2AAU01-001-0AA-012 | EF2AAU01-001-0AA-312 | PFPeA          | 32%          |

ELSWH02-008-GW-029 is consistently higher than the duplicate sample.

ELSWH01-001-SS-001 is consistently lower than the duplicate sample.

# SDG B8C4298

| Parent Sample      | Field Duplicate    | Target Analyte | RPD Outliers |
|--------------------|--------------------|----------------|--------------|
| ELSWH09-002-SS-001 | ELSWH09-002-SS-901 | PFOS           | 154%         |

The sample and sample duplicate PFOS concentrations were 4 and 31 µg/L respectively.

# SDG B8D4761

Field duplicates were not collected with this SDG

#### SDG B8J4786

| Parent Sample       | Field Duplicate     | Target Analyte | RPD Outliers |
|---------------------|---------------------|----------------|--------------|
| ELSWH02-004-SD-001A | ELSWH02-004-SD-901A | PFOS           | 70.6%        |
| ELSWH02-004-SW-001A | ELSWH02-004-SW-901A | N/A            | None         |

The sample and sample duplicate PFOS concentrations were 23 and 11 µg/L respectively

#### III.5. INTERNAL STANDARDS PERFORMANCE

# III.5.1. EXTRACTED INTERNAL STANDARD RECOVERY

As stated on the certificate of analysis for the samples, "Per- and polyfluoroalkyl substances (PFAS) as identified as surrogates on the certificate of analysis represent the extracted internal standard." Except as noted in the tables below, all extracted internal standards were within DoD QSM 5.1.1 Table B-15 criteria of 50-150% recovery.

Table 6-Extracted Internal Standards

#### SDG B894616

| Internal Standard | % Recovery | Affected Samples   | Associated Target Analyte(s) |
|-------------------|------------|--------------------|------------------------------|
| 13C2-PFDoA        | NA         | ELSWH08-002-SS-001 | PFDoA                        |
| 13C2-PFTeDA       | INA        |                    | PFTeDA, PFTrDA               |

The samples were reextracted and analyzed at a 10x dilution. Extracted internal standards were compliant and results were reported from this analysis. Reporting limits were raised accordingly

The recovery of 13C2PFBA was low in the LCSD waters extraction batch. The samples were reextracted for PFBA in batch 5514083. All results were based on compliant QC and compliant internal standard recoveries.

17

M2027.0003 D-21 3/6/19



# SDG B897127

| Internal Standard | % Recovery | Affected Samples   | Associated Target Analyte(s) |
|-------------------|------------|--------------------|------------------------------|
| 13C2-PFTeDA       | 42%        | ELSWH02-004-SW-001 | PFTeDA, PFTrDA               |
| 13C2-PFDoA        |            |                    | PFDoA                        |
| 13C2-PFTeDA       | NA         | ELSWH02-004-SD-001 | PFTeDA, PFTrDA               |
| 13C2-PFUnA        |            |                    | PFUnA                        |
| 13C2-PFTeDA       | NA         | ELSWH02-004-SD-901 | PFTeDA, PFTrDA               |

The results for the affected target compounds in the water sample, ELSWH02-004-SW-001, have been qualified as estimated (UJ).

The soil samples, ELSWH02-004-SD-001 and ELSWH02-004-SD-901, were reextracted and analyzed at a 10x dilution. Extracted internal standards were compliant and results were reported from this analysis.

# SDG B894616

All extracted internal standards were within DoD QSM 5.1.1 Table B-15 criteria of 50-150% recovery.

#### SDG B8B1135

| Internal Standard | % Recovery | Affected Samples   | Associated Target Analyte(s) |
|-------------------|------------|--------------------|------------------------------|
| 13C2PFBA          | 36%        | ELSWH06-003-GW-055 | PFBA                         |

The results for the affected target compound in the water sample, ELSWH06-003-GW-055, has been qualified as estimated (UJ).

#### SDG B8C0381

| Internal Standard | % Recovery | Affected Samples   | Associated Target Analyte(s) |
|-------------------|------------|--------------------|------------------------------|
| 12C2 DET - DA     | N A        | ELSWH10-004-SD-001 | DET DA DET DA                |
| 13C2-PFTeDA       | TeDA NA    | ELSWH01-002-SS-001 | PFTeDA, PFTrDA               |

The recovery of internal standard 13C2-PFTeDA was below QC criteria in the original analysis. The samples were reextracted and analyzed at a dilution. Extracted internal standards were compliant and results were reported from this analysis. Reporting limits were raised accordingly

# 111.5.2. INJECTED INTERNAL STANDARD RECOVERY

The applicable labeled internal standard recoveries were all within the control limits of ±50% of the peak areas of the response for standard level 4 of the calibration curve with the following exceptions exception of ELSWH11-004-SO-012 and ELSWH02-005-SO-034. The area response of both injected internal standards, MPFHxA and MPFDA, were slightly higher than 50% more than the response for standard level 4 of the calibration curve. As a conservative approach, the detects were flagged as estimated (J) even though the extraction internal standards (upon which the quantitation is based) were within the control limits. Injection internal standards were added post extraction by the laboratory as required by the DoD QSM 5.1.1 Table B-15.

M2027.0003 D-22 3/6/19



# **Table 7-Injected Internal Standards**

# SDGs B8B1135

| Internal Standard | % Recovery | Affected Sample    | Associated Target Analyte(s) |
|-------------------|------------|--------------------|------------------------------|
| 13C6-PFHxA        | 153%       | ELSWH11-004-SO-012 | all                          |
| 13C9-PFDA         | 152%       | EL3WH11-004-30-012 | all                          |
| 13C6-PFHxA        | 151%       | ELSWH02-005-SO-034 | all                          |
| 13C9-PFDA         | 151%       | EL3WHUZ-005-30-034 | all                          |

# SDGs B8C0381

| Internal Standard | % Recovery | Affected Sample          | Associated Target Analyte(s) |
|-------------------|------------|--------------------------|------------------------------|
| 13C6-PFHxA        | 150.4%     | ELSWH01-004-SS-001 100X  | PFOS                         |
| 13C9-PFDA         | 158%       |                          |                              |
| 13C9-PFDA         | 155%       | ELSWH01-004-SO-012 100X  | PFOS                         |
| 13C9-PFDA         | 152%       | ELSWH01-001-SS-001 100X  | PFOS                         |
| 13C6-PFHxA        | 156%       | ELSWH01-001-SS-901 100X  | PFOS                         |
| 13C9-PFDA         | 161%       | ELSWINOI-001-33-301 100X | 1103                         |
| 13C9-PFDA         | 151%       | ELSWH01-001-SS-901 10X   | All except PFOS              |
| 13C6-PFHxA        | 152%       | ELSWH01-001-SO-913 10x   | DEOC 6.2 ETC                 |
| 13C9-PFDA         | 155%       | EF246 U01-001-20-313 10X | PFOS, 6:2 FTS                |
| 13C9-PFDA         | 153%       | ELSWH03-001-SO-009 10x   | PFOS                         |

The laboratory noted that the sample extracts showed visible indication of evaporation. The high response for the injection internal standards should be accounted for with the extracted internal standards which would reflect any evaporation affecting the target compounds. As a conservative approach, the detects were flagged as estimated (J) even though the extraction internal standards (upon which the quantitation is based) were within the control limits.

#### **III.6. COMPOUND IDENTIFICATION**

Compound identification was verified for the following samples:

# SDG B894616

Soil samples ELSWH12-004-SD-001, and ELSWH12-003-SO-006 and water samples ELSWH12-003-GW-016 and ELSWH12-004-SW-001

# SDGs B897127

None.

# SDGs B8A6782

Soil samples ELSWH02-006-SS-001 and ELSWH06-002-SS-001 and water sample ELSWH02-006-GW-030, were validated at a level 4.

#### SDGs B8B1135

Soil samples ELSWH07-002-SS-001 and ELSWH03-004-SO-011, and water sample ELSWH06-001-GW-018 were validated at a level 4.

M2027.0003 D-23 3/6/19



#### SDGs B8C0381

Soil samples ELSWH10-004-SD-001, ELSWH04-002-SS-001 and ELSWH01-001-SO-013, and water sample ELSWH02-007-GW-018 were validated at a level 4.

Review of retention times and the ion chromatograms indicated no issues with compound identification. The laboratory analyzed for 18 perfluorinated compounds by Modified EPA Method 537. Review of retention time and the ion chromatograms indicated no issues with compound identification.

# SDGs B8C4298

Soil sample ELSWH04-005-SO-020 and water sample ELSWH07-002-GW-021 were validated at a level 4. ELSWH04-003-GW-033

#### SDGs B8D4761

Water sample ELSWH04-003-GW-033 was validated at a level 4.

#### SDGs B8J4786

All samples were validated at a level 2B.

#### III.7. COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Calculations were verified and sample results reported on the sample result summaries were verified against the raw data for the samples listed above (see Compound Identification section), based on extracted sample amount and applicable dilution factors. The laboratory calculated and reported compound-specific detection limits. Detects below the LOQ were qualified as estimated (J). Nondetects are valid to the LOD.

The laboratory integrated isomeric forms for the PFCs with linear and branched isomers as required by Revision 1.1 of EPA Method 537.

Most samples were initially analyzed undiluted. The samples listed below were either extracted using reduced sample volumes and/or reanalyzed at one or more further dilutions to report various target analytes within the linear range of the calibration. Analytes were reported from the least dilute analysis possible of multiple dilutions to report all target analytes within the linear calibration range.

#### SDG B894616

Based on screening results indicating the presence of high concentrations of target analytes, two of the three water site samples were extracted using reduced sample volumes, resulting in effective initial dilutions and five of the 18 soil or sediment samples were analyzed at dilutions. The table below summarizes the initial analysis dilutions and further dilutions required for the specific target compounds listed. Reporting limits were raised accordingly.

| Sample              | Initial Analysis | Reanalysis | Target Compounds |
|---------------------|------------------|------------|------------------|
| ELSWH12-003-GW-016  | 2×               | 20×        | PFHxS            |
| LL3W1112-003-GW-010 | 2^               | 20^        | PFHxA            |
| ELSWH12-004-SW-001  | 5×               | 50×        | PFHxS            |
| EL3WH12-004-3W-001  | 3×               | 30×        | PFHxA            |
| ELSWH12-002-SS-001  |                  | 10         | DEGG.            |
| ELSWH12-001-SS-001  | 1x               | 10x        | PFOS             |

M2027.0003 D-24 3/6/19



| Sample             | Initial Analysis | Reanalysis | Target Compounds |
|--------------------|------------------|------------|------------------|
| ELSWH12-003-SS-001 |                  |            |                  |
| ELSWH12-001-SS-901 | 10x              | 100x       | PFOS             |
| ELSWH12-003-SO-006 | 1x               | 10x        | PFPeA            |

# SDG B897127

Dilutions were not required for analyses in this SDG to bring target compounds within the linear range of the instrument. Reporting limits were however elevated due to dilutions for internal standard compliance (See III.5.1).

# SDG B897127

All samples were originally analyzed without dilutions or reduced sample volumes so no undetected results were reported with elevated reporting limits. Sample ELSWH02-002-GW-035 was analyzed with a reduced sample volume to quantitate PFHxA and the reporting limit was elevated 10x. Samples ELSWH05-001-SS-001 and ELSWH05-003-SS-001 were analyzed at a 10x dilution to quantitate PFOS in the linear range and the reporting limit for this compound was elevated accordingly.

#### SDG B8B1135

All samples were originally analyzed without dilutions or reduced sample volumes so no undetected results were reported with elevated reporting limits. Sample ELSWH06-001-SS-001 was analyzed at a 10x dilution to quantitate PFOS in the linear range and the reporting limit for this compound was elevated accordingly. Water samples ELSWH03-003-GW-016 and ELSWH03-002-GW-017were analyzed with a reduced sample volume to quantitate PFHxS and PFOS and the reporting limit was elevated 10x.

# SDG B8C0381

Based on screening results indicating the presence of high concentrations of target analytes, samples were diluted or extracted using reduced sample volumes, resulting in effective initial dilutions. The table below summarizes the initial analysis dilutions and further dilutions required for the specific target compounds listed. Reporting limits were raised accordingly. Sample ELSWH01-MW930107-GW-034 was analyzed by the high level methodology for the quantitation of PFHxS, effectively a 400x dilution.

| Sample             | Initial<br>Analysis | Reanalysis | Target Compounds |  |
|--------------------|---------------------|------------|------------------|--|
| ELSWH10-004-SD-001 | 1x                  | 10x        | PFOS             |  |
| ELSWH04-002-SS-001 | 1x                  | 10x        | PFOS             |  |
| ELSWH01-003-SS-001 | 1x                  | 10x        | PFOS             |  |
| ELSWH01-002-SS-001 | 1x                  | 100x       | PFOS             |  |
| ELSWH01-002-SO-012 | 10x                 | 100x       | PFOS             |  |
| ELSWH01-004-SS-001 | 10x                 | 100x       | PFOS             |  |
| ELSWH01-004-SO-012 | 1x                  | 100x       | PFOS             |  |
| ELSWH01-001-SS-001 | 10x                 | 100x       | PFOS             |  |
| ELSWH01-001-SS-901 | 10x                 | 100x       | PFOS             |  |
| ELSWH01-001-SO-013 | 1x                  | 10x        | 6:2 FTS, PFOS    |  |

M2027.0003 D-25 3/6/19



| Sample                  | Initial<br>Analysis | Reanalysis | Target Compounds                        |  |
|-------------------------|---------------------|------------|-----------------------------------------|--|
| ELSWH01-001-SO-913      | 1x                  | 10x        | 6:2 FTS, PFOS                           |  |
| ELSWH03-001-SO-009      | 1x                  | 10x        | PFOS                                    |  |
| ELSWH01-MW930107-GW-034 | 100x                | 400x       | PFHxS                                   |  |
| ELSWH10-004-SW-001      | 1x                  | 10x        | PFHxS                                   |  |
| ELSWH02-008-GW-029      | 1x                  | 10x        | PFOS                                    |  |
| ELSWH01-001-GW-015      | 10x                 | 100x       | 6:2 FTS PFBS PFBA PFHxS PFHA PFOS PFPeA |  |
| ELSWH01-001-GW-915      | 10x                 | 100x       | 6:2 FTS PFBA PFHxS PFHA PFOS PFPeA      |  |

# SDG B8C4298

Based on screening results indicating the presence of high concentrations of target analytes, samples were diluted or extracted using reduced sample volumes, resulting in effective initial dilutions. The table below summarizes the initial analysis dilutions and further dilutions required for the specific target compounds listed. Reporting limits were raised accordingly.

| Sample             | Initial Analysis | Reanalysis | Target Compounds |  |
|--------------------|------------------|------------|------------------|--|
| ELSWH04-003-SS-001 | 10×              | 100×       | PFOS             |  |
|                    | 10×              | 100×       | 6:2 FTS          |  |
|                    |                  |            | PFBS             |  |
| ELSWH01-003-GW-035 |                  |            | PFHxS            |  |
| ELSWHOT-003-GW-033 |                  |            | PFHxA            |  |
|                    |                  |            | PFPeA            |  |
|                    |                  |            | PFOS             |  |
| ELSWH01-004-GW-018 | 10×              | 100×       | 6:2 FTS          |  |
|                    |                  |            | PFHxS            |  |
|                    |                  |            | PFHxA            |  |
|                    |                  |            | PFPeA            |  |
|                    |                  |            | PFOS             |  |
| ELSWH02-005-GW-040 | 1x               | 10x        | 6:2 FTS          |  |
|                    |                  |            | PFHxS            |  |
| ELSWH03-001-GW-015 | 1x               | 10x        | PFOS             |  |

M2027.0003 D-26 3/6/19



# SDG B8D4761

Based on screening results indicating the presence of high concentrations of target analytes, samples were diluted or extracted using reduced sample volumes, resulting in effective initial dilutions. The table below summarizes the initial analysis dilutions and further dilutions required for the specific target compounds listed. Reporting limits were raised accordingly.

| Sample       | Initial Analysis | Reanalysis | Target Compounds |
|--------------|------------------|------------|------------------|
| ELSWH-WW-001 | 10×              | 100×       | 6:2 FTS          |
|              |                  |            | PFBS             |
|              |                  |            | PFHxA            |
|              |                  |            | PFHxS            |
|              |                  |            | PFPeA            |
|              |                  |            | PFOS             |

The rest of the samples were originally analyzed without dilutions or reduced sample volumes so no undetected results were reported with elevated reporting limits, with the exception of PFTeDA, PFTrDA and PFDoA in sample ELSWH10-003-SO-050 which were reported from a dilution analysis because the extracted internal standard recovery was low in the original analysis (see section III.5.1). Sample ELSWH04-003-GW-033 was analyzed with a reduced sample volume to quantitate 6:2 FTS, PFHxS and PFHxA and the reporting limit was elevated 10x. Sample ELSWH10-003-SS-001 was analyzed at a 10x dilution to quantitate PFOS within the calibration range.

#### SDG B8J4786

All samples were analyzed without dilutions or reduced sample volumes. No undetected results were reported with elevated reporting limits.

# **III.8. SYSTEM PERFORMANCE**

<u>SDGs B894616, B897127, B8A6782, B8B1135, B8C0381, B8C4298, B8D4761, B8J4786</u>
No issues were noted with system performance.

M2027.0003 D-27 3/6/19



#### IV. SUMMARY AND CONCLUSIONS

MEC<sup>x</sup> evaluated a total of 2,772 data records from field samples during the validation and qualified 72 records (2.6% of the data) as estimated values (J for a detect and UJ for a nondetect). The qualification was required for potential equipment blank contamination, MS/MSD accuracy and precision outliers, internal standard outliers and field duplicate precision outliers. Nondetect compounds were flagged (U) to indicate that the compound was analyzed for but not detected above the laboratory detection limit (DL). Specific qualification were discussed in the text above.

Overall, the quality of the data was acceptable. The precision and accuracy results were acceptable. Other data quality indicators (DQI) (representativeness, comparability and completeness) met the project objectives. Each of these DQIs is discussed below.

#### IV.1. PRECISION

Precision is a measure of the agreement between duplicate sample measurements of the same quantity and is reflected in the relative percent difference (RPD) between spikes and the RPD for the field duplicate pair analysis. The outliers in the precision measurements were due to an MS/MSD RPD outlier and to field duplicate outliers. Precision was considered acceptable for the project.

#### IV.2. ACCURACY

Accuracy is measured by the results from the recovery of known amounts of compounds or elements from calibration, method blanks, laboratory control samples (LCS), matrix spikes (MS), internal standard recoveries and surrogate recoveries. The outliers in the accuracy measurements were due to potential equipment blank contamination, an MS/MSD recovery outlier and extraction and injection internal standard outliers. Accuracy was considered acceptable for the project.

#### IV.3. REPRESENTATIVENESS

The measures of representativeness – sample handling, analytical blank analysis, were met. Designated analytical protocols were followed. Four analytes were flagged for potential equipment blank contamination. The laboratory did utilize a weighted 1/X calibration curve which was not forced through zero. Although this is a deviation from Method 537, it is acceptable on DoD projects and was considered acceptable by the reviewer. Holding times were met for all analyses. No analytical problems were noted which would impact data representativeness.

#### **IV.4. COMPARABILITY**

The samples were analyzed using appropriate approved methods of analysis. All data were reported correctly using standard units.

# IV.5. COMPLETENESS

Completeness is the amount of validated data compared to the planned amount of data and is expressed as a percentage of the usable data divided by the total number of data points. Although one data point was rejected by the reviewer, it was not a target compound and was not counted against the overall percent completeness. Of the 2,772 target data points, no data points were rejected, resulting in a completeness of 100%.

M2027.0003 D-28 3/6/19



#### V. REFERENCES

Aerostar, 2016. Final Quality Assurance Project Plan for Site Inspection of Aqueous Film Forming Foam Areas, Multiple Sites United States Air Force Installations, March 2016

Aerostar, 2016a. Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP) for Site Inspection of Aqueous Film Forming Foam Areas, Multiple Sites, United States Air Force Installations, Addendum 12, Field Sampling Plan for Hill Air Force Base, Davis and Weber Counties, Utah, January 2018.

Department of Defense (DOD), 2017. *DoD Quality Systems Manual for Environmental Laboratories*, Version 5.1. January 2017.

EPA, 2009. Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS), Version 1.1, September 2009. EPA Document #: EPA/600/R-08/092.

EPA, 2014. EPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, EPA/540-R-014-002.

EPA (U.S. Environmental Protection Agency), January 2009. OSWER 9200-1-85. *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use.* EPA-540/R-08-005.

Ellsworth AFB DV Report.2.Docx

M2027.0003 D-29 3/6/19



**Prepared for: Aerostar SES LLC** 

Project: M2027.0003 (OMAHA)
ELLSWORTH AFB

# Analytical Data Package (Level IV)

Analysis: PFOS and PFOA in water and soil (Method 537 mod.)

Maxxam Job #: B8A6782

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com



I hereby certify that to the best of my knowledge all analytical data presented in this report:

- > Has been checked for completeness.
- Is accurate, legible and error free.
- ➤ Has been conducted in accordance with approved SOP's and that all deviations are clearly listed in the Case Narrative.
- This report has been generated in .pdf format.

Review Performed By:

Stigh Valle Project Manager Max Xam A Bureau Veritas Group Company Stephanie Pollen 2018.05.25 14:36:11 -04'00'

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com

# **Glossary of Terms**

- ➤ Detection Limit (DL) this can also be called Method Detection Limit (MDL): The lowest concentration or amount of the target analyte that can be identified, measured, and reported with confidence that the analyte concentration is not a false positive value. (Clarification): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- ➤ Limit of Detection (LOD): An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrix-specific and may be laboratory-dependent. (Clarification): The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%.
- ➤ Limits of Quantitation (LOQ) this can also be called Reporting Detection Limit (RDL): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. (Clarification): The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Acceptance Criteria are values used by the laboratory to determine that a process is in control.
- Accuracy is the degree of agreement of a measured value with the true or expected value.
- ➤ **Calibration Standards** are a set of solutions containing the analytes of interest at a specified concentration.
- > Calibration Verification Standard consists of a calibration standard solution of intermediate concentration (mid-point initial calibration level) used to access whether the initial calibration is still valid
- ➤ **Certified Reference Material** is a stable homogenous material that is certified by repetitive analysis from a supplier who is certified to generate said materials.

- ➤ **Internal Standard** a deuterated or <sup>13</sup>C-labelled analyte that is added to a sample extract prior to instrumental analysis to compensate for injection variability.
- > **Isomer** is a member of a group of compounds that differ from each other only in the locations of a specific number of common substituent atoms or groups of atoms on the parent compound.
- > **Method Blank** is a laboratory control sample using reagents that are known to be free of contamination.
- > **Precision** is the degree of agreement between the data generated from repetitive measurements under specific conditions.
- Quality Assurance is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality.
- > **Quality Control** is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of the end user.
- > **RSD** is the relative standard deviation.
- > **Blank Spike** is a laboratory control sample that has been fortified with native analytes of interest.
- ➤ **Window Defining Mixture** is a solution containing only the earliest and latest eluting congeners within each homologous group of target analytes on a specified GC column.
- > **RPD** or Relative Percent Difference. A measure used to compare duplicate sample analysis.
- EMPC/NDR Peak detected does not meet ratio criteria and has resulted in a higher detection limit.

# Maxxam Job: B8A6782 - Soil Analysis

# Sample Analysis

Samples were initially extracted on QC batches 5526291 (2018/05/11) and 5526314 (2018/05/11). During analytical set up, a discrepancy was observed in sample vial labels, indicating possible sample mix-up. These QC batches were rejected and not analyzed. Samples were re-extracted and analyzed on QC batches 5531867 (2018/05/16) and 5531868 (2018/05/16). Due to contamination of 6:2 Fluorotelomersulfonate (6:2FTS) in the Method Blank (Blank) on QC batch 5531868 (2018/05/16), samples GQI110 (ELSWH06-002-SS-001) and GQI111 (ELSWH06-002-SO-010) were further re-extracted and re-analyzed for this analyte on QC batch 5540201 (2018/05/22).

Due to high concentrations, dilutions were required for Perfluorooctanesulfonate (PFOS) in the following samples:

GQI084 *ELSWH05-001-SS-001* GQI087 *ELSWH05-003-SS-001* 

Detection limits were adjusted accordingly.

# **Quantitation of PFAS**

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

# **Data Qualifiers**

**U** – Analyte was not detected and is reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.

**J** – The reported result is an estimated value (e.g., matrix interference was observed, or the analyte was detected at a concentration outside the calibration range).

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

# Maxxam Job: B8A6782 - Water Analysis

# Sample Analysis

Samples were initially pre-screened and estimated concentrations were obtained so that appropriate sample volumes could be extracted on QC batch 5524158 (2018/05/10). Due to high concentration, the following sample was analyzed for Perfluorohexanoic acid (PFHxA) using a reduced sample extraction volume:

GQI096 *ELSWH02-002-GW-035* 

Detection limit was adjusted accordingly.

# Quantitation of PFAS

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

# **Data Qualifiers**

**U** – Analyte was not detected and is reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.

**J** – The reported result is an estimated value (e.g., matrix interference was observed, or the analyte was detected at a concentration outside the calibration range).

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

# **PROJECT NARRATIVE**

Maxxam Analytics

Client Project #: M2027.0003 (OMAHA)

Client: Aerostar SES LLC

Client Project: M2027.0003 (OMAHA)

# I. SAMPLE RECEIPT/ANALYSIS

# a) Sample Listing

| Propose   Received   Proped   Run   Calibration   Proposed   Run   Calibration   Calibration   Proposed   Run   Calibration   Calibration   Proposed   Run   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration   Calibration | Maxxam                             | Client             | Date       | Date       | Date       | Date       | Initial                 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------|------------|------------|------------|------------|-------------------------|--|
| GQI079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ID                                 | Sample ID          | Sampled    | Received   | Prepped    | Run        | Calibration             |  |
| GQI081   ELSWH02-006-SO-024   2018/05/01   2018/05/08   2018/05/15   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   |                                    | •                  |            |            |            |            |                         |  |
| GOL082   ELSWH05-002-SS-001   2018/05/01   2018/05/08   2018/05/15   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   2018/05/16   | -                                  |                    |            |            |            |            |                         |  |
| GQI083         ELSWH05-002-SO-020         2018/05/01         2018/05/08         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                    |            |            |            |            |                         |  |
| GQI084         ELSWH05-001-SS-001         2018/05/02         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQI086         ELSWH05-001-SO-028         2018/05/02         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQI087         ELSWH05-003-SC-001         2018/05/02         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQI089         ELSWH05-003-SO-009         2018/05/02         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQI090         ELSWH02-003-SO-01         2018/05/02         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQI092         ELSWH02-007-SS-001         2018/05/02         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQI101         ELSWH09-003-SS-001         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQI102         ELSWH01-003-SO-028         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQI103         ELSWH01-003-SO-01         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQI104         ELSWH11-003-SO-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                    |            |            |            |            |                         |  |
| GQ1086         ELSWH05-001-SO-028         2018/05/02         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                  |                    |            |            |            |            | •                       |  |
| GQI087         ELSWH05-003-SS-001         2018/05/02         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                  |                    |            |            |            |            | •                       |  |
| GQ1088         ELSWH05-003-SO-099         2018/05/02         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1089         ELSWH05-003-SO-999         2018/05/02         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                  |                    |            |            |            |            |                         |  |
| GQ1089         ELSWH05-003-SO-909         2018/05/02         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                  |                    |            |            |            |            | • •                     |  |
| GQ1090         ELSWH02-008-SS-001         2018/05/02         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GQI088                             | ELSWH05-003-SO-009 |            | 2018/05/08 | 2018/05/15 | 2018/05/16 | 2018/05/16              |  |
| GQ1092         ELSWH02-007-SS-001         2018/05/03         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQ1093         ELSWH09-003-SS-001         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GQI089                             | ELSWH05-003-SO-909 |            | 2018/05/08 | 2018/05/15 | 2018/05/16 | 2018/05/16              |  |
| GQ1093         ELSWH09-003-SS-001         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1101         ELSWH09-003-SO-028         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1102         ELSWH11-003-SO-015         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1104         ELSWH11-003-SO-015         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1105         ELSWH10-002-SO-001         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1106         ELSWH010-002-SO-001         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1107         ELSWH06-003-SO-054         2018/05/05         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GQ1090                             | ELSWH02-008-SS-001 | 2018/05/02 | 2018/05/08 | 2018/05/15 | 2018/05/16 | 2018/05/16              |  |
| GQ1101         ELSWH09-003-SO-028         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1102         ELSWH11-003-SS-001         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1103         ELSWH11-003-SO-015         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1104         ELSWH11-005-SS-001         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1106         ELSWH10-002-SO-029         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1107         ELSWH06-003-SO-029         2018/05/05         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1109         ELSWH06-003-SO-054         2018/05/05         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1101         ELSWH06-002-SO-010         2018/05/05         2018/05/08         2018/05/19         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GQI092                             | ELSWH02-007-SS-001 | 2018/05/03 | 2018/05/08 | 2018/05/15 | 2018/05/16 | 2018/05/16              |  |
| GQ1102         ELSWH11-003-SS-001         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1103         ELSWH11-003-SO-015         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1104         ELSWH11-005-SS-001         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1105         ELSWH10-002-SS-001         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1107         ELSWH06-003-SS-001         2018/05/05         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1109         ELSWH06-003-SS-001         2018/05/05         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQ1109         ELSWH06-003-SS-001         2018/05/05         2018/05/08         2018/05/19         2018/05/16         2018/05/16         2018/05/16         2018/05/16           GQ1111         ELSWH06-002-SS-001         2018/05/05         2018/05/08         2018/05/19         2018/05/12         2018/05/16         2018/05/16         2018/05/16         2018/05/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GQI093                             | ELSWH09-003-SS-001 | 2018/05/04 | 2018/05/08 | 2018/05/15 | 2018/05/16 | 2018/05/16              |  |
| GQ1103         ELSWH11-003-SO-015         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GQI101                             | ELSWH09-003-SO-028 | 2018/05/04 | 2018/05/08 | 2018/05/15 | 2018/05/16 | 2018/05/16              |  |
| GQ1104         ELSWH11-005-SS-001         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQ1105         ELSWH10-002-SS-001         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQ1106         ELSWH10-002-SO-029         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQ1107         ELSWH06-003-SO-054         2018/05/05         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQ110         ELSWH06-003-SO-054         2018/05/05         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQ111         ELSWH06-002-SO-010         2018/05/05         2018/05/08         2018/05/19         2018/05/22         2018/05/16 & 2018/05/22           GQ191         ELSWH-RS-001         2018/05/05         2018/05/08         2018/05/19         2018/05/22         2018/05/16 & 2018/05/22           GQ1808         ELSWH-RS-009         2018/05/01         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10 <td< td=""><td>GQI102</td><td>ELSWH11-003-SS-001</td><td>2018/05/04</td><td>2018/05/08</td><td>2018/05/15</td><td>2018/05/16</td><td>2018/05/16</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GQI102                             | ELSWH11-003-SS-001 | 2018/05/04 | 2018/05/08 | 2018/05/15 | 2018/05/16 | 2018/05/16              |  |
| GQI105         ELSWH10-002-SS-001         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16           GQI106         ELSWH10-002-SO-029         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/16         2018/05/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GQI103                             | ELSWH11-003-SO-015 | 2018/05/04 | 2018/05/08 | 2018/05/15 | 2018/05/16 | 2018/05/16              |  |
| GQI106         ELSWH10-002-SO-029         2018/05/04         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQI107         ELSWH06-003-SS-001         2018/05/05         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQI109         ELSWH06-003-SO-054         2018/05/05         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQI110         ELSWH06-002-SO-010         2018/05/05         2018/05/08         2018/05/19         2018/05/22         2018/05/16 & 2018/05/16           GQI111         ELSWH06-002-SO-010         2018/05/05         2018/05/08         2018/05/19         2018/05/22         2018/05/16 & 2018/05/22           FFOS and PFOA in water by SPE/LCMS         SPE/LCMS         SPE/LCMS         2018/05/01         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10 <td>GQI104</td> <td>ELSWH11-005-SS-001</td> <td>2018/05/04</td> <td>2018/05/08</td> <td>2018/05/15</td> <td>2018/05/16</td> <td>2018/05/16</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GQI104                             | ELSWH11-005-SS-001 | 2018/05/04 | 2018/05/08 | 2018/05/15 | 2018/05/16 | 2018/05/16              |  |
| GQI107         ELSWH06-003-SS-001         2018/05/05         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQI109         ELSWH06-003-SO-054         2018/05/05         2018/05/08         2018/05/15         2018/05/16         2018/05/16           GQI110         ELSWH06-002-SS-001         2018/05/05         2018/05/08         2018/05/19         2018/05/22         2018/05/16 & 2018/05/22           GQI111         ELSWH06-002-SO-010         2018/05/05         2018/05/08         2018/05/19         2018/05/22         2018/05/16 & 2018/05/22           PFOS and PFOA in water by SPE/LCMS           GQI080         ELSWH-RS-009         2018/05/01         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI081         ELSWH-RS-010         2018/05/02         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10           GQI091         ELSWH-RS-011         2018/05/03         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10           GQI094         ELSWH08-001-GW-044         2018/05/03         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10           GQI096         ELSWH02-002-GW-035         2018/05/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GQI105                             | ELSWH10-002-SS-001 | 2018/05/04 | 2018/05/08 | 2018/05/15 | 2018/05/16 | 2018/05/16              |  |
| GQI109         ELSWH06-003-SO-054         2018/05/05         2018/05/05         2018/05/05         2018/05/15         2018/05/16         2018/05/16           GQI110         ELSWH06-002-SS-001         2018/05/05         2018/05/08         2018/05/19         2018/05/22         2018/05/16 & 2018/05/22           GQI111         ELSWH06-002-SO-010         2018/05/05         2018/05/08         2018/05/19         2018/05/22         2018/05/16 & 2018/05/22           PFOS and PFOA in water by SPE/LCMS           GQI080         ELSWH-RS-009         2018/05/01         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI081         ELSWH-RS-010         2018/05/02         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10           GQI091         ELSWH-RS-011         2018/05/03         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10           GQI094         ELSWH08-001-GW-044         2018/05/03         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10 <t< td=""><td>GQI106</td><td>ELSWH10-002-SO-029</td><td>2018/05/04</td><td>2018/05/08</td><td>2018/05/15</td><td>2018/05/16</td><td>2018/05/16</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GQI106                             | ELSWH10-002-SO-029 | 2018/05/04 | 2018/05/08 | 2018/05/15 | 2018/05/16 | 2018/05/16              |  |
| GQI110         ELSWH06-002-SS-001         2018/05/05         2018/05/08         2018/05/19         2018/05/22         2018/05/16 & 2018/05/22           GQI111         ELSWH06-002-SO-010         2018/05/05         2018/05/08         2018/05/19         2018/05/22         2018/05/16 & 2018/05/22           PFOS and PFOA in water by SPE/LCMS           GQI080         ELSWH-RS-009         2018/05/01         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI085         ELSWH-RS-010         2018/05/02         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10           GQI091         ELSWH-RS-011         2018/05/03         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10           GQI094         ELSWH08-001-GW-044         2018/05/01         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10           GQI095         ELSWH05-002-GW-025         2018/05/03         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10 <t< td=""><td>GQI107</td><td>ELSWH06-003-SS-001</td><td>2018/05/05</td><td>2018/05/08</td><td>2018/05/15</td><td>2018/05/16</td><td>2018/05/16</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GQI107                             | ELSWH06-003-SS-001 | 2018/05/05 | 2018/05/08 | 2018/05/15 | 2018/05/16 | 2018/05/16              |  |
| GQI111         ELSWH06-002-SO-010         2018/05/05         2018/05/08         2018/05/19         2018/05/22         2018/05/16 & 2018/05/22           PFOS and PFOA in water by SPE/LCMS           GQI080         ELSWH-RS-009         2018/05/01         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GQI109                             | ELSWH06-003-SO-054 | 2018/05/05 | 2018/05/08 | 2018/05/15 | 2018/05/16 | 2018/05/16              |  |
| PFOS and PFOA in water by SPE/LCMS           GQ1080         ELSWH-RS-009         2018/05/01         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GQI110                             | ELSWH06-002-SS-001 | 2018/05/05 | 2018/05/08 | 2018/05/19 | 2018/05/22 | 2018/05/16 & 2018/05/22 |  |
| GQI080         ELSWH-RS-009         2018/05/01         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GQI111                             | ELSWH06-002-SO-010 | 2018/05/05 | 2018/05/08 | 2018/05/19 | 2018/05/22 | 2018/05/16 & 2018/05/22 |  |
| GQI085         ELSWH-RS-010         2018/05/02         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI091         ELSWH-RS-011         2018/05/03         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI094         ELSWH08-001-GW-044         2018/05/01         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI095         ELSWH05-002-GW-025         2018/05/03         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI096         ELSWH02-002-GW-035         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI097         ELSWH02-001-GW-035         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI098         ELSWH05-001-GW-030         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI099         ELSWH02-006-GW-030         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI100         ELSWH-RS-012         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PFOS and PFOA in water by SPE/LCMS |                    |            |            |            |            |                         |  |
| GQI091         ELSWH-RS-011         2018/05/03         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI094         ELSWH08-001-GW-044         2018/05/01         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI095         ELSWH05-002-GW-025         2018/05/03         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI096         ELSWH02-002-GW-035         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI097         ELSWH02-001-GW-035         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10           GQI098         ELSWH05-001-GW-030         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI099         ELSWH02-006-GW-030         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI100         ELSWH-RS-012         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GQI080                             | ELSWH-RS-009       | 2018/05/01 | 2018/05/08 | 2018/05/10 | 2018/05/10 | 2018/05/10              |  |
| GQI094         ELSWH08-001-GW-044         2018/05/01         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI095         ELSWH05-002-GW-025         2018/05/03         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI096         ELSWH02-002-GW-035         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI097         ELSWH02-001-GW-035         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI098         ELSWH05-001-GW-030         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI099         ELSWH02-006-GW-030         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10           GQI100         ELSWH-RS-012         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GQI085                             | ELSWH-RS-010       | 2018/05/02 | 2018/05/08 | 2018/05/10 | 2018/05/10 | 2018/05/10              |  |
| GQI095         ELSWH05-002-GW-025         2018/05/03         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10           GQI096         ELSWH02-002-GW-035         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10           GQI097         ELSWH02-001-GW-035         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10           GQI098         ELSWH05-001-GW-030         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10           GQI099         ELSWH02-006-GW-030         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10           GQI100         ELSWH-RS-012         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GQI091                             | ELSWH-RS-011       | 2018/05/03 | 2018/05/08 | 2018/05/10 | 2018/05/10 | 2018/05/10              |  |
| GQI096         ELSWH02-002-GW-035         2018/05/04         2018/05/08         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         2018/05/10         201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GQI094                             | ELSWH08-001-GW-044 | 2018/05/01 | 2018/05/08 | 2018/05/10 | 2018/05/10 | 2018/05/10              |  |
| GQI097 ELSWH02-001-GW-035 2018/05/04 2018/05/08 2018/05/10 2018/05/10 2018/05/10 GQI098 ELSWH05-001-GW-030 2018/05/04 2018/05/08 2018/05/10 2018/05/10 2018/05/10 GQI099 ELSWH02-006-GW-030 2018/05/04 2018/05/08 2018/05/10 2018/05/10 2018/05/10 GQI100 ELSWH-RS-012 2018/05/04 2018/05/08 2018/05/10 2018/05/10 2018/05/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GQI095                             | ELSWH05-002-GW-025 | 2018/05/03 | 2018/05/08 | 2018/05/10 | 2018/05/10 | 2018/05/10              |  |
| GQI098 ELSWH05-001-GW-030 2018/05/04 2018/05/08 2018/05/10 2018/05/10 2018/05/10 GQI099 ELSWH02-006-GW-030 2018/05/04 2018/05/08 2018/05/10 2018/05/10 2018/05/10 GQI100 ELSWH-RS-012 2018/05/04 2018/05/08 2018/05/10 2018/05/10 2018/05/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GQI096                             | ELSWH02-002-GW-035 | 2018/05/04 | 2018/05/08 | 2018/05/10 | 2018/05/10 | 2018/05/10              |  |
| GQI099 ELSWH02-006-GW-030 2018/05/04 2018/05/08 2018/05/10 2018/05/10 2018/05/10 GQI100 ELSWH-RS-012 2018/05/04 2018/05/08 2018/05/10 2018/05/10 2018/05/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GQI097                             | ELSWH02-001-GW-035 | 2018/05/04 | 2018/05/08 | 2018/05/10 | 2018/05/10 | 2018/05/10              |  |
| GQI100 ELSWH-RS-012 2018/05/04 2018/05/08 2018/05/10 2018/05/10 2018/05/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GQI098                             | ELSWH05-001-GW-030 | 2018/05/04 | 2018/05/08 | 2018/05/10 | 2018/05/10 | 2018/05/10              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GQI099                             | ELSWH02-006-GW-030 | 2018/05/04 | 2018/05/08 | 2018/05/10 | 2018/05/10 | 2018/05/10              |  |
| GQI108 ELSWH-RS-013 2018/05/05 2018/05/08 2018/05/10 2018/05/10 2018/05/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GQI100                             | ELSWH-RS-012       | 2018/05/04 | 2018/05/08 | 2018/05/10 | 2018/05/10 | 2018/05/10              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GQI108                             | ELSWH-RS-013       | 2018/05/05 | 2018/05/08 | 2018/05/10 | 2018/05/10 | 2018/05/10              |  |

Maxxam

Run Date is defined as the date of injection of the last calibration standard (12 hours or less) prior to the samples analyzed within that run sequence. Therefore the time of calibration injection that defines the run date is always within 12 hours of the time of sample injection.

b) Shipping Problems: Samples were received with temperature less than 10 degrees Celsius. Cooler custody seal was present and intact.

c) Documentation Problems: none encountered

# II. SAMPLE PREP:

No problems encountered

# III. SAMPLE ANALYSIS:

See also comments within the appropriate Certificate of Analysis

- a) Hold Times: all within recommended hold times
- b) Instrument Calibration: all within control limits
- c) Quality Control: All applicable QC meets control criteria, except where otherwise noted.
- d) All analytes requiring manual intergration(s) are noted on the sample chromatograms

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for other than the conditions detailed above.

In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. Release of the data contained in this data package has been authorized by the cognizant laboratory official or his/her designee, as verified by this signature.

Steph Falls

Project Manager- Site Assessment and Remediation/ Ultra Trace

2018/05/25

Date









Your C.O.C. #: n/a

#### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/05/23

Report #: R5165433 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B8A6782 Received: 2018/05/08, 14:01 Sample Matrix: Ground Water # Samples Received: 6

Date Date
Analyses Quantity Extracted Analyzed Laboratory Method Reference
PFOS and PFOA in water by SPE/LCMS (1) 6 2018/05/10 2018/05/10 CAM SOP-00894 EPA 537 m

Sample Matrix: Soil # Samples Received: 22

|                                       |          | Date       | Date       |                          |                      |
|---------------------------------------|----------|------------|------------|--------------------------|----------------------|
| Analyses                              | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference            |
| Moisture                              | 22       | N/A        | 2018/05/10 | CAM SOP-00445            | Carter 2nd ed 51.2 m |
| PFOS and PFOA in soil by SPE/LCMS (1) | 22       | 2018/05/15 | 2018/05/16 | CAM SOP-00894            | EPA537 m             |

Sample Matrix: Water # Samples Received: 5

|                                        | Date               | Date       |                   |           |
|----------------------------------------|--------------------|------------|-------------------|-----------|
| Analyses                               | Quantity Extracted | Analyzed   | Laboratory Method | Reference |
| PFOS and PFOA in water by SPE/LCMS (1) | 5 2018/05/10       | 2018/05/10 | CAM SOP-00894     | EPA 537 m |

#### Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.



Your C.O.C. #: n/a

#### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/05/23

Report #: R5165433 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B8A6782 Received: 2018/05/08, 14:01

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.

**Encryption Key** 

Stephanie Pollen Project Manager 23 May 2018 14:11:29

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Stephanie Pollen, Project Manager Email: SPollen@maxxam.ca Phone# (905) 817-5700

\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



**Prepared for: Aerostar SES LLC** 

Project: M2027.0003 (OMAHA)
ELLSWORTH AFB

# Analytical Data Package (Level IV)

Analysis: PFOS and PFOA in water and soil (Method 537 mod.)

Maxxam Job #: B8B1135

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com



I hereby certify that to the best of my knowledge all analytical data presented in this report:

- > Has been checked for completeness.
- Is accurate, legible and error free.
- ➤ Has been conducted in accordance with approved SOP's and that all deviations are clearly listed in the Case Narrative.
- This report has been generated in .pdf format.

**Review Performed By:** 



Stephanie Pollen 2018.06.04 10:40:03 -04'00'

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com

# **Glossary of Terms**

- ➤ Detection Limit (DL) this can also be called Method Detection Limit (MDL): The lowest concentration or amount of the target analyte that can be identified, measured, and reported with confidence that the analyte concentration is not a false positive value. (Clarification): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- ➤ Limit of Detection (LOD): An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrix-specific and may be laboratory-dependent. (Clarification): The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%.
- ➤ Limits of Quantitation (LOQ) this can also be called Reporting Detection Limit (RDL): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. (Clarification): The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Acceptance Criteria are values used by the laboratory to determine that a process is in control.
- Accuracy is the degree of agreement of a measured value with the true or expected value.
- ➤ **Calibration Standards** are a set of solutions containing the analytes of interest at a specified concentration.
- > Calibration Verification Standard consists of a calibration standard solution of intermediate concentration (mid-point initial calibration level) used to access whether the initial calibration is still valid
- ➤ **Certified Reference Material** is a stable homogenous material that is certified by repetitive analysis from a supplier who is certified to generate said materials.

- > Internal Standard a deuterated or <sup>13</sup>C-labelled analyte that is added to a sample extract prior to instrumental analysis to compensate for injection variability.
- > **Isomer** is a member of a group of compounds that differ from each other only in the locations of a specific number of common substituent atoms or groups of atoms on the parent compound.
- > **Method Blank** is a laboratory control sample using reagents that are known to be free of contamination.
- > **Precision** is the degree of agreement between the data generated from repetitive measurements under specific conditions.
- Quality Assurance is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality.
- ➤ **Quality Control** is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of the end user.
- > **RSD** is the relative standard deviation.
- > **Blank Spike** is a laboratory control sample that has been fortified with native analytes of interest.
- ➤ **Window Defining Mixture** is a solution containing only the earliest and latest eluting congeners within each homologous group of target analytes on a specified GC column.
- > **RPD** or Relative Percent Difference. A measure used to compare duplicate sample analysis.
- EMPC/NDR Peak detected does not meet ratio criteria and has resulted in a higher detection limit.

#### Maxxam Job: B8B1135 - Soil Analysis

#### Sample Analysis

Soil extracts were initially pre-screened and estimated concentrations were obtained so that samples could be appropriately diluted for analysis on QC batches 5541157 (2018/05/25) and 5543059 (2018/05/25). Due to high concentration, dilution was required for Perfluorooctanesulfonate (PFOS) in the following sample:

GRF764 *ELSWH06-001-SS-001* 

Detection limit was adjusted accordingly.

Peak areas of injection internal standard analytes were marginally above the upper control limit for the following samples:

GRF757 *ELSWH11-004-SO-012* GRF770 *ELSWH02-005-SO-034* 

There is no impact on data quality. All other QC acceptance criteria including extracted internal standard analyte recoveries were met for these samples.

#### **Quantitation of PFAS**

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

#### **Data Qualifiers**

**U** – Analyte was not detected and is reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.

**J** – The reported result is an estimated value (e.g., matrix interference was observed, or the analyte was detected at a concentration outside the calibration range).

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

#### Maxxam Job: B8B1135 - Water Analysis

#### Sample Analysis

Samples were initially pre-screened and estimated concentrations were obtained so that appropriate sample volumes could be extracted on QC batches 5536376 (2018/05/18), 5538474 (2018/05/24) and 5540994 (2018/05/24). Due to high concentrations, the following samples were analyzed for selected analytes using reduced sample extraction volumes:

GRF779 ELSWH03-003-GW-016 Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)

GRF780 ELSWH03-002-GW-017 Perfluorohexanesulfonate (PFHxS), Perfluorooctanesulfonate (PFOS)

Detection limits were adjusted accordingly.

The following samples were initially analyzed on QC batch 5538474 (2018/05/24):

GRF748 *ELSWH-SB-001* GRF749 *ELSWH-RS-016* GRF763 *ELSWH-RS-014* 

Due to 6:2 Fluorotelomersulfonate (6:2FTS) contamination in the Method Blank, samples were re-extracted and reanalyzed for this analyte on QC batch 5547534 (2018/05/26), past the method defined hold time. Because of their chemical structures, per- and polyfluorinated alkyl substances (PFAS) are chemically and biologically stable in the environment and resist typical environmental degradation processes. This would suggest the hold time exceedance would not have a significant impact on the data quality.

#### **Extracted Internal Standard Analytes**

The extracted internal standard analytes <sup>13</sup>C<sub>4</sub>-Perfluorobutanoic acid (<sup>13</sup>C<sub>4</sub>-PFBA), <sup>13</sup>C<sub>5</sub>-Perfluoropentanoic acid (<sup>13</sup>C<sub>5</sub>-<sup>13</sup>C<sub>2</sub>-Perfluorohexanoic acid (<sup>13</sup>C<sub>2</sub>-PFHxA), <sup>18</sup>O<sub>2</sub>-Perfluorohexanesulfonate Perfluoroheptanoic acid ( $^{13}C_4$ -PFHpA),  $^{13}C_4$ -Perfluorooctanoic acid ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA),  $^{13}C_4$ -Perfluorooctanesulfonate ( $^{13}C_4$ -PFOA) PFOS), <sup>13</sup>C<sub>5</sub>-Perfluorononanoic acid (<sup>13</sup>C<sub>5</sub>-PFNA), <sup>13</sup>C<sub>2</sub>-Perfluorodecanoic acid (<sup>13</sup>C<sub>2</sub>-PFDA), <sup>13</sup>C<sub>2</sub>-Perfluoroundecanoic acid (13C2-PFUnA), 13C2-Perfluorododecanoic acid (13C2-PFDoA), 13C2-Perfluorotetradecanoic acid (13C2-PFTeDA), 13C8-Perfluorooctane sulfonamide ( ${}^{13}C_8$ -PFOSA),  ${}^{13}C_2$ -6:2 Fluorotelomersulfonate ( ${}^{13}C_2$ -6:2FTS) and  ${}^{13}C_2$ -8:2 Fluorotelomersulfonate (13C2-8:2FTS) are used to quantify native Perfluorobutanoic acid (PFBA), Perfluoropentanoic acid (PFPeA), Perfluorohexanoic acid (PFHxA), Perfluorobutanesulfonate (PFBS) & Perfluorohexanesulfonate (PFHxS), Perfluoroheptanoic acid (PFHpA), Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonate (PFOS), Perfluorononanoic acid (PFNA), Perfluorodecanoic acid (PFDA) & Perfluorodecanesulfonate Perfluoroundecanoic acid (PFUnA), Perfluorododecanoic acid (PFDoA), Perfluorotridecanoic acid (PFTrDA) & Perfluorotetradecanoic acid (PFTeDA), Perfluorooctane sulfonamide (PFOSA), 6:2 Fluorotelomersulfonate (6:2FTS) and 8:2 Fluorotelomersulfonate (8:2FTS) respectively. The recoveries observed for selected extracted internal standard analytes were below the defined lower control limit (LCL) for the following samples:

GRF753 ELSWH-RS-017  $(^{13}C_2$ -PFDoA,  $^{13}C_2$ -PFTeDA)

GRF775 ELSWH06-003-GW-055 (All extracted internal standard analytes)

These samples were re-extracted and re-analyzed for the associated native analytes on QC batches 5551160 (2018/05/29) and 5543607 (2018/05/25) respectively. Acceptable  $^{13}C_2$ -PFDoA and  $^{13}C_2$ -PFTeDA recoveries were obtained for sample GRF753 (ELSWH-RS-017) on re-analysis. Low recovery of  $^{13}C_4$ -PFBA was confirmed in sample GRF775 (ELSWH06-003-GW-055). Acceptable recoveries were obtained for all other extracted internal standards in this sample. Both samples were re-analyzed past the method defined hold time. Because of their chemical structures, per- and polyfluorinated alkyl substances (PFAS) are chemically and biologically stable in the environment and resist typical environmental degradation processes. This would suggest the hold time exceedance would not have a significant impact on the data quality.

#### **Quantitation of PFAS**

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

#### **Data Qualifiers**

**U** – Analyte was not detected and is reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.

**J** – The reported result is an estimated value (e.g., matrix interference was observed, or the analyte was detected at a concentration outside the calibration range).

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

# **PROJECT NARRATIVE**

**Maxxam Analytics** 

Client Project #: M2027.0003 (OMAHA)



Client: Aerostar SES LLC

Client Project: M2027.0003 (OMAHA)

# I. SAMPLE RECEIPT/ANALYSIS

# a) Sample Listing

| Maxxam | Client                  | Date       | Date       | Date       | Date       | Initial                 |
|--------|-------------------------|------------|------------|------------|------------|-------------------------|
| ID     | Sample ID               | Sampled    | Received   | Prepped    | Run        | Calibration             |
|        | DA in soil by SPE/LCMS  |            |            |            |            |                         |
| GRF747 | ELSWH07-004-SO-013      | 2018/05/08 | 2018/05/11 | 2018/05/22 | 2018/05/25 | 2018/05/25              |
| GRF750 | ELSWH11-002-SS-001      | 2018/05/09 | 2018/05/11 | 2018/05/22 | 2018/05/25 | 2018/05/25              |
| GRF751 | ELSWH11-002-SO-010      | 2018/05/09 | 2018/05/11 | 2018/05/22 | 2018/05/25 | 2018/05/25              |
| GRF752 | ELSWH11H-002-SO-910     | 2018/05/09 | 2018/05/11 | 2018/05/22 | 2018/05/25 | 2018/05/25              |
| GRF754 | ELSWH11-001-SS-001      | 2018/05/09 | 2018/05/11 | 2018/05/22 | 2018/05/25 | 2018/05/25              |
| GRF755 | ELSWH11-001-SO-012      | 2018/05/09 | 2018/05/11 | 2018/05/22 | 2018/05/25 | 2018/05/25              |
| GRF756 | ELSWH11-004-SS-001      | 2018/05/09 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF757 | ELSWH11-004-SO-012      | 2018/05/09 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF758 | ELSWH11-005-SO-013      | 2018/05/09 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF759 | ELSWH07-002-SS-001      | 2018/05/09 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF760 | ELSWH06-004-SS-001      | 2018/05/06 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF761 | ELSWH06-004-SS-901      | 2018/05/06 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF762 | ELSWH06-004-SO-035      | 2018/05/06 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF764 | ELSWH06-001-SS-001      | 2018/05/06 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF765 | ELSWH06-001-SO-012      | 2018/05/06 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF766 | ELSWH03-002-SO-011      | 2018/05/06 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF767 | ELSWH03-002-SO-911      | 2018/05/06 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF768 | ELSWH03-003-SO-011      | 2018/05/06 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF770 | ELSWH02-005-SO-034      | 2018/05/07 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF771 | ELSWH03-004-SO-011      | 2018/05/07 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF772 | ELSWH07-001-SS-001      | 2018/05/08 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF773 | ELSWH07-001-SO-029      | 2018/05/08 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
| GRF774 | ELSWH07-004-SS-001      | 2018/05/08 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/25              |
|        | OA in water by SPE/LCMS |            |            |            |            |                         |
| GRF748 | ELSWH-SB-001            | 2018/05/08 | 2018/05/11 | 2018/05/25 | 2018/05/26 | 2018/05/24 & 2018/05/26 |
| GRF749 | ELSWH-RS-016            | 2018/05/08 | 2018/05/11 | 2018/05/25 | 2018/05/26 | 2018/05/24 & 2018/05/26 |
| GRF753 | ELSWH-RS-017            | 2018/05/09 | 2018/05/11 | 2018/05/22 | 2018/05/24 | 2018/05/24 & 2018/05/29 |
| GRF763 | ELSWH-RS-014            | 2018/05/06 | 2018/05/11 | 2018/05/25 | 2018/05/26 | 2018/05/24 & 2018/05/26 |
| GRF769 | ELSWH-RS-015            | 2018/05/07 | 2018/05/11 | 2018/05/17 | 2018/05/18 | 2018/05/18              |
| GRF775 | ELSWH06-003-GW-055      | 2018/05/07 | 2018/05/11 | 2018/05/23 | 2018/05/25 | 2018/05/18              |
| GRF776 | ELSWH06-002-GW-018      | 2018/05/09 | 2018/05/11 | 2018/05/22 | 2018/05/24 | 2018/05/24              |
| GRF777 | ELSWH06-002-GW-918      | 2018/05/09 | 2018/05/11 | 2018/05/22 | 2018/05/24 | 2018/05/25              |
| GRF778 | ELSWH06-001-GW-018      | 2018/05/09 | 2018/05/11 | 2018/05/22 | 2018/05/24 | 2018/05/24              |
| GRF779 | ELSWH03-003-GW-016      | 2018/05/10 | 2018/05/11 | 2018/05/22 | 2018/05/24 | 2018/05/24              |
| GRF780 | ELSWH03-002-GW-017      | 2018/05/10 | 2018/05/11 | 2018/05/22 | 2018/05/24 | 2018/05/24              |
| GRF781 | ELSWH-RS-018            | 2018/05/10 | 2018/05/11 | 2018/05/22 | 2018/05/24 | 2018/05/24              |

Run Date is defined as the date of injection of the last calibration standard (12 hours or less) prior to the samples analyzed within that run sequence. Therefore the time of calibration injection that defines the run date is always within 12 hours of the time of sample injection.

# II. SAMPLE PREP:

No problems encountered

b) Shipping Problems: Samples were received with temperature less than 10 degrees Celsius. Cooler custody seal was present and intact.

c) Documentation Problems: Sample "ELSWH03-002-SO-911" was labelled as "ELSWH03-002-GW-911", proceeded with ID on the COC with client's consent.

# **III. SAMPLE ANALYSIS:**

See also comments within the appropriate Certificate of Analysis

- a) Hold Times: Due to rework requirements, the following samples were analyzed past hold time: ELSWH-SB-001 ELSWH-RS-016, and ELSWH-RS-014 (for 6:2FTS), ELSWH-RS-017 (for PFDoA, PFTrDA, PFTedA), and ELSWH06-003-GW-055 (for all analytes).
- b) Instrument Calibration: all within control limits
- c) Quality Control: All applicable QC meets control criteria, except where otherwise noted.
- d) All analytes requiring manual intergration(s) are noted on the sample chromatograms

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for other than the conditions detailed above.

In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. Release of the data contained in this data package has been authorized by the cognizant laboratory official or his/her designee, as verified by this signature.

Project Manager- Site Assessment and Remediation/ Ultra Trace

2018/06/04

Date

| Desired Name City Investment                                                                               | ANY WA                                                                                                                                    | 865-481-7                                                   | Job No.: M           | 2027.0003 (                             | Omaha)        |                            |         |                |         |          | Page of 7                                                                                   |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------|-----------------------------------------|---------------|----------------------------|---------|----------------|---------|----------|---------------------------------------------------------------------------------------------|
| Multiple Sites, United States                                                                              | on of Aqueous Film Forming Foam Areas,<br>Air Force Installations                                                                         |                                                             | Installation:        | and the an                              |               |                            |         |                | ANALYSI | 9        |                                                                                             |
| Aerostar Project Manager:<br>Send Data to:                                                                 | end Data to: Jenny Vance, jvance@aerostar.net (865) 483-7904                                                                              |                                                             |                      |                                         |               |                            |         |                | HALISI  |          | Sample Types:  N = Normal  FD = Field Duplicate                                             |
| Sampler(s):                                                                                                | wojak, A. willis                                                                                                                          |                                                             |                      |                                         |               |                            |         |                |         |          | AB = Ambient Blank or Field Reagent Blank EB = Equipment Rinsate                            |
| Laboratory Name/Address:<br>Maxxam Analytics, Inc<br>8740 Campobello Rd.<br>Mississauga, Ontario<br>L5N2L8 | Laboratory Shipping Addr<br>Maxxam Analytics<br>c/o FedEx Depot<br>299 Cayuga Rd.<br>Cheektowaga, NY 1422!<br>Please Indicate "HOLD FOR P | am Analytics<br>redEx Depot<br>Cayuga Rd.<br>waga, NY 14225 |                      | elissa DiGr<br>5) 817-5700<br>iGrazia@m | , ext. 5784   | list of 18 analytes below) |         |                |         |          | Matrix:  WG = Groundwater  SO = Soil  WP = Potable Water  SE = Sediment  WS = Surface Water |
| MAXXAM use only                                                                                            | Sample ID                                                                                                                                 | Date Collected                                              | Time<br>Collected    | Sample<br>Type                          | Matrix        | PFAS (see li               | U       | 1              |         |          | WQ = Field QC (AB, EB)                                                                      |
|                                                                                                            |                                                                                                                                           | Tanana a                                                    |                      |                                         |               |                            |         |                | 1       |          | NOTES                                                                                       |
|                                                                                                            | ELSWHO7-004-50-613                                                                                                                        | 5/08/18                                                     | 1400                 | N                                       | So            | 1                          |         |                | 1       |          |                                                                                             |
| <u> </u>                                                                                                   | ERMHO3-004-20-                                                                                                                            | 5108118                                                     | 1415                 | AB                                      | Med           | 2                          |         |                | -       |          | Orillers water, Sourced from bes                                                            |
|                                                                                                            |                                                                                                                                           | 5/08/18                                                     | 1355                 | ES                                      | wa            | 2                          |         |                |         | 1        | In asse w/ ELSWHO7-004-50-013                                                               |
|                                                                                                            | ELSWH11-002-55-001                                                                                                                        | 5102/14                                                     | 0842                 | Ŋ                                       | 20            | -                          |         |                |         | 1        |                                                                                             |
| •                                                                                                          | FLSW#11-002-50-010                                                                                                                        | 5/09/18                                                     | 0435                 | N                                       | 50            | 2                          |         |                |         | 1        | MS/MSO Inc                                                                                  |
| •                                                                                                          | ELSW11 H-602-50-910                                                                                                                       | 5/09/18                                                     | 0935                 | FD                                      | SU            | 1                          |         |                |         | 1        | off spoon.                                                                                  |
| -                                                                                                          | ELSWH-RS-017                                                                                                                              | 5/09/18                                                     | 0530                 | EO                                      | VQ            | 2                          |         |                |         |          | In assc. w/ 6154411-007-50-010                                                              |
|                                                                                                            | ELSW 411-001-55-001                                                                                                                       | Sloalis                                                     | 1000                 | N                                       | 50            | 1                          |         |                |         |          |                                                                                             |
| •                                                                                                          | ELSWH 11-001-50-012                                                                                                                       | 5104/18                                                     | 1048                 | N                                       | 50            | 1                          |         |                |         |          |                                                                                             |
|                                                                                                            | ELSUH11-004-55-001                                                                                                                        | 5/02/18                                                     | IIII                 | N                                       | 50            | 1                          |         |                |         |          |                                                                                             |
| ×                                                                                                          | ELSWH 11 - 004-50 -012                                                                                                                    | 510-119                                                     | 1125                 | N                                       | 50            | 1                          |         |                |         |          | 11-May-18 13:53                                                                             |
|                                                                                                            | ELSWHI1-005-50-013                                                                                                                        | Sloalis                                                     | 1245                 | N                                       | 50            | 1                          |         |                |         |          | Stephanie Pollen                                                                            |
|                                                                                                            | ELSUH07-002-55-001                                                                                                                        | sloalia                                                     | 1410                 | N                                       | 50            | ι                          |         |                |         |          | Popular Commencer                                                                           |
|                                                                                                            |                                                                                                                                           |                                                             |                      | 2                                       |               |                            |         |                |         |          | B8B1135                                                                                     |
|                                                                                                            |                                                                                                                                           |                                                             |                      | 16                                      |               | - 3                        |         |                | 1       |          | J_L ENV-1345                                                                                |
| RELINQUISHED BY:                                                                                           |                                                                                                                                           | RECEIVED BY:                                                |                      | Total #                                 | of Containers | 17                         | Analyte |                |         |          |                                                                                             |
| ignature:                                                                                                  | 5/10/18 1600                                                                                                                              | Signasgre:                                                  |                      | Date/Time                               | 5/11 13:      | 53                         | List:   |                |         |          | INTERNATIONAL PTERM 100-0-1                                                                 |
| nated Name:<br>ASA レルル<br>Ignature:                                                                        | Firm ASL Date/Time:                                                                                                                       | Printed Name P9 Berl k Signature:                           | Pager Flavery Phosan |                                         |               |                            |         | 10 10          |         | <b>B</b> | SOLID SAMPLE DYUM 2018-04                                                                   |
| Printed Name:                                                                                              | Firm                                                                                                                                      | Printed Name:                                               |                      | Firm:                                   |               |                            |         | 1°<br>5°<br>3° | -       |          | HEATTREAT REQUIRED PEBA 378-278-                                                            |

| Project Name: Site Inchestio                                                                               | n of Aqueous Film Forming Foam Areas.                                                                                                    | 865-481-                         | Job No.: Ma                                                                            | 2027.0003 (    | Omaha)                     | 1                                             |                  |                                                                          |            |                        | P                                                                      | 24<br>age <u>2</u>                | of _/_                                             |                             |                                       |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------|----------------|----------------------------|-----------------------------------------------|------------------|--------------------------------------------------------------------------|------------|------------------------|------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|-----------------------------|---------------------------------------|
| Multiple Sites, United States                                                                              |                                                                                                                                          |                                  | Installation:                                                                          | EUSW           |                            |                                               | A                | NALYSIS                                                                  |            |                        |                                                                        |                                   |                                                    | +                           |                                       |
| Aerostar Project Manager:<br>Send Data to:                                                                 |                                                                                                                                          |                                  |                                                                                        |                | 1                          |                                               |                  |                                                                          |            | Sample T               |                                                                        |                                   |                                                    |                             |                                       |
| Sampler(s):                                                                                                |                                                                                                                                          |                                  |                                                                                        |                |                            |                                               |                  |                                                                          |            | AB = Amb               | plent Blank or Field Ro<br>pment Rinsate                               | eagent Bla                        | ink                                                |                             |                                       |
| Laboratory Name/Address:<br>Maxxam Analytics, Inc<br>6740 Campobello Rd.<br>Mississauga, Ontario<br>.5N2L8 | Laboratory Shipping Addr<br>Maxxam Analytics<br>c/o FedEx Depot<br>299 Cayuga Rd.<br>Cheektowaga, NY 1422<br>Please indicate "HOLD FOR P | 6                                | Contact: Melissa DiGrazia  Phone: (905) 817-5700, ext. 5784 email: MDiGrazia@maxxam.ca |                | list of 18 analytes below) |                                               |                  |                                                                          |            |                        | Matrix:<br>WG = Gro<br>SO = Soil<br>WP = Pota<br>SE = Sed<br>WS = Surl | able Water<br>iment<br>face Water |                                                    |                             |                                       |
| MAXXAM use only                                                                                            | Sample ID                                                                                                                                | Date Collected                   | Time<br>Collected                                                                      | Sample<br>Type | Matrix                     | PFAS (see lis                                 |                  | $ \cdot $                                                                |            |                        |                                                                        | WQ = Fiel                         | d QC (AB, EB)                                      |                             |                                       |
|                                                                                                            | ESWHO6-004-55-001                                                                                                                        | 5/06/18                          | 0745                                                                                   | N              | 50                         | 2                                             |                  |                                                                          | H          |                        |                                                                        | MS/M                              | NOTES                                              |                             |                                       |
| •                                                                                                          | ELSUHO6 -004- 55-901                                                                                                                     | 5/06/18                          | 0745                                                                                   | FO             | 50                         | 1                                             | =                | 1                                                                        |            | -                      |                                                                        | -                                 |                                                    | -                           |                                       |
|                                                                                                            | ELSUHOG -004 - 50 -035                                                                                                                   | 5106/18                          | 0410                                                                                   | N              | 50                         | 1                                             |                  |                                                                          |            |                        | 1                                                                      |                                   |                                                    | 4                           | 1                                     |
|                                                                                                            | ELSUH-RS-014                                                                                                                             | 5/06/18                          | 0405                                                                                   | EQ             | wa                         | 2                                             |                  | -                                                                        |            |                        |                                                                        | Off Spo                           | ol ELSUHOG-                                        | 004-5                       | 250-0                                 |
| (*                                                                                                         | ELSWHO6-001 - 55-001                                                                                                                     | 5/06/18                          | 1013                                                                                   | N              | 50                         | (                                             |                  | u j                                                                      | 1          |                        |                                                                        | 1                                 |                                                    |                             |                                       |
|                                                                                                            | ELSWH 06 - 001 - 50 - 012                                                                                                                | 5/06/18                          | 1040                                                                                   | N              | so                         | 1                                             |                  |                                                                          | X          | 7                      |                                                                        | 1                                 |                                                    |                             |                                       |
|                                                                                                            | Esw403-002-50-011                                                                                                                        | 2106118                          | 1350                                                                                   | N              | 50                         | 1                                             |                  |                                                                          | W          |                        |                                                                        |                                   | 154                                                |                             |                                       |
|                                                                                                            | ESWH03-002-50-911                                                                                                                        | 5106/18                          | 1330                                                                                   | FD             | 50                         | 1                                             |                  |                                                                          |            |                        |                                                                        |                                   | ~                                                  | 1                           |                                       |
|                                                                                                            | ELSWH03-003-50-011                                                                                                                       | 5/06/19                          | 1503                                                                                   | N              | So                         | ١                                             |                  |                                                                          |            |                        |                                                                        |                                   |                                                    |                             | /                                     |
|                                                                                                            | ELSWH-RS-015                                                                                                                             | 5/07/18                          | 1301                                                                                   | EB             | wa                         | 2                                             |                  |                                                                          |            |                        |                                                                        | Off Spo<br>In assi                | c, wi ELSWHOZ                                      | -005-5                      | 0-034                                 |
|                                                                                                            | ELSWHOZ-005-50-034                                                                                                                       | 5/07/18                          | 1305                                                                                   | N              | So                         | 1                                             |                  |                                                                          |            | 1                      |                                                                        | 1                                 |                                                    |                             |                                       |
|                                                                                                            | ELSWH 03-004-50-011                                                                                                                      | 5/07/18                          | 1605                                                                                   | N              | Sa                         | 1                                             |                  |                                                                          |            |                        |                                                                        | /                                 | \                                                  |                             |                                       |
| 1.5                                                                                                        | ELSUH07-001-55-001                                                                                                                       | 5168118                          | 0850                                                                                   | N              | So                         | 1                                             |                  |                                                                          |            |                        |                                                                        |                                   | Je.                                                |                             | _                                     |
| •                                                                                                          | ELSWH07-001-50-029                                                                                                                       | 5108119                          | 1256                                                                                   | N              | SU                         | 1                                             |                  |                                                                          |            |                        |                                                                        |                                   |                                                    | \                           |                                       |
|                                                                                                            | ESWH07-004-55-001                                                                                                                        | 5108118                          | 1320                                                                                   | N              | SU                         | 1                                             |                  |                                                                          | Ш          |                        |                                                                        |                                   |                                                    |                             | /                                     |
| RELINQUISHED BY:                                                                                           | Date/Time. 5/ro/kg /60                                                                                                                   | RECEIVED BY:<br>Signature: See F | ž-1                                                                                    | Total # o      | of Containers              | 18                                            | Analyte<br>List: |                                                                          | INALYTE    |                        | ERPENE<br>PAR CODE<br>PEOS                                             | Cus<br>(765-13-1                  | Contaminat  Perflucorensies and and                | ERPINS<br>PAR CODE<br>PETEA | CAN<br>Depart                         |
| inted Name Ash Willis gnature                                                                              | AS L                                                                                                                                     | Printed Name                     | Fam.                                                                                   |                |                            |                                               |                  | Petfliore                                                                | etione and | ė.                     | PFOA.                                                                  | 333-65-1<br>325-95-1              | Perffragranteement and<br>Perffragranteement and   | PFTRIA<br>PFTNA<br>6:FTS    | 32929-94-6<br>2008-99-3<br>22019-92-2 |
| ignature:                                                                                                  | Date/Time:                                                                                                                               | Signature:                       |                                                                                        | Date/Time      |                            | Perthaeologicania and PFHDA 15-85-9 12-Finesh |                  | b.) Theretimes address:<br>5.2 Pharetimes address:<br>Principalities and | ETFTY      | 1910E 14-4<br>170-11-4 |                                                                        |                                   |                                                    |                             |                                       |
| Pinted Name                                                                                                | Firm                                                                                                                                     | Printed Name                     |                                                                                        | Firm           |                            | = 7                                           |                  |                                                                          | bolerana s |                        | PEDA                                                                   | 33)-73-1<br>817-53-1              | Perfluencementalism and<br>Perfluencementalism and | PIDS.<br>JUSA               | 754 Hale                              |

| Aerosto                                                                                                 |                                                                                                                                        | Oak Ridge, TN<br>865-481-7           | 837               |                | sis Requ                | iest Ni        | umber            |                       |                                          |          | Р                                                                                      | age 3                               | 21<br>of 4                                                                         |                            |                                     |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------|----------------|-------------------------|----------------|------------------|-----------------------|------------------------------------------|----------|----------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------|----------------------------|-------------------------------------|
| Project Name: Site Inspection  Multiple Sites, United States                                            | on of Aqueous Film Forming Foam Areas,<br>Air Force Installations                                                                      |                                      | Job No.: Mi       |                |                         |                |                  |                       |                                          |          |                                                                                        |                                     |                                                                                    |                            |                                     |
| erostar Project Manager:<br>end Data to:                                                                |                                                                                                                                        | com (478) 397-4906<br>(865) 483-7904 |                   |                | I                       |                |                  | ANALYSI               | 5                                        |          | Sample Types:<br>N = Normal                                                            |                                     |                                                                                    |                            |                                     |
| ampler(s): Arek Turolshi                                                                                |                                                                                                                                        |                                      |                   | П              |                         |                | 1                |                       |                                          |          | 1                                                                                      | AB = Am                             | ld Duplicate<br>bient Blank or Field f<br>ipment Rinsate                           | Reagent Bla                | ank                                 |
| aboratory Name/Address:<br>laxxam Analytics, Inc<br>740 Campobello Rd,<br>lississauga, Ontario<br>5N2L8 | Laboratory Shipping Address:  Maxxam Analytics c/o FedEx Depot 299 Cayuga Rd. Cheektowaga, NY 14225  Please indicate "HOLD FOR PICKUP" |                                      |                   |                | t of 18 analytes below) |                |                  |                       |                                          |          | Matrix: WG = Groundwater SO = Soil WP = Potable Water SE = Sediment WS = Surface Water |                                     |                                                                                    |                            |                                     |
| MAXXAM use only                                                                                         | Sample ID                                                                                                                              | Date Collected                       | Time<br>Collected | Sample<br>Type | Matrix                  | PFAS (see list |                  |                       | 1                                        | 1        |                                                                                        | WQ = Fie                            | ld QC (AB, EB)                                                                     |                            |                                     |
|                                                                                                         | ELSWH 06-003-GW-0                                                                                                                      | 55 5/7/18                            | 1621              | N              | WG                      | 2              |                  |                       |                                          | 1        |                                                                                        |                                     | NOTES                                                                              |                            |                                     |
|                                                                                                         | ELSWHOG-003-GW-0<br>ELSWHOG-002-GW-018                                                                                                 | 5/0-/18                              | 1035              | N              | wG                      | 6              |                  |                       |                                          |          | 1                                                                                      | MSIN                                | 1010 Inc.                                                                          | _                          |                                     |
|                                                                                                         | ELSWHO6-002-60-918                                                                                                                     | 5/03/18                              | 1035              | FØ             | W6                      | 2              |                  |                       | 111                                      |          | 1                                                                                      | 7.13.7                              | June,                                                                              |                            |                                     |
|                                                                                                         | FLSWH06-001-64-018                                                                                                                     | 5/09/18                              | 1133              | N              | w6                      | 2              |                  |                       |                                          |          |                                                                                        |                                     |                                                                                    |                            |                                     |
|                                                                                                         |                                                                                                                                        |                                      |                   |                |                         |                |                  |                       |                                          |          |                                                                                        | 1                                   |                                                                                    |                            |                                     |
|                                                                                                         |                                                                                                                                        |                                      |                   |                |                         |                |                  |                       |                                          |          |                                                                                        |                                     | VI                                                                                 |                            |                                     |
|                                                                                                         |                                                                                                                                        |                                      |                   |                |                         |                |                  |                       |                                          |          |                                                                                        |                                     |                                                                                    |                            |                                     |
|                                                                                                         |                                                                                                                                        |                                      |                   |                |                         |                |                  |                       |                                          |          |                                                                                        |                                     |                                                                                    |                            |                                     |
|                                                                                                         |                                                                                                                                        |                                      |                   |                |                         |                |                  |                       |                                          |          |                                                                                        |                                     | -                                                                                  |                            |                                     |
|                                                                                                         |                                                                                                                                        |                                      |                   |                |                         |                |                  |                       |                                          |          |                                                                                        |                                     | ,                                                                                  | 1                          |                                     |
|                                                                                                         |                                                                                                                                        |                                      | 20.04             |                | 1.79                    |                |                  | /                     |                                          |          |                                                                                        |                                     |                                                                                    | 1                          |                                     |
|                                                                                                         |                                                                                                                                        |                                      |                   |                |                         |                |                  |                       |                                          | _        |                                                                                        |                                     |                                                                                    |                            | 1                                   |
|                                                                                                         |                                                                                                                                        |                                      |                   | Total # c      | of Containers           | 12             |                  |                       |                                          |          |                                                                                        |                                     |                                                                                    | -                          | 1                                   |
| INQUISHED BY:                                                                                           | 05/18/18 1600                                                                                                                          | RECEIVED BY: Signature: Sec P.S.     | 5-1               | Date/Time:     |                         |                | Analyte<br>List: |                       | ANALYTE                                  |          | ERPINIS<br>PAR CODE<br>PEOS                                                            | CAS<br>1763-23-1                    | Cretaminant Perfluerorei idecanost scul                                            | ERPIAIS PAR CODE PETEA     | CAS 170-00-7                        |
| Ash Willis                                                                                              | 05/10/10 1600<br>Frm 454                                                                                                               | Printed Name:                        |                   |                |                         |                |                  | Perfluent<br>Perfluen | octoone acid<br>massione acid            |          | PENA                                                                                   | 335-67-1<br>675-93-1                | Perfluorousderment acut<br>Perfluorousderment acut                                 | PFTIGA                     | 72829-941<br>2018-94-8              |
| lure:                                                                                                   | Data/Timw                                                                                                                              | Signature                            | Date/Time:        |                |                         |                |                  | Perform               | heraneulfon<br>hepanes sei<br>hutueulfon | i.       | PERSON<br>PERSON                                                                       | \$15-46-4<br>\$15-25-9<br>\$15-73-5 | 8.2 Fluorotelogue sulfoque<br>8.2 Fluorotelogue sulfoque<br>Perfluoroteratus, acui | 02FT5-<br>52FT5-<br>FF31-R | 27819-03-7<br>19108-94-<br>353122-4 |
| ted Name:                                                                                               | Fern                                                                                                                                   | Printed Name: Firm.                  |                   |                |                         | Per Omorto     | de mos and       |                       | PFINA                                    | 101-10-2 | Perfluence aerolium and<br>Perfluence aerolium and                                     | PEDS                                | \$45-77.1<br>754-91-8                                                              |                            |                                     |

| AerostarSES Oak Ridge, TN 37830 And 865-481-7837                                                           |                                                                             |                              |                                                                                        |                |              | est Nu                                  | ımber:           |                               |          |                | P                           | age 4                                                                                    | of 4                                     |                                      |                 |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------|----------------|--------------|-----------------------------------------|------------------|-------------------------------|----------|----------------|-----------------------------|------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------|-----------------|
| Project Name: Site Inspecti-                                                                               | on of Aqueous Film Forming Foam Areas,                                      |                              | Job No.: M2                                                                            |                |              |                                         |                  |                               |          |                |                             |                                                                                          |                                          |                                      |                 |
| Multiple Sites, United States                                                                              |                                                                             |                              | Installation: ECUNORTHANS                                                              |                |              |                                         |                  | ,                             | ANALYSIS | 5              |                             |                                                                                          |                                          |                                      |                 |
| Aerostar Project Manager:<br>Send Data to:                                                                 |                                                                             | 78) 397-4906<br>65) 483-7904 |                                                                                        |                |              |                                         |                  |                               |          |                |                             | Sample T<br>N = Non                                                                      |                                          |                                      |                 |
| Sampler(s): Arek Tuniski                                                                                   |                                                                             |                              |                                                                                        |                |              |                                         | 1                |                               |          |                |                             | AB = Amb                                                                                 | pient Blank or Field R<br>ipment Rinsate | eagent Blar                          | nk              |
| Laboratory Name/Address:<br>Maxxam Analytics, Inc<br>6740 Campobello Rd.<br>Mississauga, Ontario<br>L5N2L8 | Idress: Laboratory Shipping Address: nc Maxxam Analytics L. c/o FedEx Depot |                              | Contact: Melissa DiGrazia  Phone: (905) 817-5700, ext. 5784 email: MDiGrazia@maxxam.ca |                |              | of 18 analytes                          |                  |                               |          |                |                             | Matrix: WG = Groundwater SO = Soil WP = Potable Water SE = Sediment WS = Surface Water   |                                          |                                      |                 |
| MAXXAM use only                                                                                            | Sample ID                                                                   | Date Collected               | Time<br>Collected                                                                      | Sample<br>Type | Matrix       | PFAS (see list                          |                  |                               | /        |                |                             | WQ = Fiel                                                                                | d QC (AB, EB)                            |                                      |                 |
|                                                                                                            | Circuita nos consid                                                         | -1.10                        | 1 12-1                                                                                 |                |              | 2                                       |                  |                               | 1        |                |                             |                                                                                          | NOTES                                    |                                      |                 |
|                                                                                                            | ELSWH03-003-GW-016<br>ELSWH03-002-GW-017                                    | 5110118                      | 1321                                                                                   | N              | WG           | 2                                       |                  |                               |          | 1              |                             |                                                                                          | -                                        | _                                    |                 |
|                                                                                                            | EL 163 00 22 QW-011                                                         | 2110/18                      | 1421                                                                                   | N              | WG           | 2                                       |                  |                               |          | 1              |                             | Q. t. a. de                                                                              | taken all tak                            | War addit                            | ciedal          |
|                                                                                                            | ELSWHES-RS-018                                                              | 5/10/18                      | 1215                                                                                   | EB             | wa           | 2                                       |                  |                               |          |                | 1                           | withs                                                                                    | taken att tub<br>ample BLSWH03           | -003-G                               | w-01            |
|                                                                                                            |                                                                             |                              |                                                                                        |                |              |                                         |                  |                               |          |                | 1                           |                                                                                          |                                          |                                      |                 |
|                                                                                                            |                                                                             |                              |                                                                                        |                |              |                                         |                  |                               |          |                | 1                           |                                                                                          |                                          |                                      |                 |
|                                                                                                            |                                                                             |                              |                                                                                        |                |              |                                         |                  |                               |          |                |                             | 49                                                                                       |                                          |                                      |                 |
|                                                                                                            |                                                                             |                              |                                                                                        |                |              |                                         |                  |                               |          |                |                             | 4                                                                                        |                                          |                                      |                 |
|                                                                                                            |                                                                             |                              |                                                                                        |                |              |                                         |                  |                               |          |                |                             | 1                                                                                        |                                          |                                      |                 |
|                                                                                                            |                                                                             | 1                            |                                                                                        |                |              |                                         |                  |                               |          |                |                             |                                                                                          |                                          |                                      |                 |
|                                                                                                            |                                                                             | <                            |                                                                                        |                |              |                                         |                  |                               | 100      |                |                             |                                                                                          |                                          |                                      |                 |
|                                                                                                            |                                                                             |                              | 0                                                                                      | 2              |              |                                         | Œ                |                               |          |                |                             |                                                                                          | 1                                        |                                      |                 |
|                                                                                                            |                                                                             |                              | 4                                                                                      |                |              |                                         |                  |                               |          |                |                             |                                                                                          | 1                                        |                                      |                 |
|                                                                                                            |                                                                             |                              |                                                                                        |                |              |                                         | 15.00            |                               |          |                |                             |                                                                                          | 1                                        |                                      |                 |
|                                                                                                            |                                                                             |                              |                                                                                        |                |              |                                         | 1                |                               |          |                |                             |                                                                                          |                                          | 1                                    |                 |
|                                                                                                            |                                                                             |                              |                                                                                        |                |              |                                         |                  | 1                             | _        |                |                             |                                                                                          |                                          | 1                                    |                 |
|                                                                                                            |                                                                             |                              |                                                                                        | Total # c      | f Containers | 6                                       |                  |                               |          | 1              |                             |                                                                                          |                                          | -                                    |                 |
| RELINQUISHED BY:                                                                                           |                                                                             | RECEIVED BY:                 |                                                                                        | Date/Time      |              |                                         | Analyte<br>List: | Peyfluscoe                    | ANALYTE  | ar acid        | EMPINIS<br>PAR CODI<br>PEGA | CAS<br>1763-23-1                                                                         | Contaminant Perfineratetradecuninc was   | PAR CODE                             | CAN<br>176-00-7 |
| inted Name:                                                                                                | Firm                                                                        | Printed Name: Firm:          |                                                                                        |                |              |                                         | Perfusers        | ectaurse and<br>nestamone ans | d        | PEGA.          | 375-95-1                    | Perfluentialectors and<br>Perfluentialectors and                                         | PETRIA<br>PEUNA                          | 1/829/94-8<br>2018-91-8              |                 |
| ignature                                                                                                   | Date/Time:                                                                  | Signature Date/Timus         |                                                                                        |                | -            |                                         | Perfluence       | examination<br>repaired to    | of.      | PFEDA<br>PFBSA | 175-85-9<br>175-73-3        | 6.2 Fluoretelesser sufficiere<br>8.3 Fluoretelesser sufficiere<br>Perfluorebutaness scal | ESFTS<br>ESFTS<br>PFBA                   | 27619-97-2<br>19109-14-4<br>175-22-4 |                 |
|                                                                                                            |                                                                             | Printed Nairce: Firm:        |                                                                                        |                |              | 100000000000000000000000000000000000000 | locanus wa       | 25 - 25 - 25 - 15 - 15        | PEDA     | 119-23-3       | Perfluencementations and    | 0.00                                                                                     | \$10-23-4<br>\$10-77.5                   |                                      |                 |

# **Stephanie Pollen**

**To:** Stephanie Pollen

**Subject:** RE: [JOB#:B8B1135] FLAG resolution sample ID correction

\*\*Please note, this message originated outside of the Maxxam mail system. Please use caution when opening links or attachments.\*\*

Thanks, Stephanie – I agree with you.

From: Stephanie Pollen [mailto:SPollen@maxxam.ca]

**Sent:** Friday, May 11, 2018 4:19 PM

To: Jenny Vance < <a href="mailto:JVance@aerostar.net">JVance@aerostar.net</a>>; Laura Natzke < <a href="mailto:LNatzke@aerostar.net">LNatzke@aerostar.net</a>>

Cc: Ashley Willis < <u>AWillis@aerostar.net</u>>
Subject: Ellsworth AFB (Maxxam job B

Good afternoon,

We received the below submission for Ellsworth AFB and our sample inspection staff has informed me that sample "ELSWH03-002-SO-911" is labelled on the bottle as "ELSWH03-002-**GW**-911". The sample is soil, I am assuming this was just a transcription error so we will proceed with the ID as per the CoC. Please let me know otherwise.

Thank you and have a great weekend!

| Aerosta                                                                                                | rSES_                                                             | Clas Stops Co<br>Clas Stops T<br>860-861- | N 37828                                                                   |            | in of Cust<br>ysis Requ |      |                  |     |         |     |                   | Page 2 = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|------------|-------------------------|------|------------------|-----|---------|-----|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name: Sist Amprecies<br>Multiple Siles, United States                                          | et all Alignment Flick Flamming Florid Assault.                   |                                           | January Mar. 443                                                          |            |                         |      |                  |     |         |     |                   | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |
| Arrivator Project Manager                                                                              | No Own. HOsenburgeries and                                        | (47t) 187-mm                              | (Special Section)                                                         | EILE       | arm are                 |      | 1                |     | ANNEYES |     |                   | Sample Types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Send Dela te                                                                                           |                                                                   |                                           |                                                                           |            |                         |      | 1                |     |         |     |                   | H - Normal<br>FS - Finis Dustinate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Summing L. Valer, a willing                                                                            |                                                                   |                                           |                                                                           |            |                         | 1    |                  |     |         |     |                   | AB + Answert Blank or Funt Hospani Blank.<br>EB + Epupment Rottelle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Johnston Hammaladinas<br>Marson Makytin, Inc.<br>1740 Centy Media Rd.<br>Missianoga, Ordania<br>1842.3 | Dear Lamourly Simpling Advance Massart Analytics Sir Faulty Sport |                                           | Contact Marine Distract.  Yes and Affice and Affice Mile Office Section 1 |            |                         | -    | \                | \   |         |     |                   | Marrie:<br>WG = Grandbasini<br>SO = Sot<br>WP = Princips - Wilson<br>SE = Southeast<br>WG = Sortece Wilder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MARKET SALES                                                                                           | Sweet C                                                           | Die General                               | The                                                                       | Type       | -                       | 100  |                  | 1   |         |     |                   | WG + Field GC (AR EXE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                        | Boute a second                                                    | 5/06/19                                   | Tome                                                                      | u          | 50                      | 2    |                  |     |         |     |                   | MOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                        | ESUNO - DOM - \$5-001                                             | Stubby                                    | 0745                                                                      | 60         | 50                      | 1    |                  |     | V       | -   |                   | ASIAGO Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                        | ELIMITOG -004 - 50 -015                                           | CIECIE                                    | 0745                                                                      | N          | 50                      | +    |                  |     | 1       |     |                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                        | ESUH-165-014                                                      | 5/05/19                                   | DAID                                                                      | -          | 10                      | -    | -                |     | 1       |     |                   | off type.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                        |                                                                   | -                                         | 0405                                                                      | E0         | -                       | 2    |                  |     | 1       | -   |                   | In apr. u/ Bornot-sey-50-47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                        | ESAIHO6-en - 55-001                                               | Studie                                    | 1013                                                                      | N          | 54                      | 1    | -                | -   | 1       | -   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                      | E10405- e21-10-012                                                | 5/05/14                                   | 1630                                                                      | A.F        | 50                      | 1    | -                |     | W       | _   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                        | ESH403-802-50-011                                                 | ZIMENA                                    | 1350                                                                      | N          | 10                      | 1    | -                |     | 19      | -   |                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                        | E34401-001-34-411                                                 | Stee/18                                   | (210                                                                      | FO         | 50                      | 1    |                  |     |         | -   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                        | Ethinke 3 - de 3 - Eu - en                                        | 5/acht                                    | 1503                                                                      | la la      | 3a                      | 1    |                  |     |         | +   |                   | Off Sens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                        | ELSUH-AS- DIS                                                     | 3/07/19                                   | Bai                                                                       | ES         | WQ                      | 2    | -                |     |         | +   | -                 | In asse, w/ Elsoner-net-Se-ally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                      | ELS-1107-005-50-034                                               | 5/07/11                                   | 1305                                                                      | N          | 50                      | 1    |                  |     |         | -   |                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                        | ELS-111 03 -004 - 50 -011                                         | 5/07/11                                   | itos                                                                      | N          | So                      | 1    |                  | -   |         |     | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                        | EUUH07-001-55-001                                                 | 2/92/12                                   | 0160                                                                      | N          | 50                      | 1    | -                | -   |         | -   | 1                 | -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                        | ELWH07-001-30-014                                                 | Slaslig                                   | 1256                                                                      | A.         | 50                      | 1    | -                |     |         | -   | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                        | BSUH07 -004-15- 401                                               | 3103118                                   | 1320                                                                      | AJ final # | Ser.                    | 100  |                  |     |         | _   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| To D                                                                                                   | 570/B /60                                                         | Seel                                      | 3-1                                                                       | -          |                         | 2.12 | America<br>Late: |     | 6/41/0  | 1   | harman<br>had com |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ash willis                                                                                             | ASL                                                               | _                                         |                                                                           | -          |                         |      | 1                | 100 | - 14    |     | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                        | 907                                                               | -                                         | -                                                                         | -          |                         |      | 1                |     | me.     | 100 | =                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                                                                                                      | -                                                                 | -                                         |                                                                           | -          |                         |      |                  | 20  | 4000    |     | Street,<br>States |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Kind regards,

# STEPHANIE POLLEN, B.Sc.

Project Manager, Site Assessment and Remediation/Ultra Trace Analysis

Office 905.817.5830 Mobile 416.432.3443 Toll free 800 565 7227 spollen@maxxam.ca

6740 Campobello Rd. / Mississauga, ON Canada L5N 2L8  $\,$ 

maxxam.ca

Please Note: Maxxam will be CLOSED Monday May 21 for Victoria Day.



Success Through Science®

Click here if you do not wish to receive announcements or occasional marketing updates from Maxxam.

2

The information in this e-mail and any attachments is confidential and for the sole use of the intended recipient(s). If you have received this e-mail in error, please: accept our apologies for the inconvenience; note that any use of the information is strictly prohibited; notify the sender as soon as possible; and then delete all copies from your system.



Your C.O.C. #: na

#### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/05/30

Report #: R5184408 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B8B1135 Received: 2018/05/11, 13:53 Sample Matrix: Ground Water # Samples Received: 6

|                                        | Date Date               | !                      |           |
|----------------------------------------|-------------------------|------------------------|-----------|
| Analyses                               | Quantity Extracted Anal | yzed Laboratory Method | Reference |
| PFOS and PFOA in water by SPE/LCMS (1) | 5 2018/05/22 2018       | 3/05/24 CAM SOP-00894  | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 1 2018/05/23 2018       | 3/05/25 CAM SOP-00894  | EPA 537 m |

Sample Matrix: Soil # Samples Received: 23

|                                       |          | Date       | Date       |                   |                      |
|---------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                              | Quantity | Extracted  | Analyzed   | Laboratory Method | Reference            |
| Moisture                              | 23       | N/A        | 2018/05/14 | CAM SOP-00445     | Carter 2nd ed 51.2 m |
| PFOS and PFOA in soil by SPE/LCMS (1) | 6        | 2018/05/22 | 2018/05/25 | CAM SOP-00894     | EPA537 m             |
| PFOS and PFOA in soil by SPE/LCMS (1) | 17       | 2018/05/23 | 2018/05/25 | CAM SOP-00894     | EPA537 m             |

Sample Matrix: Water # Samples Received: 6

|                                        |          | Date       | Date       |                   |           |
|----------------------------------------|----------|------------|------------|-------------------|-----------|
| Analyses                               | Quantity | Extracted  | Analyzed   | Laboratory Method | Reference |
| PFOS and PFOA in water by SPE/LCMS (1) | 1        | 2018/05/17 | 2018/05/18 | CAM SOP-00894     | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 3        | 2018/05/18 | 2018/05/24 | CAM SOP-00894     | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 2        | 2018/05/22 | 2018/05/24 | CAM SOP-00894     | EPA 537 m |

#### Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.



Your C.O.C. #: na

#### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/05/30

Report #: R5184408 Version: 1 - Final

**CERTIFICATE OF ANALYSIS** 

MAXXAM JOB #: B8B1135 Received: 2018/05/11, 13:53

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.

**Encryption Key** 

Stephanie Pollen Project Manager 30 May 2018 15:59:01

 ${\it Please \ direct \ all \ questions \ regarding \ this \ Certificate \ of \ Analysis \ to \ your \ Project \ Manager.}$ 

Stephanie Pollen, Project Manager Email: SPollen@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Prepared for: Aerostar SES LLC

Project: M2027.0003 (OMAHA) ELLSWORTH AFB

# Analytical Data Package (Level IV)

Analysis: PFOS and PFOA in soil (Method 537 mod.)

Maxxam Job #: B8C0381

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com



I hereby certify that to the best of my knowledge all analytical data presented in this report:

- > Has been checked for completeness.
- Is accurate, legible and error free.
- ➤ Has been conducted in accordance with approved SOP's and that all deviations are clearly listed in the Case Narrative.
- > This report has been generated in .pdf format.

Review Performed By:

Steph Pallin
Project Manager
Max Lam
A Bureau Veritas Group Company

Stephanie Pollen 2018.06.18 12:16:24 -04'00'

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com

# **Glossary of Terms**

- ➤ Detection Limit (DL) this can also be called Method Detection Limit (MDL): The lowest concentration or amount of the target analyte that can be identified, measured, and reported with confidence that the analyte concentration is not a false positive value. (Clarification): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- ➤ Limit of Detection (LOD): An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrix-specific and may be laboratory-dependent. (Clarification): The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%.
- ➤ Limits of Quantitation (LOQ) this can also be called Reporting Detection Limit (RDL): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. (Clarification): The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Acceptance Criteria are values used by the laboratory to determine that a process is in control.
- Accuracy is the degree of agreement of a measured value with the true or expected value.
- ➤ **Calibration Standards** are a set of solutions containing the analytes of interest at a specified concentration.
- > Calibration Verification Standard consists of a calibration standard solution of intermediate concentration (mid-point initial calibration level) used to access whether the initial calibration is still valid
- Certified Reference Material is a stable homogenous material that is certified by repetitive analysis from a supplier who is certified to generate said materials.

- > Internal Standard a deuterated or <sup>13</sup>C-labelled analyte that is added to a sample extract prior to instrumental analysis to compensate for injection variability.
- > **Isomer** is a member of a group of compounds that differ from each other only in the locations of a specific number of common substituent atoms or groups of atoms on the parent compound.
- > **Method Blank** is a laboratory control sample using reagents that are known to be free of contamination.
- > **Precision** is the degree of agreement between the data generated from repetitive measurements under specific conditions.
- Quality Assurance is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality.
- > **Quality Control** is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of the end user.
- > **RSD** is the relative standard deviation.
- > **Blank Spike** is a laboratory control sample that has been fortified with native analytes of interest.
- ➤ **Window Defining Mixture** is a solution containing only the earliest and latest eluting congeners within each homologous group of target analytes on a specified GC column.
- > **RPD** or Relative Percent Difference. A measure used to compare duplicate sample analysis.
- EMPC/NDR Peak detected does not meet ratio criteria and has resulted in a higher detection limit.

#### Maxxam Job: B8C0381 - Soil Analysis

#### Sample Analysis

Soil extracts were initially pre-screened and estimated concentrations were obtained so that samples could be appropriately diluted for analysis on QC batches 5549693 (2018/05/28-30) and 5549696 (2018/05/28-29). Due to high concentrations, dilutions were required for selected analytes in the following samples:

| GTF528 | ELSWH10-004-SD-001 | Perfluorooctanesulfonate (PFOS)                                      |
|--------|--------------------|----------------------------------------------------------------------|
| GTF532 | ELSWH04-002-SS-001 | Perfluorooctanesulfonate (PFOS)                                      |
| GTF540 | ELSWH01-003-SS-001 | Perfluorooctanesulfonate (PFOS)                                      |
| GTF542 | ELSWH01-002-SS-001 | Perfluorooctanesulfonate (PFOS)                                      |
| GTF543 | ELSWH01-002-SO-012 | All analytes                                                         |
| GTF544 | ELSWH01-004-SS-001 | All analytes                                                         |
| GTF545 | ELSWH01-004-SO-012 | Perfluorooctanesulfonate (PFOS)                                      |
| GTF547 | ELSWH01-001-SS-001 | All analytes                                                         |
| GTF548 | ELSWH01-001-SS-901 | All analytes                                                         |
| GTF550 | ELSWH01-001-SO-013 | Perfluorooctanesulfonate (PFOS), 6:2 Fluorotelomersulfonate (6:2FTS) |
| GTF551 | ELSWH01-001-SO-913 | Perfluorooctanesulfonate (PFOS), 6:2 Fluorotelomersulfonate (6:2FTS) |
| GTF552 | ELSWH03-001-SO-009 | Perfluorooctanesulfonate (PFOS)                                      |

Detection limits were adjusted accordingly.

Peak areas of injection internal standard analytes were above the defined upper control limit (UCL) for selected dilutions in the following samples:

Sample vials were visually inspected and evaporation of vial contents was observed. Because quantitation is performed using isotope dilution and internal standard techniques, any apparent gains of the target compound that may occur during extract evaporation will be mirrored by a similar gain of the labeled internal standard, and as such can be accounted for and corrected. Therefore, the quantitation of target and extracted internal standard analytes is not affected by the high injection internal standard analyte peak areas.

#### **Extracted Internal Standard Analytes**

The extracted internal standard analyte  $^{13}$ C<sub>2</sub>-Perfluorotetradecanoic acid ( $^{13}$ C<sub>2</sub>-PFTeDA) is used to quantify native Perfluorotridecanoic acid (PFTrDA) & Perfluorotetradecanoic acid (PFTeDA). The recoveries observed for this extracted internal standard analyte were below the defined lower control limit (LCL) for the following samples:

GTF528 *ELSWH10-004-SD-001* GTF542 *ELSWH01-002-SS-001* 

Samples were re-extracted and re-analyzed for the associated native analytes on QC batch 5554876 (2018/06/02-03). Results were reported from diluted extracts where acceptable  $^{13}C_2$ -PFTeDA recoveries were obtained. Detection limits were adjusted accordingly.

#### **QC Samples**

Matrix Spike and Matrix Spike Duplicate (MS/MSD) was performed on sample GTF547 (*ELSWH01-001-SS-001*) on QC batch 5549693 (2018/05/28-30) but not analyzed due to high concentrations of target analytes in the native sample.

#### **Quantitation of PFAS**

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

#### **Data Qualifiers**

**U** – Analyte was not detected and is reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.

**J** – The reported result is an estimated value (e.g., matrix interference was observed, or the analyte was detected at a concentration outside the calibration range).

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

#### PROJECT NARRATIVE

**Maxxam Analytics** 

Client Project #: M2027.0003 (OMAHA)



Client: Aerostar SES LLC

Client Project: M2027.0003 (OMAHA)

# I. SAMPLE RECEIPT/ANALYSIS

#### a) Sample Listing

| Maxxam       | Client                 | Date       | Date       | Date       | Date       | Initial                       |
|--------------|------------------------|------------|------------|------------|------------|-------------------------------|
| ID           | Sample ID              | Sampled    | Received   | Prepped    | Run        | Calibration                   |
| PFOS and PFO | OA in soil by SPE/LCMS |            |            |            |            |                               |
| GTF526       | ELSWH11-006-SD-001     | 2018/05/16 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30                 |
| GTF528       | ELSWH10-004-SD-001     | 2018/05/16 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30 & 2018/06/02-03 |
| GTF532       | ELSWH04-002-SS-001     | 2018/05/18 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30                 |
| GTF533       | ELSWH04-002-SO-035     | 2018/05/18 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30                 |
| GTF534       | ELSWH07-002-SO-013     | 2018/05/09 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30                 |
| GTF538       | ELSWH07-003-SS-001     | 2018/05/15 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30                 |
| GTF539       | ELSWH07-003-SO-016     | 2018/05/15 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30                 |
| GTF540       | ELSWH01-003-SS-001     | 2018/05/15 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30                 |
| GTF541       | ELSWH01-003-SO-025     | 2018/05/15 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30                 |
| GTF542       | ELSWH01-002-SS-001     | 2018/05/16 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30 & 2018/06/02-03 |
| GTF543       | ELSWH01-002-SO-012     | 2018/05/16 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30                 |
| GTF544       | ELSWH01-004-SS-001     | 2018/05/16 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30                 |
| GTF545       | ELSWH01-004-SO-012     | 2018/05/16 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30                 |
| GTF547       | ELSWH01-001-SS-001     | 2018/05/17 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30                 |
| GTF548       | ELSWH01-001-SS-901     | 2018/05/17 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30                 |
| GTF550       | ELSWH01-001-SO-013     | 2018/05/17 | 2018/05/22 | 2018/05/26 | 2018/05/29 | 2018/05/28-29                 |
| GTF551       | ELSWH01-001-SO-913     | 2018/05/17 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30                 |
| GTF552       | ELSWH03-001-SO-009     | 2018/05/17 | 2018/05/22 | 2018/05/26 | 2018/05/28 | 2018/05/28-30                 |

Run Date is defined as the date of injection of the last calibration standard (12 hours or less) prior to the samples analyzed within that run sequence. Therefore the time of calibration injection that defines the run date is always within 12 hours of the time of sample injection.

- b) Shipping Problems: Samples were received with temperature less than 10 degrees Celsius. Cooler custody seals were present and intact.
- c) Documentation Problems: Sample ELSWH01-MW930107-GW-034 required high level analysis, client confirmed to proceed. Due to the size of the submission, the Data Package was split into soil and water versions.

#### II. SAMPLE PREP:

No problems encountered

#### III. SAMPLE ANALYSIS:

See also comments within the appropriate Certificate of Analysis

- a) Hold Times: Due to rework requirements, the following samples were analyzed past hold time; ELSWH02-008-GW-029, ELSWH02-008-GW-929, and ELSWH02-007-GW-018.
- b) Instrument Calibration: all within control limits
- c) Quality Control: All applicable QC meets control criteria, except where otherwise noted.
- d) All analytes requiring manual intergration(s) are noted on the sample chromatograms

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for other than the conditions detailed above.

In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. Release of the data contained in this data package has been authorized by the cognizant laboratory official or his/her designee, as verified by this signature.

Project Manager- Site Assessment and Remediation/ Ultra Trace

2018/06/18 Date



|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1006 Floyd Cu<br>Oak Ridge, T    |                          |                | n of Cust    |                        |                 |                     |             |              |          | 232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |    | 100 |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|----------------|--------------|------------------------|-----------------|---------------------|-------------|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|-----|
| Aerosto                                                                                                   | ITSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 865-481-                         |                          | Allery         | ala ricqu    | COLITION               |                 |                     |             |              | P        | age 2 of 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |    |     |
|                                                                                                           | on of Aqueous Film Forming Foam Areas,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | Job No.: Ma              |                |              |                        |                 |                     |             |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |    |     |
| Aultiple Sites, United States                                                                             | AND THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONT | (478) 397-4906                   | Installation:            | Ellsmo         | KIT.         |                        |                 | 4                   | ANALYSIS    |              |          | Sample Types:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |    |     |
| Aerostar Project Manager:<br>Send Data to:                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (478) 397-4906<br>(865) 483-7904 |                          |                |              |                        |                 |                     |             |              |          | N = Mormal FD = Field Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |    |     |
| Sampler(s):                                                                                               | , ArekT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                          | 19             |              |                        | 1               |                     |             |              |          | AB = Ambient Blank or Field Reagent Blank<br>EB = Equipment Rinsate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |    |     |
| aboratory Name/Address:<br>Maxxam Analytics, Inc<br>1740 Campobello Rd.<br>Mississauga, Ontario<br>.5N2L8 | Laboratory Shipping Addr<br>Maxxam Analytics<br>c/o FedEx Depot<br>299 Gayuga Rd.<br>Cheektowaga, NY 1422<br>Please indicate "HOLD FOR F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                | Phone: (90)<br>email: MD | 5) 817-5700,   | ext. 5784    | et of 18 anaytes below |                 | 1                   | \           |              |          | Matrix:  WG = Groundwater SO = Soil  WP = Potable Water SE = Sediment WS = Surface Water  WQ = Field QC (AB, EB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |    |     |
| MAXXAM use only                                                                                           | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date Collected                   | Time<br>Collected        | Sample<br>Type | Matrix       | PFAS (see I            |                 |                     |             | 1            |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |     |
|                                                                                                           | ELSWH-RS-022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/18/196                         | 0840                     | EB             | wa           | 2                      |                 |                     |             |              |          | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |    |     |
|                                                                                                           | ELSUHO4-002-55-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5118118                          | 0945                     | N              | SU           | 1                      |                 |                     |             |              | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |    |     |
|                                                                                                           | ELSWHOU-007-50-035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5118118                          | 1030                     | N              | 50           | 1                      |                 |                     |             |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |    |     |
|                                                                                                           | FLSW1407-602-50-013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5/9/18                           | 1610                     | N              | 50           | 1                      |                 |                     |             |              |          | NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |    | •   |
|                                                                                                           | EISNH 04-003-6W-027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5/18/18                          | 1016                     | 2              | ₩6           | 2                      |                 |                     |             |              |          | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 8  |     |
|                                                                                                           | ELSWHO2-008-6W-929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5/18/18                          | 1016                     | FD             | WG           | 2                      |                 |                     |             |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |    |     |
| (*                                                                                                        | ELSWH02-007-6W-018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5/18/18                          | 1127                     | N              | W 6          | 2                      |                 |                     |             |              |          | = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |    | 1   |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                          |                |              |                        |                 |                     |             |              |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |     |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                          |                |              |                        |                 |                     |             |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |    |     |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                          | 1              | 5 -          |                        |                 |                     |             |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |    |     |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                          | 6              |              | -                      |                 |                     |             |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |    |     |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | +                        |                |              | -                      |                 | -                   |             |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |    |     |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                          |                |              | -                      |                 |                     |             |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |    |     |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                          |                |              | -                      |                 |                     |             |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |    |     |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                          | Total #        | of Container | s II                   |                 |                     |             |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |    | -   |
| RELINQUISHED BY:                                                                                          | 6 5/21/18 160 0 Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide   Fide    | RECEIVED BY:<br>Signature        | S                        | EE 1           | P6#1         | 19                     | Analyta<br>List | Perthase<br>Seria   | CALTH       | and .        | FAR SAID | Performance and PETA 1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |    |     |
| Ash Willis                                                                                                | ASL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Printed Name                     |                          | Pins.          |              | . 1                    |                 |                     | decament of | d<br>an arel | PERM     | PT   N     Performance over rail     PE   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |    |     |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signature                        |                          | Date/Time      |              |                        |                 | en flour<br>Perfice | objetance a | n arid       | MARK #   | to the description will 1976 (1777)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 24 |     |
| Printed Name                                                                                              | Filtro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Printed Name:                    |                          | Pierr          |              |                        |                 | Priffee             | rathern of  | 10           | 19105.4  | gen and dephasement with the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control |   | 7  |     |

| Aerosto                                              | arSES                                                                                    | 1006 Floyd Cu<br>Dak Ridge, T<br>865-481- | N 37830                  |                   | n of Cust<br>sis Requ |                  |                  |          |                                                                                 | -        | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99 3 of \$4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 3     | 100 |
|------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------|-------------------|-----------------------|------------------|------------------|----------|---------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|
| Project Name: Site Inspection                        | on of Aqueous Film Forming Foam Areas,                                                   |                                           | Job No.: M2              | 17.00             |                       |                  |                  |          |                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       |     |
| Aurostar Project Manager:                            | AD GRANTSCHOOL STATE                                                                     | (478) 397-4906                            | Installation: EISWORTH   |                   |                       | -                |                  |          | ANALYSIS *                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Types:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8   |       |     |
| Send Data to:                                        | Jenny Vance, jvance@aerostar.net                                                         | (865) 483-7904                            |                          |                   |                       |                  | 1                | ,        |                                                                                 |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N = Mormal<br>FD = Field Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |       |     |
| ampler(s): Atak Ti Jus<br>aboratory Name/Address:    | ha V                                                                                     |                                           |                          | 19                |                       |                  | 1                |          |                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AB = Ambient Blank or Field Reagent Blank EB = Equipment Rinsate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       |     |
| aboratory Name/Address:                              | Laboratory Shipping Addr<br>Maxxam Analytics                                             | ess:                                      | Contact: Me              | alissa DiGra      | azia                  | (wolea)          | 1                |          |                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matrix:<br>WG = Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0 |       |     |
| 5740 Campobello Rd.<br>Mississauga, Ontario<br>5N2L8 | c/o FedEx Depot<br>299 Cayuga Rd.<br>Cheektowaga, NY 1422<br>Please indicate "HOLD FOR P |                                           | Phone. (90:<br>email: MD |                   |                       | t or 18 analytes | \                |          |                                                                                 | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SO = Soil WP = Potable Water SE = Sediment WS = Surface Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6   |       |     |
| MAXXAM use only                                      | Sample ID                                                                                | Date Collected                            | Time<br>Collected        | Sample<br>Type    | Matrix                | PFAS (see lis    |                  |          |                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WQ = Field QC (AB, EB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |       |     |
|                                                      | ELSWHO7-003-55-001                                                                       | 2012/05/15                                | 1015                     | N                 | 50                    | 1                |                  | -        |                                                                                 |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |       |     |
| - 3                                                  | ELSWH07 - 003 - 50-016                                                                   |                                           |                          |                   | 50                    | 1                |                  |          |                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       |     |
|                                                      | ELSWHO1-003-55-00                                                                        |                                           |                          | N                 | 50                    | 1                |                  |          |                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       |     |
|                                                      | · ELSWHO1-003-50-02                                                                      | 5 2018/05/15                              | 1600                     | N                 | 50                    | 1                |                  |          |                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |       |     |
|                                                      | · ELSWHOL-002-55-0                                                                       | 01 2018/03/                               | 14 1250                  | N                 | 50                    | 1                |                  | ,        | 1                                                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 14-11 |     |
|                                                      | ELSWHO1-002-50-1                                                                         |                                           |                          | N                 | 50                    | 1                |                  |          | 9                                                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       |     |
|                                                      | ELSWW01-004-55-0                                                                         |                                           |                          |                   | 50                    | 1                |                  |          |                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |       |     |
|                                                      | ELSWHO1-004-56-                                                                          |                                           | -                        |                   | 50                    | 1                |                  |          | 1                                                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 101 10/ 00 all El SWHOL-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |     |
|                                                      | ELSWH-R5-020                                                                             | 2018/65/                                  | 6 1249                   | EB                | WQ                    | 2                |                  |          |                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Associated w/sample ELSWHOI-COL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       |     |
|                                                      | ELSWHO1-001-55-001                                                                       | 5/17/18                                   | 0833                     | N                 | 20                    | 2                |                  | -        |                                                                                 | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASIMSO Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |     |
|                                                      | ELSUH 41-001-55-701                                                                      | 2117118                                   | 0833                     | FD                | 30                    | 1                |                  |          |                                                                                 | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ++ Spoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |       |     |
|                                                      | · ELSWH-RS-021                                                                           | 2117118                                   | 2500                     | ES                | wa                    | 2                | -                |          |                                                                                 | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E asse ul Esuno 1-001-50-013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |       |     |
|                                                      | ELSUMO1-001-50-013                                                                       | 5/17/18                                   | 0947                     | 100               | So                    | 2                |                  | -        |                                                                                 | - 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MS/ASD Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |     |
|                                                      | ELSWHU1-001-50 -913                                                                      | 5117/18                                   | 074)                     |                   | 50                    | 1                |                  |          |                                                                                 |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |       |     |
|                                                      | ELSWH03-001-50-000                                                                       | 2117118                                   | 1325                     | N Total #         | of Container          | 5 9              |                  |          |                                                                                 | +        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       | -   |
| RELINQUISHED BY:                                     | Date/Time 65/28/18 /600                                                                  | RECEIVED BY:<br>Signature                 |                          | SEE               | P6#1                  |                  | Analyte<br>List: | a Septhi | ANALYTE                                                                         | oil line | ERPOR<br>AS COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EAN Contemporary EAPTING CAR   CAR   CONTEMPORARY CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR   CAR                                                                                                                                                                                                                                                                                             |     |       |     |
| A3h Willis                                           | AS L                                                                                     | Printed Name                              | -                        | Elen).            | ,                     |                  |                  | Perflo   | Loren Jan                                                                       | and it   | PENDON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 175.91.1 Performance and a 19275A Trans.1<br>15.46.4 b. Discontinues officials. 1975.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A   |       |     |
| Signature Printed Name                               | Osta/Time<br>Firm:                                                                       | Signature Priviled Name                   |                          | Date/Time<br>Firm |                       |                  |                  | Per flan | avia crego and<br>a margan different<br>a side and a side<br>and and and a side |          | PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PERSONAL PER | \$550.8 8 \$7.0 (parketimes officials 577% \$110.5 has \$15.7 kg. Perfluencial and aid PDA 72.77 4 \$25.70 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.00 \$10.0 |     | no.   |     |



# **Stephanie Pollen**

From: Jenny Vance <JVance@aerostar.net>
Sent: Thursday, May 24, 2018 12:18 PM

**To:** Stephanie Pollen

**Cc:** Laura Natzke; Brian Odom

**Subject:** RE: High Level Analysis: Ellsworth AFB (Maxxam job B8C0381)

\*\*Please note, this message originated outside of the Maxxam mail system. Please use caution when opening links or attachments.\*\*

Thanks, Stephanie.

Go ahead, but keep us posted.

From: Stephanie Pollen [mailto:SPollen@maxxam.ca]

**Sent:** Thursday, May 24, 2018 12:02 PM **To:** Jenny Vance < <u>JVance@aerostar.net</u>>

Cc: Laura Natzke <<u>LNatzke@aerostar.net</u>>; Brian Odom <<u>BOdom@specproenv.com</u>>

Subject: RE: High Level Analysis: Ellsworth AFB (Maxxam job B8C0381)

Hi Jenny,

The lab has confirmed PFHxS will definitely need high level. PFHxA, PFOS & 6:2-FTS might need it, we'll need to see the results of the 100x SPE first.

Kind regards,

STEPHANIE POLLEN, B.Sc.

Project Manager, Site Assessment and Remediation/Ultra Trace Analysis

Office 905.817.5830 Mobile 416.432.3443 Toll free 800 565 7227 spollen@maxxam.ca

6740 Campobello Rd. / Mississauga, ON Canada L5N 2L8 maxxam.ca



Click here if you do not wish to receive announcements or occasional marketing updates from Maxxam.

The information in this e-mail and any attachments is confidential and for the sole use of the intended recipient(s). If you have received this e-mail in error, please: accept our apologies for the inconvenience; note that any use of the information is strictly prohibited; notify the sender as soon as possible; and then delete all copies from your system.

From: Jenny Vance [mailto:JVance@aerostar.net]

Sent: Thursday, May 24, 2018 11:09 AM

To: Stephanie Pollen

Cc: Laura Natzke; Brian Odom

Subject: RE: High Level Analysis: Ellsworth AFB (Maxxam job B8C0381)

\*\*Please note, this message originated outside of the Maxxam mail system. Please use caution when opening links or attachments.\*\*

I suspect the samples were prescreened and showed high levels of one or more analytes. If so, can you tell us which analytes are requiring a 100x dilution? As always, my fear is that we won't be able to determine whether PFOS or PFOA exceed regulatory criteria. If one or both of those was detected at high levels, I don't think we have a problem (well – except for the obvious contamination at the well).

From: Stephanie Pollen [mailto:SPollen@maxxam.ca]

Sent: Thursday, May 24, 2018 11:01 AM
To: Jenny Vance < <u>JVance@aerostar.net</u>>
Cc: Laura Natzke < <u>LNatzke@aerostar.net</u>>

Subject: High Level Analysis: Ellsworth AFB (Maxxam job B8C0381)

Good morning Jenny,

The lab has informed me that the below samples require high-level analysis. Can you please confirm if we are OK to proceed?

Maxxam job B8C0381 (Ellsworth AFB)

ELSWH01-MW930107-GW-034 (GFT530) ELSWH01-001-GW-015 (GFT558) ELSWH01-001-GW-915 (GFT559)

Kind regards,

# STEPHANIE POLLEN, B.Sc.

Project Manager, Site Assessment and Remediation/Ultra Trace Analysis

Office 905.817.5830 Mobile 416.432.3443 Toll free 800 565 7227 spollen@maxxam.ca

6740 Campobello Rd. / Mississauga, ON Canada L5N 2L8 maxxam.ca



Click here if you do not wish to receive announcements or occasional marketing updates from Maxxam.

The information in this e-mail and any attachments is confidential and for the sole use of the intended recipient(s). If you have received this e-mail in error, please: accept our apologies for the inconvenience; note that any use of the information is strictly prohibited; notify the sender as soon as possible; and then delete all copies from your system.

2



Your C.O.C. #: na

#### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/06/12

Report #: R5232914 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B8C0381 Received: 2018/05/22, 14:19 Sample Matrix: Ground Water # Samples Received: 13

|                                        |          | Date       | Date       |                   |           |
|----------------------------------------|----------|------------|------------|-------------------|-----------|
| Analyses                               | Quantity | Extracted  | Analyzed   | Laboratory Method | Reference |
| PFOS and PFOA in water by SPE/LCMS (1) | 1        | 2018/05/25 | 2018/06/06 | CAM SOP-00894     | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 1        | 2018/05/26 | 2018/05/27 | CAM SOP-00894     | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 3        | 2018/05/30 | 2018/06/01 | CAM SOP-00894     | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 5        | 2018/05/31 | 2018/06/04 | CAM SOP-00894     | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 3        | 2018/06/04 | 2018/06/11 | CAM SOP-00894     | EPA 537 m |

Sample Matrix: Soil # Samples Received: 16

|                                       |          | Date       | Date       |                          |                      |
|---------------------------------------|----------|------------|------------|--------------------------|----------------------|
| Analyses                              | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference            |
| Moisture                              | 16       | N/A        | 2018/05/24 | CAM SOP-00445            | Carter 2nd ed 51.2 m |
| PFOS and PFOA in soil by SPE/LCMS (1) | 15       | 2018/05/26 | 2018/05/28 | CAM SOP-00894            | EPA537 m             |
| PFOS and PFOA in soil by SPE/LCMS (1) | 1        | 2018/05/26 | 2018/05/29 | CAM SOP-00894            | EPA537 m             |

Sample Matrix: SEDIMENT # Samples Received: 2

|                                       | Date               | Date                       |                      |
|---------------------------------------|--------------------|----------------------------|----------------------|
| Analyses                              | Quantity Extracted | Analyzed Laboratory Method | Reference            |
| Moisture                              | 2 N/A              | 2018/05/24 CAM SOP-00445   | Carter 2nd ed 51.2 m |
| PFOS and PFOA in soil by SPE/LCMS (1) | 2 2018/05/26       | 2018/05/28 CAM SOP-00894   | EPA537 m             |

Sample Matrix: Surface Water # Samples Received: 2

|                                        |          | Date       | Date       |                   |           |
|----------------------------------------|----------|------------|------------|-------------------|-----------|
| Analyses                               | Quantity | Extracted  | Analyzed   | Laboratory Method | Reference |
| PFOS and PFOA in water by SPE/LCMS (1) | 2        | 2018/05/26 | 2018/05/27 | ' CAM SOP-00894   | EPA 537 m |

Sample Matrix: Water # Samples Received: 6

| in campies necessed c |                           |          |                          |           |  |
|-----------------------|---------------------------|----------|--------------------------|-----------|--|
|                       | Date                      | Date     |                          |           |  |
| Analyses              | <b>Quantity Extracted</b> | Analyzed | <b>Laboratory Method</b> | Reference |  |



Your C.O.C. #: na

### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/06/12

Report #: R5232914 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B8C0381 Received: 2018/05/22, 14:19

Sample Matrix: Water # Samples Received: 6

|                                        |          | Date       | Date       |                          |           |
|----------------------------------------|----------|------------|------------|--------------------------|-----------|
| Analyses                               | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference |
| PFOS and PFOA in water by SPE/LCMS (1) | 1        | 2018/05/25 | 2018/06/06 | CAM SOP-00894            | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 1        | 2018/05/26 | 2018/05/27 | CAM SOP-00894            | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 1        | 2018/05/28 | 2018/06/02 | CAM SOP-00894            | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 2        | 2018/05/30 | 2018/06/01 | CAM SOP-00894            | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 1        | 2018/05/31 | 2018/06/04 | CAM SOP-00894            | EPA 537 m |

# Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.



Your C.O.C. #: na

### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/06/12

Report #: R5232914 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B8C0381 Received: 2018/05/22, 14:19

**Encryption Key** 

Stephanie Pollen Project Manager 12 Jun 2018 14:03:51

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Stephanie Pollen, Project Manager Email: SPollen@maxxam.ca

Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Prepared for: Aerostar SES LLC

Project: M2027.0003 (OMAHA) ELLSWORTH AFB

# Analytical Data Package (Level IV)

Analysis: PFOS and PFOA in water (Method 537 mod.)

Maxxam Job #: B8C0381

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com

3/6/19



I hereby certify that to the best of my knowledge all analytical data presented in this report:

- > Has been checked for completeness.
- Is accurate, legible and error free.
- ➤ Has been conducted in accordance with approved SOP's and that all deviations are clearly listed in the Case Narrative.
- This report has been generated in .pdf format.

Review Performed By:

Atrich Maddin
Project Manager
Maxxam
A Bureau Veritas Group Company

Stephanie Pollen 2018.06.18 11:59:04 -04'00'

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com

# **Glossary of Terms**

- ➤ Detection Limit (DL) this can also be called Method Detection Limit (MDL): The lowest concentration or amount of the target analyte that can be identified, measured, and reported with confidence that the analyte concentration is not a false positive value. (Clarification): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- ➤ Limit of Detection (LOD): An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrix-specific and may be laboratory-dependent. (Clarification): The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%.
- ➤ Limits of Quantitation (LOQ) this can also be called Reporting Detection Limit (RDL): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. (Clarification): The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Acceptance Criteria are values used by the laboratory to determine that a process is in control.
- Accuracy is the degree of agreement of a measured value with the true or expected value.
- ➤ **Calibration Standards** are a set of solutions containing the analytes of interest at a specified concentration.
- > Calibration Verification Standard consists of a calibration standard solution of intermediate concentration (mid-point initial calibration level) used to access whether the initial calibration is still valid
- Certified Reference Material is a stable homogenous material that is certified by repetitive analysis from a supplier who is certified to generate said materials.

- > Internal Standard a deuterated or <sup>13</sup>C-labelled analyte that is added to a sample extract prior to instrumental analysis to compensate for injection variability.
- > **Isomer** is a member of a group of compounds that differ from each other only in the locations of a specific number of common substituent atoms or groups of atoms on the parent compound.
- > **Method Blank** is a laboratory control sample using reagents that are known to be free of contamination.
- > **Precision** is the degree of agreement between the data generated from repetitive measurements under specific conditions.
- Quality Assurance is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality.
- ➤ **Quality Control** is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of the end user.
- > **RSD** is the relative standard deviation.
- > **Blank Spike** is a laboratory control sample that has been fortified with native analytes of interest.
- ➤ **Window Defining Mixture** is a solution containing only the earliest and latest eluting congeners within each homologous group of target analytes on a specified GC column.
- > **RPD** or Relative Percent Difference. A measure used to compare duplicate sample analysis.
- EMPC/NDR Peak detected does not meet ratio criteria and has resulted in a higher detection limit.

# Maxxam Job: B8C0381 - Water Analysis

### Sample Analysis

Samples were initially pre-screened and estimated concentrations were obtained so that appropriate sample volumes could be extracted on QC batches 5548287 (2018/06/06), 5549674 (2018/05/27), 5551465 (2018/06/02), 5554565 (2018/06/03), 5555549 (2018/06/01-02) and 5557332 (2018/06/04-05). Due to high concentrations, the following samples were analyzed for selected analytes using reduced sample extraction volumes:

| GTF529 | ELSWH10-004-SW-001      | Perfluorohexanesulfonate (PFHxS) |
|--------|-------------------------|----------------------------------|
| GTF530 | ELSWH01-MW930107-GW-034 | All analytes                     |
| GTF535 | ELSWH02-008-GW-029      | Perfluorooctanesulfonate (PFOS)  |
| GTF558 | ELSWH01-001-GW-015      | All analytes                     |
| GTF559 | ELSWH01-001-GW-915      | All analytes                     |

In addition, sample GTF530 (*ELSWH01-MW930107-GW-034*) was analyzed for Perfluorohexanesulfonate (PFHxS) by high level analysis with serial dilution on QC batch 5548299 (2018/05/28), with project approval by the client. Detection limits were adjusted accordingly.

# Re-Analysis of QC batch 5548287

QC batch 5548287 was initially analyzed on 2018/05/28. During assembly of the Level IV data package, it was observed that raw data was not available for the Instrument Sensitivity Check (ISC) sample on this QC batch. Several samples on this QC batch required re-injection due to possible analyte carryover. A  $2^{nd}$  ISC was injected prior to these sample re-injections, and it is likely that the raw data for the original ISC was overwritten during this process. Because initial ISC data was no longer available, the entire batch was re-analyzed on 2018/06/06. Based on the initial analytical results (2018/05/28), the following sample was re-extracted for Perfluorobutanoic acid (PFBA) on QC batch 5555549 (2018/06/01-02) due to low recovery of the associated extracted internal standard analyte ( $^{13}$ C<sub>4</sub>-Perfluorobutanoic acid,  $^{13}$ C<sub>4</sub>-PFBA):

## GTF525 ELSWH07-001-GW-035

On re-analysis of QC batch 5548287 (2018/06/06), acceptable recovery was obtained for  $^{13}$ C<sub>4</sub>-PFBA. The final result for Perfluorobutanoic acid (PFBA) was therefore reported from this re-analysis and the result from the re-extraction on QC batch 5555549 (2018/06/01-02) was not used.

# QC Batch 5554565

The following samples were initially analyzed on QC batch 5554565 (2018/06/03):

Due to failure of QC acceptance criteria in the Spike (LCS), samples were re-extracted and re-analyzed on QC batch 5563245 (2018/06/05-11), past the method defined hold time. Because of their chemical structures, per- and polyfluorinated alkyl substances (PFAS) are chemically and biologically stable in the environment and resist typical environmental degradation processes. This would suggest the hold time exceedance would not have a significant impact on the data quality. On the initial analysis of QC batch 5563245 (2018/06/05), the recovery observed for 8:2 Fluorotelomersulfonate (8:2FTS) in the Instrument Sensitivity Check (ISC) sample did not meet acceptance criteria. The entire batch was re-injected for this analyte on 2018/06/11.

# Sample GTF531 (ELSWH-RS-022)

The following sample was initially analyzed on QC batch 5555549 (2018/06/01-02):

### GTF531 ELSWH-RS-022

Due to discrepancies between the initial screening and analytical results, the sample was re-extracted and re-analyzed on QC batch 5563245 (2018/06/05-11), past the method defined hold time. Results from the re-analysis confirmed the initial results obtained on QC batch 5555549 (2018/06/01-02). Final results were therefore reported from the initial analysis on QC batch 5555549 (2018/06/01-02) which had been analyzed within hold time.

# **QC Samples**

Matrix Spike and Matrix Spike Duplicate (MS/MSD) was required for sample GTF558 (ELSWH01-001-GW-015) on QC batch 5557332 (2018/06/04-05) but not performed to high concentrations of target analytes in the native sample. A Matrix Duplicate (MD) was analyzed instead.

# Quantitation of PFAS

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

# **Data Qualifiers**

**U** – Analyte was not detected and is reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.

**J** – The reported result is an estimated value (e.g., matrix interference was observed, or the analyte was detected at a concentration outside the calibration range).

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

### **PROJECT NARRATIVE**

**Maxxam Analytics** 

Client Project #: M2027.0003 (OMAHA)



Client: Aerostar SES LLC

Client Project: M2027.0003 (OMAHA)

### I. SAMPLE RECEIPT/ANALYSIS

### a) Sample Listing

| Maxxam       | Client                  | Date       | Date       | Date       | Date       | Initial                 |
|--------------|-------------------------|------------|------------|------------|------------|-------------------------|
| ID           | Sample ID               | Sampled    | Received   | Prepped    | Run        | Calibration             |
| PFOS and PFO | OA in water by SPE/LCMS |            |            |            |            |                         |
| GTF524       | ELSWH-RS-019            | 2018/05/15 | 2018/05/22 | 2018/05/25 | 2018/06/06 | 2018/06/06              |
| GTF525       | ELSWH07-001-GW-035      | 2018/05/15 | 2018/05/22 | 2018/05/25 | 2018/06/06 | 2018/06/06              |
| GTF527       | ELSWH11-006-SW-001      | 2018/05/16 | 2018/05/22 | 2018/05/26 | 2018/05/27 | 2018/05/27              |
| GTF529       | ELSWH10-004-SW-001      | 2018/05/16 | 2018/05/22 | 2018/05/26 | 2018/05/27 | 2018/05/27              |
| GTF530       | ELSWH01-MW930107-GW-034 | 2018/05/16 | 2018/05/22 | 2018/05/26 | 2018/05/27 | 2018/05/27 & 2018/05/28 |
| GTF530 Dup   | ELSWH01-MW930107-GW-034 | 2018/05/16 | 2018/05/22 | 2018/05/25 | 2018/05/28 | 2018/05/28              |
| GTF531       | ELSWH-RS-022            | 2018/05/18 | 2018/05/22 | 2018/05/30 | 2018/06/01 | 2018/06/01-02           |
| GTF535       | ELSWH02-008-GW-029      | 2018/05/18 | 2018/05/22 | 2018/06/04 | 2018/06/11 | 2018/06/05-11           |
| GTF536       | ELSWH02-008-GW-929      | 2018/05/18 | 2018/05/22 | 2018/06/04 | 2018/06/11 | 2018/06/05-11           |
| GTF537       | ELSWH02-007-GW-018      | 2018/05/18 | 2018/05/22 | 2018/06/04 | 2018/06/11 | 2018/06/05-11           |
| GTF546       | ELSWH-RS-020            | 2018/05/16 | 2018/05/22 | 2018/05/26 | 2018/05/27 | 2018/05/27              |
| GTF549       | ELSWH-RS-021            | 2018/05/17 | 2018/05/22 | 2018/05/28 | 2018/06/02 | 2018/06/02              |
| GTF553       | ELSWH10-002-GW-035      | 2018/05/19 | 2018/05/22 | 2018/05/30 | 2018/06/01 | 2018/06/01-02           |
| GTF554       | ELSWH10-002-GW-935      | 2018/05/19 | 2018/05/22 | 2018/05/30 | 2018/06/01 | 2018/06/01-02           |
| GTF555       | ELSWH-RS-023            | 2018/05/19 | 2018/05/22 | 2018/05/30 | 2018/06/01 | 2018/06/01-02           |
| GTF556       | ELSWH10-001-GW-045      | 2018/05/19 | 2018/05/22 | 2018/05/30 | 2018/06/01 | 2018/06/01-02           |
| GTF557       | ELSWH-RS-024            | 2018/05/20 | 2018/05/22 | 2018/05/31 | 2018/06/04 | 2018/06/04-05           |
| GTF558       | ELSWH01-001-GW-015      | 2018/05/20 | 2018/05/22 | 2018/05/31 | 2018/06/04 | 2018/06/04-05           |
| GTF558 Dup   | ELSWH01-001-GW-015      | 2018/05/20 | 2018/05/22 | 2018/05/31 | 2018/06/04 | 2018/06/04-05           |
| GTF559       | ELSWH01-001-GW-915      | 2018/05/20 | 2018/05/22 | 2018/05/31 | 2018/06/04 | 2018/06/04-05           |
| GTF560       | ELSWH11-002-GW-015      | 2018/05/20 | 2018/05/22 | 2018/05/31 | 2018/06/04 | 2018/06/04-05           |
| GTF561       | ELSWH11-003-GW-020      | 2018/05/20 | 2018/05/22 | 2018/05/31 | 2018/06/04 | 2018/06/04-05           |
| GTF562       | ELSWH11-001-GW-015      | 2018/05/20 | 2018/05/22 | 2018/05/31 | 2018/06/04 | 2018/06/04-05           |

Run Date is defined as the date of injection of the last calibration standard (12 hours or less) prior to the samples analyzed within that run sequence. Therefore the time of calibration injection that defines the run date is always within 12 hours of the time of sample injection.

b) Shipping Problems: Samples were received with temperature less than 10 degrees Celsius. Cooler custody seals were present and intact.

c) Documentation Problems: Sample ELSWH01-MW930107-GW-034 required high level analysis, client confirmed to proceed. Due to the size of the submission, the Data Package was split into soil and water versions.

### II. SAMPLE PREP:

No problems encountered

#### III. SAMPLE ANALYSIS:

See also comments within the appropriate Certificate of Analysis

a) Hold Times: Due to rework requirements, the following samples were analyzed past hold time; ELSWH02-008-GW-029, ELSWH02-008-GW-929, and ELSWH02-007-GW-018.

b) Instrument Calibration: all within control limits

c) Quality Control: All applicable QC meets control criteria, except where otherwise noted.

d) All analytes requiring manual intergration(s) are noted on the sample chromatograms

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for other than the conditions detailed above.

In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. Release of the data contained in this data package has been authorized by the cognizant laboratory official or his/her designee, as verified by this signature.

Project Manager- Site Assessmen and Remediation/ Ultra Trace

2018/06/18

Date



| 4                                                                                                          |                                                                                                                                          | 1006 Floyd Cu                    | lles Court               | Chai           | n of Cust    | odv Re                   | cord/           |                   |               | -             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94  |       | 200 |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|----------------|--------------|--------------------------|-----------------|-------------------|---------------|---------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|
| Aerosto                                                                                                    | arSES                                                                                                                                    | Oak Ridge, T<br>865-481-         | N 37830                  |                | sis Requ     |                          |                 |                   |               |               | Р              | age 2 of 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *   |       |     |
| Project Name: Site Inspection                                                                              | on of Aqueous Film Forming Foam Areas,                                                                                                   |                                  | Job No.: Ma              |                |              |                          |                 |                   |               |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4 |       |     |
| Multiple Sites, United States                                                                              | s Air Force Installations                                                                                                                |                                  | Installation:            | ELISMO         | RTH.         |                          |                 | 9                 | ANALYSIS      | 3             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |     |
| verostar Project Manager:<br>Send Data to:                                                                 |                                                                                                                                          | (478) 397-4906<br>(865) 483-7904 |                          |                |              |                          |                 |                   |               |               |                | Sample Types: N = Mormal FD = Field Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |       |     |
| Sampler(s):                                                                                                | , ArekT.                                                                                                                                 |                                  |                          | 19             |              | 1 5                      | 1               |                   |               |               |                | AB = Ambient Blank or Field Reagent Blank<br>EB = Equipment Rinsate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |       |     |
| Laboratory Name/Address:<br>Maxxam Analytics, Inc<br>5740 Campobello Rd.<br>Mississauga, Ontario<br>L5N2L8 | Laboratory Shipping Addi<br>Maxxam Analytics<br>c/o FedEx Depot<br>299 Gayuga Rd.<br>Cheektowaga, NY 1422<br>Please indicate "HOLD FOR F | 15                               | Phone: (90)<br>email: MD | 5) 817-5700.   | ext. 5784    | ist of 18 analytes below |                 | /                 | 1             |               |                | Matrix:  WG = Groundwater  SO = Soil  WP = Potable Water  SE = Sediment  WS = Surface Water  WQ = Field QC (AB, EB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |       |     |
| MAXXAM use only                                                                                            | Sample ID                                                                                                                                | Date Collected                   | Time<br>Collected        | Sample<br>Type | Matrix       | PFAS (see i              |                 |                   |               | 1             |                | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       |     |
|                                                                                                            | ELSWH - RS-022                                                                                                                           | 5118118                          | 0840                     | ES             | wa           | 2                        |                 |                   |               |               | 1              | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       |     |
|                                                                                                            | ELSUHO4-002-55-001                                                                                                                       | 5118118                          | 0945                     | N              | 50           | 1                        |                 |                   |               |               | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |     |
|                                                                                                            | ELSWHOM-007-50-035                                                                                                                       | 5118118                          | 1030                     | N              | 50           | 1                        |                 |                   |               |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |     |
|                                                                                                            | FLSWHOT-602-50-013                                                                                                                       | 5/9/18                           | 1610                     | N              | 50           | 1                        |                 |                   |               |               |                | NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |       |     |
|                                                                                                            | EISNH 04-003-6W-027                                                                                                                      | 5/18/18                          | 1016                     | 2              | ₩6           | 2                        |                 |                   |               |               |                | Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 8     |     |
|                                                                                                            | ELSWHO2-008-6W-929                                                                                                                       | 5/18/18                          | 1016                     | FD             | WG           | 2                        |                 |                   |               |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |     |
| (4                                                                                                         | ELSWH02-007-6W-018                                                                                                                       | 5/18/18                          | 1127                     | N              | W6           | 2                        |                 |                   |               |               |                | = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |       | -   |
|                                                                                                            |                                                                                                                                          |                                  |                          |                |              |                          | -               |                   |               |               |                | . \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |       |     |
|                                                                                                            |                                                                                                                                          |                                  |                          |                |              |                          |                 | -                 |               |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |     |
|                                                                                                            |                                                                                                                                          |                                  |                          | - L            | 5            |                          |                 |                   |               |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 3 |       |     |
|                                                                                                            |                                                                                                                                          |                                  |                          | 6              |              | -                        |                 |                   |               |               | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |     |
|                                                                                                            |                                                                                                                                          |                                  | +                        |                |              |                          |                 | -                 |               |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |     |
|                                                                                                            |                                                                                                                                          |                                  |                          |                |              |                          |                 |                   |               |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |     |
|                                                                                                            |                                                                                                                                          |                                  |                          |                |              |                          |                 |                   |               |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |     |
|                                                                                                            |                                                                                                                                          |                                  |                          | Total #        | of Container |                          |                 |                   |               |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |     |
| RELINQUISHED BY:                                                                                           | 65/21//8 /600<br>Feld 45 L.                                                                                                              | RECEIVED BY:                     | S                        | EE 1           | P6#1         |                          | Analyta<br>List | FerOscial Serious | AMALTI        | e and         | FAR FAIR       | Performance and PETA (1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |       |     |
| Ash Willis                                                                                                 | ASL                                                                                                                                      | Printed Name                     |                          | Figure.        |              | 1                        |                 | Perfice           | obeacollo     | nd<br>ancient | HERON.         | PT   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |       |     |
| Signaturé                                                                                                  | Date/Time                                                                                                                                | Signature                        |                          | Date/Time      |              |                          |                 |                   | origination w |               | Manhy<br>Manhy | to the desirement of the first of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | mak ! |     |
| Printed Name                                                                                               | Filtro                                                                                                                                   | Printed Name:                    |                          | Pierr          |              | 11                       |                 |                   | contract.     | × 31          | 19125.4        | were the design of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the sec |     | 4     |     |

| Aerosto                                              | arSES                                                                                   | 1006 Floyd Cu<br>Dak Ridge, Tl<br>865-481-7 | N 37830                  |                   | n of Cust<br>sis Requ |                  |                  |           |                                                                         |                                           | 223<br>Page 3 of 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 3      | 100 |
|------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------|--------------------------|-------------------|-----------------------|------------------|------------------|-----------|-------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|-----|
| Project Name: Site Inspection                        | on of Aqueous Film Forming Foam Areas,                                                  |                                             | Job No.: M2              | 17.00             |                       |                  |                  |           |                                                                         |                                           | , it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        |     |
| Aurostar Project Manager:                            | AD GRANTSCHOOL STATE                                                                    | (478) 397-4906                              | installation             | EIRM              | DETH_                 | -                |                  |           | ANALYSIS *                                                              | 71                                        | Sample Types:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -   |        |     |
| Send Data to:                                        | Jenny Vance, jvance@aerostar.net                                                        | (865) 483-7904                              |                          |                   |                       |                  | 1                | ,         |                                                                         |                                           | N = Mormal<br>FD = Field Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |        |     |
| ampler(s): Atak Ti Jus<br>aboratory Name/Address:    | ha V                                                                                    |                                             |                          | 19                |                       |                  | 1                |           |                                                                         |                                           | AB = Ambient Blank or Field Reagent Blank<br>EB = Equipment Rinsate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |        |     |
| aboratory Name/Address:                              | Laboratory Shipping Addr<br>Maxxam Analytics                                            | ess:                                        | Contact: Me              | alissa DiGra      | azia                  | (wolea)          | 1                |           |                                                                         |                                           | Matrix:<br>WG = Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 140 |        |     |
| 5740 Campobello Rd.<br>Mississauga, Ontario<br>5N2L8 | c/o FedEx Depot<br>299 Cayuga Rd<br>Cheektowaga, NY 1422<br>Please indicate "HOLD FOR P |                                             | Phone. (90:<br>email: MD |                   |                       | t or 18 analytes | \                |           |                                                                         |                                           | SO = Soil WP = Potable Water SE = Sediment WS = Surface Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        |     |
| MAXXAM use only                                      | Sample ID                                                                               | Date Collected                              | Time<br>Collected        | Sample<br>Type    | Matrix                | PFAS (see lis    |                  |           |                                                                         |                                           | WQ = Field QC (AB, EB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        |     |
|                                                      | ELSWHO7-003-55-001                                                                      | 2012/05/15                                  | 1015                     | N                 | 50                    | 1                |                  | -         |                                                                         |                                           | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |     |
| - 3                                                  | ELSWH07 - 003 - 50-016                                                                  |                                             |                          |                   | 50                    | 1                |                  |           |                                                                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |     |
|                                                      | ELSWHO1-003-55-00                                                                       |                                             |                          | N                 | 50                    | 1                |                  |           |                                                                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |     |
|                                                      | · ELSWHO1-003-50-02                                                                     | 5 2018/05/15                                | 1600                     | N                 | 50                    | 1                |                  |           |                                                                         |                                           | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        |     |
|                                                      | · ELSWHOL-002-55-0                                                                      | 01 2018/03/                                 | 14 1250                  | N                 | 50                    | 1                |                  | ,         | 1                                                                       |                                           | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | Pril I |     |
|                                                      | ELSWHO1-002-50-1                                                                        |                                             |                          | N                 | 50                    | 1                |                  |           |                                                                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |     |
|                                                      | ELSWW01-004-55-0                                                                        |                                             |                          |                   | 50                    | 1                |                  |           |                                                                         |                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        |     |
| •                                                    | ELSWHO1-004-56-                                                                         |                                             |                          |                   | 50                    | 1                |                  |           | 1                                                                       |                                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |     |
|                                                      | ELSWH-R5-020                                                                            | 2018/65/                                    | 6 1249                   | EB                | WQ                    | 2                |                  |           |                                                                         |                                           | Associated w/sample ELSWHOT-COZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |        |     |
|                                                      | ELSWHO1-001-55-001                                                                      | 5/17/18                                     | 0833                     | N                 | 20                    | 2                |                  |           |                                                                         | 1                                         | ASIMSD Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        |     |
|                                                      | ELSU401-001-55-701                                                                      | 2117118                                     | 0833                     | FD                | 20                    | 1                |                  | -         |                                                                         | 1                                         | 0 ++ 3poon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        |     |
|                                                      | · ELSWH-RS-021                                                                          | 2117118                                     | 2500                     | ES                | wa                    | 2                | -                |           |                                                                         | 1                                         | to assic w/ ELSWHO1-001-50-013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        |     |
|                                                      | ELSUMO1-001-50-013                                                                      | 5/17/18                                     | 0947                     | 100               | So                    | 2                |                  | -         | -                                                                       | 1                                         | MS/MSD Ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        |     |
|                                                      | ELSWHU1-001-50 -913                                                                     | 5117/18                                     | 074)                     |                   | 50                    | 1                |                  |           |                                                                         | 1                                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -   |        |     |
|                                                      | ELSWH03-001-50-000                                                                      | 2117118                                     | 1325                     | N Total #         | of Container          | 5 9              |                  |           |                                                                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        | -   |
| RELINQUISHED BY:                                     | Date/Time 65/28/18 /600                                                                 | RECEIVED BY:<br>Signature                   |                          | SEE               | P6#1                  |                  | Analyte<br>List: | a Septim  | ANALYTE  contage of finite and                                          | ERPS<br>BIS C                             | is. The last British section and 1977 at the feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | }   |        |     |
| A3h Willis                                           | AS L                                                                                    | Printed Name                                | -                        | Firm,             | ,                     |                  |                  | Perflo    | and the same and                                                        | PEN<br>PEND                               | DA 15 Ac-4 b from the transport of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of t |     |        | 1.0 |
| Signature Printed Name                               | Osta/Time<br>Firm:                                                                      | Signature Privited Name                     |                          | Date/Time<br>Firm |                       |                  |                  | Per Share | echnomer and<br>sinusper Missis a<br>policy and acid<br>policy and acid | 99.00<br>99.00<br>99.00<br>49.00<br>49.00 | CA         STOCKE         Perforantiations with         PEDA         FEET'S           SA         SEC No. 1         Perforance autonomous with         VID         10.77.1           NA         20.77.2         10.78.0         10.77.2         10.77.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | gui.   |     |



# **Stephanie Pollen**

From: Jenny Vance <JVance@aerostar.net>
Sent: Thursday, May 24, 2018 12:18 PM

**To:** Stephanie Pollen

**Cc:** Laura Natzke; Brian Odom

**Subject:** RE: High Level Analysis: Ellsworth AFB (Maxxam job B8C0381)

\*\*Please note, this message originated outside of the Maxxam mail system. Please use caution when opening links or attachments.\*\*

Thanks, Stephanie,

Go ahead, but keep us posted.

From: Stephanie Pollen [mailto:SPollen@maxxam.ca]

**Sent:** Thursday, May 24, 2018 12:02 PM **To:** Jenny Vance < <u>JVance@aerostar.net</u>>

Cc: Laura Natzke <<u>LNatzke@aerostar.net</u>>; Brian Odom <<u>BOdom@specproenv.com</u>>

Subject: RE: High Level Analysis: Ellsworth AFB (Maxxam job B8C0381)

Hi Jenny,

The lab has confirmed PFHxS will definitely need high level. PFHxA, PFOS & 6:2-FTS might need it, we'll need to see the results of the 100x SPE first.

Kind regards,

STEPHANIE POLLEN, B.Sc.

Project Manager, Site Assessment and Remediation/Ultra Trace Analysis

Office 905.817.5830 Mobile 416.432.3443 Toll free 800 565 7227 spollen@maxxam.ca

6740 Campobello Rd. / Mississauga, ON Canada L5N 2L8 maxxam.ca



Click here if you do not wish to receive announcements or occasional marketing updates from Maxxam.

The information in this e-mail and any attachments is confidential and for the sole use of the intended recipient(s). If you have received this e-mail in error, please: accept our apologies for the inconvenience; note that any use of the information is strictly prohibited; notify the sender as soon as possible; and then delete all copies from your system.

From: Jenny Vance [mailto:JVance@aerostar.net]

Sent: Thursday, May 24, 2018 11:09 AM

To: Stephanie Pollen

Cc: Laura Natzke; Brian Odom

Subject: RE: High Level Analysis: Ellsworth AFB (Maxxam job B8C0381)

1

\*\*Please note, this message originated outside of the Maxxam mail system. Please use caution when opening links or attachments.\*\*

I suspect the samples were prescreened and showed high levels of one or more analytes. If so, can you tell us which analytes are requiring a 100x dilution? As always, my fear is that we won't be able to determine whether PFOS or PFOA exceed regulatory criteria. If one or both of those was detected at high levels, I don't think we have a problem (well – except for the obvious contamination at the well).

From: Stephanie Pollen [mailto:SPollen@maxxam.ca]

Sent: Thursday, May 24, 2018 11:01 AM

To: Jenny Vance < <u>JVance@aerostar.net</u>>

Cc: Laura Natzke < <u>LNatzke@aerostar.net</u>>

**Subject:** High Level Analysis: Ellsworth AFB (Maxxam job B8C0381)

Good morning Jenny,

The lab has informed me that the below samples require high-level analysis. Can you please confirm if we are OK to proceed?

Maxxam job B8C0381 (Ellsworth AFB)

ELSWH01-MW930107-GW-034 (GFT530) ELSWH01-001-GW-015 (GFT558) ELSWH01-001-GW-915 (GFT559)

Kind regards,

### STEPHANIE POLLEN, B.Sc.

Project Manager, Site Assessment and Remediation/Ultra Trace Analysis

Office 905.817.5830 Mobile 416.432.3443 Toll free 800 565 7227 spollen@maxxam.ca

6740 Campobello Rd. / Mississauga, ON Canada L5N 2L8 maxxam.ca



Click here if you do not wish to receive announcements or occasional marketing updates from Maxxam.

The information in this e-mail and any attachments is confidential and for the sole use of the intended recipient(s). If you have received this e-mail in error, please: accept our apologies for the inconvenience; note that any use of the information is strictly prohibited; notify the sender as soon as possible; and then delete all copies from your system.

2



Your C.O.C. #: na

# **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/06/12

Report #: R5232914 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B8C0381 Received: 2018/05/22, 14:19 Sample Matrix: Ground Water # Samples Received: 13

|                                        |          | Date       | Date       |                          |           |
|----------------------------------------|----------|------------|------------|--------------------------|-----------|
| Analyses                               | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference |
| PFOS and PFOA in water by SPE/LCMS (1) | 1        | 2018/05/25 | 2018/06/06 | CAM SOP-00894            | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 1        | 2018/05/26 | 2018/05/27 | CAM SOP-00894            | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 3        | 2018/05/30 | 2018/06/01 | CAM SOP-00894            | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 5        | 2018/05/31 | 2018/06/04 | CAM SOP-00894            | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 3        | 2018/06/04 | 2018/06/11 | CAM SOP-00894            | EPA 537 m |

Sample Matrix: Soil # Samples Received: 16

|                                       |          | Date       | Date       |                          |                      |
|---------------------------------------|----------|------------|------------|--------------------------|----------------------|
| Analyses                              | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference            |
| Moisture                              | 16       | N/A        | 2018/05/24 | CAM SOP-00445            | Carter 2nd ed 51.2 m |
| PFOS and PFOA in soil by SPE/LCMS (1) | 15       | 2018/05/26 | 2018/05/28 | CAM SOP-00894            | EPA537 m             |
| PFOS and PFOA in soil by SPE/LCMS (1) | 1        | 2018/05/26 | 2018/05/29 | CAM SOP-00894            | EPA537 m             |

Sample Matrix: SEDIMENT # Samples Received: 2

|                                       | Date               | Date                       |                      |
|---------------------------------------|--------------------|----------------------------|----------------------|
| Analyses                              | Quantity Extracted | Analyzed Laboratory Method | Reference            |
| Moisture                              | 2 N/A              | 2018/05/24 CAM SOP-00445   | Carter 2nd ed 51.2 m |
| PFOS and PFOA in soil by SPE/LCMS (1) | 2 2018/05/26       | 2018/05/28 CAM SOP-00894   | EPA537 m             |

Sample Matrix: Surface Water # Samples Received: 2

|                                        |          | Date       | Date       |                   |           |
|----------------------------------------|----------|------------|------------|-------------------|-----------|
| Analyses                               | Quantity | Extracted  | Analyzed   | Laboratory Method | Reference |
| PFOS and PFOA in water by SPE/LCMS (1) | 2        | 2018/05/26 | 2018/05/27 | CAM SOP-00894     | EPA 537 m |

Sample Matrix: Water # Samples Received: 6

| in campies necessed c |                           |          |                          |           |  |
|-----------------------|---------------------------|----------|--------------------------|-----------|--|
|                       | Date                      | Date     |                          |           |  |
| Analyses              | <b>Quantity Extracted</b> | Analyzed | <b>Laboratory Method</b> | Reference |  |



Your C.O.C. #: na

### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/06/12

Report #: R5232914 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B8C0381 Received: 2018/05/22, 14:19

Sample Matrix: Water # Samples Received: 6

|                                        |          | Date       | Date       |                   |           |
|----------------------------------------|----------|------------|------------|-------------------|-----------|
| Analyses                               | Quantity | Extracted  | Analyzed   | Laboratory Method | Reference |
| PFOS and PFOA in water by SPE/LCMS (1) | 1        | 2018/05/25 | 2018/06/06 | CAM SOP-00894     | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 1        | 2018/05/26 | 2018/05/27 | CAM SOP-00894     | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 1        | 2018/05/28 | 2018/06/02 | CAM SOP-00894     | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 2        | 2018/05/30 | 2018/06/01 | CAM SOP-00894     | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 1        | 2018/05/31 | 2018/06/04 | CAM SOP-00894     | EPA 537 m |

# Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.



Your C.O.C. #: na

### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/06/12

Report #: R5232914 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B8C0381 Received: 2018/05/22, 14:19

**Encryption Key** 

Stephanie Pollen Project Manager 12 Jun 2018 14:03:51

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Stephanie Pollen, Project Manager Email: SPollen@maxxam.ca Phone# (905) 817-5700

\_\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



**Prepared for:** Aerostar SES LLC

Project: M2027.0003 (OMAHA)
ELLSWORTH

# Analytical Data Package (Level IV)

Analysis: PFOS and PFOA in water (Method 537 mod.)

Maxxam Job #: B8C4298

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com



I hereby certify that to the best of my knowledge all analytical data presented in this report:

- Has been checked for completeness.
- Is accurate, legible and error free.
- ➤ Has been conducted in accordance with approved SOP's and that all deviations are clearly listed in the Case Narrative.
- > This report has been generated in .pdf format.

# **Review Performed By:**



Patricia Legette 2018.06.20

15:42:54 -04'00'

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com

# **Glossary of Terms**

- ➤ Detection Limit (DL) this can also be called Method Detection Limit (MDL): The lowest concentration or amount of the target analyte that can be identified, measured, and reported with confidence that the analyte concentration is not a false positive value. (Clarification): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- ➤ Limit of Detection (LOD): An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrix-specific and may be laboratory-dependent. (Clarification): The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%.
- ➤ Limits of Quantitation (LOQ) this can also be called Reporting Detection Limit (RDL): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. (Clarification): The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Acceptance Criteria are values used by the laboratory to determine that a process is in control.
- ➤ **Accuracy** is the degree of agreement of a measured value with the true or expected value.
- ➤ **Calibration Standards** are a set of solutions containing the analytes of interest at a specified concentration.
- > Calibration Verification Standard consists of a calibration standard solution of intermediate concentration (mid-point initial calibration level) used to access whether the initial calibration is still valid
- Certified Reference Material is a stable homogenous material that is certified by repetitive analysis from a supplier who is certified to generate said materials.

- > Internal Standard a deuterated or <sup>13</sup>C-labelled analyte that is added to a sample extract prior to instrumental analysis to compensate for injection variability.
- > **Isomer** is a member of a group of compounds that differ from each other only in the locations of a specific number of common substituent atoms or groups of atoms on the parent compound.
- > **Method Blank** is a laboratory control sample using reagents that are known to be free of contamination.
- > **Precision** is the degree of agreement between the data generated from repetitive measurements under specific conditions.
- Quality Assurance is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality.
- > **Quality Control** is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of the end user.
- > **RSD** is the relative standard deviation.
- > **Blank Spike** is a laboratory control sample that has been fortified with native analytes of interest.
- ➤ Window Defining Mixture is a solution containing only the earliest and latest eluting congeners within each homologous group of target analytes on a specified GC column.
- > **RPD** or Relative Percent Difference. A measure used to compare duplicate sample analysis.
- EMPC/NDR Peak detected does not meet ratio criteria and has resulted in a higher detection limit.

Maxxam Job: B8C4298 - Soil Analysis

# Sample Analysis

Soil extracts were initially pre-screened and estimated concentrations were obtained so that samples could be appropriately diluted for analysis on QC batch 5559410 (2018/06/05). Due to high concentrations, dilution was required for the following sample:

GUB608 ELSWH04-003-SS-001

Detection limits were adjusted accordingly.

## Quantitation of PFAS

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

# **Data Qualifiers**

**U** – Analyte was not detected and is reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.

**J** – The reported result is an estimated value (e.g., matrix interference was observed, or the analyte was detected at a concentration outside the calibration range).

Sin Chii Chia, B.Sc. schia@maxxam.ca
Office 905 817 5700

# Maxxam Job: B8C4298 - Water Analysis

# Sample Analysis

Samples were initially pre-screened and estimated concentrations were obtained so that appropriate sample volumes could be extracted on QC batch 5557332 (2018/06/04-05). Due to high concentrations, the following samples were analyzed for selected analytes using reduced sample extraction volumes:

| GUB621 | ELSWH01-003-GW-035 | All analytes                                                          |
|--------|--------------------|-----------------------------------------------------------------------|
| GUB622 | ELSWH01-004-GW-018 | All analytes                                                          |
| GUB625 | ELSWH02-005-GW-040 | Perfluorohexanesulfonate (PFHxS), 6:2 Fluorotelomersulfonate (6:2FTS) |
| GUB627 | ELSWH03-001-GW-015 | Perfluorooctanesulfonate (PFOS)                                       |

Detection limits were adjusted accordingly.

The following samples were analyzed after an Instrument Blank (IB) with a concentration of 6:2 Fluorotelomersulfonate (6:2FTS) above the upper control limit (>1/2 LOQ):

```
GUB622 ELSWH01-004-GW-018
GUB623 ELSWH07-003-GW-021
GUB624 ELSWH07-002-GW-021
GUB625 ELSWH02-005-GW-040
```

These samples were re-injected together with an acceptable IB for verification of potential analyte carryover.

## Quantitation of PFAS

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

# **Data Qualifiers**

**U** – Analyte was not detected and is reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.

**J** – The reported result is an estimated value (e.g., matrix interference was observed, or the analyte was detected at a concentration outside the calibration range).

Sin Chii Chia, B.Sc. schia@maxxam.ca
Office 905 817 5700

### **PROJECT NARRATIVE**

**Maxxam Analytics** 

Client Project #: M2027.0003 (OMAHA)



**Client: Aerostar SES LLC** 

Client Project: M2027.0003 (OMAHA)

# I. SAMPLE RECEIPT/ANALYSIS

# a) Sample Listing

| Maxxam<br>ID                       | Client<br>Sample ID    | Date<br>Sampled | Date<br>Received | Date<br>Prepped | Date<br>Run | Initial<br>Calibration |
|------------------------------------|------------------------|-----------------|------------------|-----------------|-------------|------------------------|
| PFOS and PFO                       | OA in soil by SPE/LCMS |                 |                  |                 |             |                        |
| GUB608                             | ELSWH04-003-SS-001     | 2018/05/18      | 2018/05/25       | 2018/06/01      | 2018/06/05  | 2018/06/05             |
| GUB609                             | ELSWH04-004-SO-031     | 2018/05/18      | 2018/05/25       | 2018/06/01      | 2018/06/05  | 2018/06/05             |
| GUB610                             | ELSWH04-005-SO-020     | 2018/05/18      | 2018/05/25       | 2018/06/01      | 2018/06/05  | 2018/06/05             |
| GUB612                             | ELSWH09-002-SS-001     | 2018/05/21      | 2018/05/25       | 2018/06/01      | 2018/06/05  | 2018/06/05             |
| GUB613                             | ELSWH09-002-SS-901     | 2018/05/21      | 2018/05/25       | 2018/06/01      | 2018/06/05  | 2018/06/05             |
| GUB614                             | ELSWH09-001-SS-001     | 2018/05/21      | 2018/05/25       | 2018/06/01      | 2018/06/05  | 2018/06/05             |
| GUB615                             | ELSWH09-001-SO-005     | 2018/05/21      | 2018/05/25       | 2018/06/01      | 2018/06/05  | 2018/06/05             |
| GUB616                             | ELSWH04-003-SO-027     | 2018/05/18      | 2018/05/25       | 2018/06/01      | 2018/06/05  | 2018/06/05             |
| GUB618                             | ELSWH04-001-SS-001     | 2018/05/22      | 2018/05/25       | 2018/06/01      | 2018/06/05  | 2018/06/05             |
| GUB619                             | ELSWH04-001-SO-029     | 2018/05/22      | 2018/05/25       | 2018/06/01      | 2018/06/05  | 2018/06/05             |
| GUB620                             | ELSWH09-002-SO-005     | 2018/05/21      | 2018/05/25       | 2018/06/01      | 2018/06/05  | 2018/06/05             |
| PFOS and PFOA in water by SPE/LCMS |                        |                 |                  |                 |             |                        |
| GUB611                             | ELSWH-RS-025           | 2018/05/21      | 2018/05/25       | 2018/05/31      | 2018/06/04  | 2018/06/04-05          |
| GUB617                             | ELSWH-RS-026           | 2018/05/22      | 2018/05/25       | 2018/05/31      | 2018/06/04  | 2018/06/04-05          |
| GUB621                             | ELSWH01-003-GW-035     | 2018/05/21      | 2018/05/25       | 2018/05/31      | 2018/06/04  | 2018/06/04-05          |
| GUB622                             | ELSWH01-004-GW-018     | 2018/05/21      | 2018/05/25       | 2018/05/31      | 2018/06/04  | 2018/06/04-05          |
| GUB623                             | ELSWH07-003-GW-021     | 2018/05/21      | 2018/05/25       | 2018/05/31      | 2018/06/04  | 2018/06/04-05          |
| GUB624                             | ELSWH07-002-GW-021     | 2018/05/21      | 2018/05/25       | 2018/05/31      | 2018/06/04  | 2018/06/04-05          |
| GUB625                             | ELSWH02-005-GW-040     | 2018/05/23      | 2018/05/25       | 2018/05/31      | 2018/06/04  | 2018/06/04-05          |
| GUB626                             | ELSWH-RS-027           | 2018/05/23      | 2018/05/25       | 2018/05/31      | 2018/06/04  | 2018/06/04-05          |
| GUB627                             | ELSWH03-001-GW-015     | 2018/05/24      | 2018/05/25       | 2018/05/31      | 2018/06/04  | 2018/06/04-05          |

Run Date is defined as the date of injection of the last calibration standard (12 hours or less) prior to the samples analyzed within that run sequence. Therefore the time of calibration injection that defines the run date is always within 12 hours of the time of sample injection.

b) Shipping Problems: Samples were received with temperature less than 10 degrees celcius. Cooler custody seal was present and intact.

c) Documentation Problems: Lab proceeded with sample ID ELSWH09-002-SS-901 as per information listed on the container label. Sampling date for sample ID ELSWH01-003-GW-035 was confirmed to be 2018/05/21.

# II. SAMPLE PREP:

No problems encountered

# III. SAMPLE ANALYSIS:

See also comments within the appropriate Certificate of Analysis

a) Hold Times: all within recommended hold times

Maxxam Analytics 10 of 1489

b) Instrument Calibration: all within control limits

c) Quality Control: All applicable QC meets control criteria, except where otherwise noted.

d) All analytes requiring manual intergration(s) are noted on the sample chromatograms

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for other than the conditions detailed above.

In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. Release of the data contained in this data package has been authorized by the cognizant laboratory official or his/her designee, as verified by this signature.

Project Manager- Site Assessment and Remediation/ Ultra Trace

2018/06/20

Date

Maxxam Analytics 11 of 1489







Your Project #: M2027.0003 (OMAHA)

Site Location: ELLSWORTH

Your C.O.C. #: 233

### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/06/08

Report #: R5223525 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B8C4298 Received: 2018/05/25, 13:30 Sample Matrix: Ground Water # Samples Received: 6

|                                        | Date               | Date        |                          |           |  |
|----------------------------------------|--------------------|-------------|--------------------------|-----------|--|
| Analyses                               | Quantity Extracted | Analyzed    | <b>Laboratory Method</b> | Reference |  |
| PFOS and PFOA in water by SPE/LCMS (1) | 6 2018/05/3        | 1 2018/06/0 | 4 CAM SOP-00894          | EPA 537 m |  |

Sample Matrix: Soil # Samples Received: 11

|                                       |          | Date       | Date       |                          |                      |
|---------------------------------------|----------|------------|------------|--------------------------|----------------------|
| Analyses                              | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference            |
| Moisture                              | 11       | N/A        | 2018/05/29 | CAM SOP-00445            | Carter 2nd ed 51.2 m |
| PFOS and PFOA in soil by SPE/LCMS (1) | 11       | 2018/06/01 | 2018/06/05 | CAM SOP-00894            | EPA537 m             |

Sample Matrix: Water # Samples Received: 3

|                                        | Date Date |            |            |                   |           |
|----------------------------------------|-----------|------------|------------|-------------------|-----------|
| Analyses                               | Quantity  | Extracted  | Analyzed   | Laboratory Method | Reference |
| PFOS and PFOA in water by SPE/LCMS (1) | 3         | 2018/05/31 | 2018/06/04 | 1 CAM SOP-00894   | EPA 537 m |

# Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.



Your Project #: M2027.0003 (OMAHA)

Site Location: ELLSWORTH

Your C.O.C. #: 233

### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/06/08

Report #: R5223525 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B8C4298 Received: 2018/05/25, 13:30

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.

**Encryption Key** 

Stephanie Pollen Project Manager 08 Jun 2018 10:05:33

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Stephanie Pollen, Project Manager Email: SPollen@maxxam.ca Phone# (905) 817-5700

\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Prepared for: Aerostar SES LLC

Project: M2027.0003 (OMAHA)
ELLSWORTH AFB

# Analytical Data Package (Level IV)

Analysis: PFOS and PFOA in water (Method 537 mod.)

Maxxam Job #: B8D4761

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com



I hereby certify that to the best of my knowledge all analytical data presented in this report:

- Has been checked for completeness.
- Is accurate, legible and error free.
- ➤ Has been conducted in accordance with approved SOP's and that all deviations are clearly listed in the Case Narrative.
- This report has been generated in .pdf format.

**Review Performed By:** 



Patricia Legette 2018.06.26

15:41:00 -04'00'

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

www.maxxamanalytics.com

# **Glossary of Terms**

- ▶ Detection Limit (DL) this can also be called Method Detection Limit (MDL): The lowest concentration or amount of the target analyte that can be identified, measured, and reported with confidence that the analyte concentration is not a false positive value. (Clarification): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- ➤ Limit of Detection (LOD): An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrix-specific and may be laboratory-dependent. (Clarification): The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%.
- ➤ Limits of Quantitation (LOQ) this can also be called Reporting Detection Limit (RDL): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. (Clarification): The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Acceptance Criteria are values used by the laboratory to determine that a process is in control.
- Accuracy is the degree of agreement of a measured value with the true or expected value.
- ➤ **Calibration Standards** are a set of solutions containing the analytes of interest at a specified concentration.
- > Calibration Verification Standard consists of a calibration standard solution of intermediate concentration (mid-point initial calibration level) used to access whether the initial calibration is still valid
- Certified Reference Material is a stable homogenous material that is certified by repetitive analysis from a supplier who is certified to generate said materials.

- > Internal Standard a deuterated or <sup>13</sup>C-labelled analyte that is added to a sample extract prior to instrumental analysis to compensate for injection variability.
- > **Isomer** is a member of a group of compounds that differ from each other only in the locations of a specific number of common substituent atoms or groups of atoms on the parent compound.
- > **Method Blank** is a laboratory control sample using reagents that are known to be free of contamination.
- > **Precision** is the degree of agreement between the data generated from repetitive measurements under specific conditions.
- Quality Assurance is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality.
- > **Quality Control** is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of the end user.
- > **RSD** is the relative standard deviation.
- > **Blank Spike** is a laboratory control sample that has been fortified with native analytes of interest.
- ➤ **Window Defining Mixture** is a solution containing only the earliest and latest eluting congeners within each homologous group of target analytes on a specified GC column.
- > **RPD** or Relative Percent Difference. A measure used to compare duplicate sample analysis.
- EMPC/NDR Peak detected does not meet ratio criteria and has resulted in a higher detection limit.

# Maxxam Job: B8D4761 - Soil Analysis

# Sample Analysis

Soil extracts were initially pre-screened and estimated concentrations were obtained so that samples could be appropriately diluted for analysis on QC batch 5573623 (2018/06/12). Due to high concentration, dilution was required for Perfluorooctanesulfonate (PFOS) in the following sample:

ELSWH10-003-SS-001

Detection limit was adjusted accordingly.

# Extracted Internal Standard Analytes

The extracted internal standard analytes <sup>13</sup>C<sub>4</sub>-Perfluorooctanesulfonate (<sup>13</sup>C<sub>4</sub>-PFOS), <sup>13</sup>C<sub>2</sub>-Perfluorodecanoic acid (<sup>13</sup>C<sub>2</sub>-PFDA), <sup>13</sup>C<sub>2</sub>-Perfluoroundecanoic acid (<sup>13</sup>C<sub>2</sub>-PFUnA), <sup>13</sup>C<sub>2</sub>-Perfluorododecanoic acid (<sup>13</sup>C<sub>2</sub>-PFDoA) and <sup>13</sup>C<sub>2</sub>-Perfluorotetradecanoic acid (13C2-PFTeDA) are used to quantify native Perfluorooctanesulfonate (PFOS), Perfluorodecanoic acid (PFDA), Perfluoroundecanoic acid (PFUnA), Perfluorododecanoic acid (PFDoA) and Perfluorotridecanoic acid (PFTrDA) & Perfluorotetradecanoic acid (PFTeDA) respectively. The recoveries observed for selected extracted internal standard analytes were below the defined lower control limit (LCL) for the following samples:

GWJ148 ELSWH-WS-001

 $(^{13}C_2\text{-PFTeDA})$  $(^{13}C_4\text{-PFOS}, ^{13}C_2\text{-PFDA}, ^{13}C_2\text{-PFUnA}, ^{13}C_2\text{-PFDoA}, ^{13}C_2\text{-PFTeDA})$ GWJ151 ELSWH10-003-SO-050

Samples were re-extracted and re-analyzed for the associated native analytes on QC batch 5580295 (2018/06/16). Acceptable extracted internal standard analyte recoveries were obtained on re-analysis, except for <sup>13</sup>C<sub>2</sub>-PFDoA and  $^{13}$ C<sub>2</sub>-PFTeDA in sample GWJ151 (ELSWH10-003-SO-050). Results for Perfluorododecanoic acid Perfluorotridecanoic acid (PFTrDA) and Perfluorotetradecanoic acid (PFTeDA) were reported from the reduced volume extract for this sample, where acceptable extracted internal standard analyte recoveries were obtained. Detection limits were adjusted accordingly for these analytes.

# **Quantitation of PFAS**

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

# **Data Qualifiers**

U – Analyte was not detected and is reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.

J - The reported result is an estimated value (e.g., matrix interference was observed, or the analyte was detected at a concentration outside the calibration range).

Sin Chii Chia, B.Sc.

# Maxxam Job: B8D4761 - Water Analysis

# Sample Analysis

Samples were initially pre-screened and estimated concentrations were obtained so that appropriate sample volumes could be extracted on QC batch 5569357 (2018/06/08). Due to high concentrations, the following samples were analyzed for selected analytes using reduced sample extraction volumes:

GWJ140 ELSWH04-003-GW-033 Perfluorohexanoic acid (PFHxA), Perfluorohexanesulfonate (PFHxS), 6:2

Fluorotelomersulfonate (6:2FTS)

GWJ147 ELSWH-WW-001 All analytes

Detection limits were adjusted accordingly.

During initial setup of the analytical batch sequence, it was observed that the following sample vials were not in the expected positions on the extraction vial rack:

GWJ144 *ELSWH04-001-GW-032* 

GWJ147 ELSWH-WW-001

Inconsistencies were also observed between results from the reduced and full volume extracts for these samples. As a result, these samples were re-extracted and re-analyzed on QC batch 5574399 (2018/06/12) for confirmatory analysis.

# **Extracted Internal Standard Analytes**

The extracted internal standard analyte  $^{13}$ C<sub>2</sub>-Perfluorotetradecanoic acid ( $^{13}$ C<sub>2</sub>-PFTeDA) is used to quantify native Perfluorotridecanoic acid (PFTrDA) & Perfluorotetradecanoic acid (PFTeDA). The recovery observed for this extracted internal standard analyte was below the defined lower control limit (LCL) for the following sample on QC batch 5569357 (2018/06/08):

GWJ139 ELSWH-RS-29

The sample was re-extracted and re-analyzed for the associated native analytes on QC batch 5574399 (2018/06/12). Acceptable  $^{13}C_2$ -PFTeDA recovery was obtained on re-analysis.

### **Quantitation of PFAS**

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

#### **Data Qualifiers**

**U** – Analyte was not detected and is reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.

**J** – The reported result is an estimated value (e.g., matrix interference was observed, or the analyte was detected at a concentration outside the calibration range).

# Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

# **PROJECT NARRATIVE**

**Maxxam Analytics** 

Client Project #: M2027.0003 (OMAHA)

Maxxam

**Client: Aerostar SES LLC** 

Client Project: M2027.0003 (OMAHA)

# I. SAMPLE RECEIPT/ANALYSIS

# a) Sample Listing

| Maxxam<br>ID | Client<br>Sample ID     | Date<br>Sampled | Date<br>Received | Date<br>Prepped | Date<br>Run | Initial<br>Calibration |
|--------------|-------------------------|-----------------|------------------|-----------------|-------------|------------------------|
|              | DA in soil by SPE/LCMS  | Jampica         | neceivea         | Перрец          | Kun         | Canbration             |
| GWJ148       | ELSWH-WS-001            | 2018/06/03      | 2018/06/05       | 2018/06/11      | 2018/06/12  | 2018/06/12             |
| GWJ150       | ELSWH10-003-SS-001      | 2018/05/24      | 2018/06/05       | 2018/06/11      | 2018/06/12  | 2018/06/12             |
| GWJ151       | ELSWH10-003-SO-050      | 2018/05/31      | 2018/06/05       | 2018/06/11      | 2018/06/12  | 2018/06/12             |
| PFOS and PFO | OA in water by SPE/LCMS |                 |                  |                 |             |                        |
| GWJ139       | ELSWH-RS-29             | 2018/05/31      | 2018/06/05       | 2018/06/07      | 2018/06/08  | 2018/06/12             |
| GWJ140       | ELSWH04-003-GW-033      | 2018/05/31      | 2018/06/05       | 2018/06/07      | 2018/06/08  | 2018/06/08             |
| GWJ141       | ELSWH04-002-GW-038      | 2018/05/31      | 2018/06/05       | 2018/06/07      | 2018/06/08  | 2018/06/08             |
| GWJ142       | ELSWH09-002-GW-030A     | 2018/05/31      | 2018/06/05       | 2018/06/07      | 2018/06/08  | 2018/06/08             |
| GWJ143       | ELSWH09-001-GW-033A     | 2018/05/31      | 2018/06/05       | 2018/06/07      | 2018/06/08  | 2018/06/08             |
| GWJ144       | ELSWH04-001-GW-032      | 2018/05/31      | 2018/06/05       | 2018/06/11      | 2018/06/12  | 2018/06/12             |
| GWJ145       | ELSWH-RS-030            | 2018/06/03      | 2018/06/05       | 2018/06/07      | 2018/06/08  | 2018/06/08             |
| GWJ146       | ELSWH10-003-GW-059      | 2018/06/03      | 2018/06/05       | 2018/06/07      | 2018/06/08  | 2018/06/08             |
| GWJ147       | ELSWH-WW-001            | 2018/06/03      | 2018/06/05       | 2018/06/11      | 2018/06/12  | 2018/06/12             |
| GWJ149       | ELSWH-RS-028            | 2018/05/24      | 2018/06/05       | 2018/06/07      | 2018/06/08  | 2018/06/08             |

Run Date is defined as the date of injection of the last calibration standard (12 hours or less) prior to the samples analyzed within that run sequence. Therefore the time of calibration injection that defines the run date is always within 12 hours of the time of sample injection.

b) Shipping Problems: Samples were received with temperature less than 10 degrees celsius. Cooler custody seal was present and intact.

c) Documentation Problems: For sample ELSWH10-003-GW-059, all three bottles received contained sediment.

# II. SAMPLE PREP:

No problems encountered

# **III. SAMPLE ANALYSIS:**

See also comments within the appropriate Certificate of Analysis

- a) Hold Times: all within recommended hold times
- b) Instrument Calibration: all within control limits
- c) Quality Control: All applicable QC meets control criteria, except where otherwise noted.
- d) All analytes requiring manual intergration(s) are noted on the sample chromatograms

Maxxam Analytics 11 of 1218

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for other than the conditions detailed above.

In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. Release of the data contained in this data package has been authorized by the cognizant laboratory official or his/her designee, as verified by this signature.

Project Manager- Site Assessment and Remediation/Ultra Trace 2018/06/26

Date

Maxxam Analytics 12 of 1218



| Aerosta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rSES <sub>44</sub>                                                                                                                   | 1006 Floyd Cul<br>Oak Ridge, Tr<br>865-481-7 | ¥ 37830                  |                | n of Custo<br>sis Requo |                          |                  |        |            |              | 234<br>Page 7 is of 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------|----------------|-------------------------|--------------------------|------------------|--------|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ject Name: Site Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n of Aqueous Film Forming Foam Areas,<br>Air Force Installations                                                                     |                                              | Job No.: M2              |                |                         |                          |                  |        | ANALYSI    |              | Sample Types:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×   |
| rostar Project Manager:<br>nd Data to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Brian Odom, BOdom@specproenv.com<br>Jenny Vance, jvance@aerostar.net                                                                 | (478) 397-4906<br>(865) 483-7904             |                          |                |                         |                          | 1                |        |            |              | Sample Types:  N = Normal  FD = Field Dutplicate  AB = Ambient Blank or Field Reagent Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| mpler(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~ Vojel (ASC                                                                                                                         |                                              |                          |                |                         |                          |                  |        |            |              | EB = Equipment Rinsate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| poratory Name/Address:<br>xxam Analytics, Inc<br>40 Campobello Rd<br>ssissauga, Ontario<br>N2L8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Laboratory Shipping Add<br>Maxxam Analytics<br>c/o FedEx Depoi<br>299 Cayuga Rd.<br>Cheektowaga, NY 142<br>Please indicate "HOLD FOR | 25                                           | Phone: (905<br>email: MD | 5) 817-5700.   | ext 5784                | ist of 18 analytes below |                  | 1      |            |              | Matrix:  WG = Groundwatel  SO = Soil  WP = Potable Water  SE = Sediment  WS = Surface Water  WQ = Field QC (AB EB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2)  |
| MAXXAM use only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample ID                                                                                                                            | Date Collected                               | Time<br>Collected        | Sample<br>Type | Matrix                  | PFAS (see                |                  | 1      |            |              | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ELSWH-KS-028                                                                                                                         | 5124/18                                      | 1309                     | EQ             | Wa                      | Z                        |                  |        |            |              | Off Spuen.  In asse ul Aswalo-003-55-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ELSWH 10-003-55-001                                                                                                                  | 5/24/18                                      | 1312                     | N              | 50                      | 1                        |                  |        | 4          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ELSWH10-003-50-050                                                                                                                   | 5131118                                      | 1200                     | N              | so .                    | 1                        |                  |        | 1          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                              |                          |                |                         | -                        |                  |        | 1          | /            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                              | -                        |                | -                       | -                        |                  |        | /          | 12           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                              | -                        |                |                         |                          |                  |        |            | 7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                              |                          | 1              |                         |                          |                  |        | 1          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      | -                                            |                          |                |                         |                          |                  |        |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                              |                          | ,              |                         |                          |                  |        |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                              | 10                       | 2              |                         |                          |                  |        |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                              | 1                        | 1              |                         |                          |                  |        |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                              |                          |                |                         |                          | 1                |        |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                              | -                        |                |                         |                          |                  |        | 1          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                              |                          |                |                         |                          |                  |        |            | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                                                                                                                                      | RECEIVED BY:                                 |                          |                | of Containe             | rs U                     | Analyte<br>List: | T      | CSALV      | E            | ERPONS CAY Conformant PERFORS CAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| ELINQUISHED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time 6-4-18 /600                                                                                                                | Signature.                                   |                          | 18/06          | 05 1                    | 4!                       | Light            |        |            |              | 1707   (10 / 9 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| Hech Willis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Frm. AS/                                                                                                                             | Printed Name TUNA 10                         | Want                     |                | CEXIO                   | _                        | 1                | in the |            | of<br>Secure | PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| natore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date/Turner                                                                                                                          | Signature                                    |                          | Elate/Time     |                         |                          |                  | Sallin | ed one of  | pr. ent      | 77 0.1-4 Close Profitantian wit (1974 - 1974 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| nfed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fam                                                                                                                                  | Printed Name:                                |                          | Firm           |                         |                          |                  |        | eritek era | ary)         | WICKING CO. I PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF THE PARTICIPATION OF |     |



Your Project #: M2027.0003 (OMAHA) Site Location: ELLSWORTH AFB

Your C.O.C. #: na

#### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/06/19

Report #: R5254242 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B8D4761 Received: 2018/06/05, 14:11 Sample Matrix: Ground Water

# Samples Received: 7

|                                        |          | Date       | Date       |                          |           |
|----------------------------------------|----------|------------|------------|--------------------------|-----------|
| Analyses                               | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference |
| PFOS and PFOA in water by SPE/LCMS (1) | 5        | 2018/06/07 | 2018/06/08 | CAM SOP-00894            | EPA 537 m |
| PFOS and PFOA in water by SPE/LCMS (1) | 2        | 2018/06/11 | 2018/06/12 | CAM SOP-00894            | EPA 537 m |

Sample Matrix: Soil # Samples Received: 3

|                                       |          | Date       | Date       |                   |                      |
|---------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                              | Quantity | Extracted  | Analyzed   | Laboratory Method | Reference            |
| Moisture                              | 3        | N/A        | 2018/06/07 | CAM SOP-00445     | Carter 2nd ed 51.2 m |
| PFOS and PFOA in soil by SPE/LCMS (1) | 3        | 2018/06/11 | 2018/06/12 | CAM SOP-00894     | EPA537 m             |

Sample Matrix: Water # Samples Received: 3

|                                        | Date               | Date                       |           |  |
|----------------------------------------|--------------------|----------------------------|-----------|--|
| Analyses                               | Quantity Extracted | Analyzed Laboratory Method | Reference |  |
| PFOS and PFOA in water by SPE/LCMS (1) | 3 2018/06/07       | 7 2018/06/08 CAM SOP-00894 | EPA 537 m |  |

#### Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.



Your Project #: M2027.0003 (OMAHA) Site Location: ELLSWORTH AFB

Your C.O.C. #: na

### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/06/19

Report #: R5254242 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B8D4761 Received: 2018/06/05, 14:11

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.

**Encryption Key** 

Stephanie Pollen Project Manager 19 Jun 2018 15:18:4

 ${\it Please \ direct \ all \ questions \ regarding \ this \ Certificate \ of \ Analysis \ to \ your \ Project \ Manager.}$ 

Stephanie Pollen, Project Manager Email: SPollen@maxxam.ca Phone# (905) 817-5700

\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



**Prepared for:** Aerostar SES LLC

Project: M2027.003 (OMAHA)
ELLSWORTH AFB

# Analytical Data Package (Level IV)

Analysis: PFOS and PFOA in water (Method 537 mod.)

Maxxam Job #: B8J4786

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639



I hereby certify that to the best of my knowledge all analytical data presented in this report:

- Has been checked for completeness.
- Is accurate, legible and error free.
- ➤ Has been conducted in accordance with approved SOP's and that all deviations are clearly listed in the Case Narrative.
- This report has been generated in .pdf format.

**Review Performed By:** 



Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

# **Glossary of Terms**

- ➤ Detection Limit (DL) this can also be called Method Detection Limit (MDL): The lowest concentration or amount of the target analyte that can be identified, measured, and reported with confidence that the analyte concentration is not a false positive value. (Clarification): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- ➤ Limit of Detection (LOD): An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrix-specific and may be laboratory-dependent. (Clarification): The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%.
- ➤ Limits of Quantitation (LOQ) this can also be called Reporting Detection Limit (RDL): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. (Clarification): The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Acceptance Criteria are values used by the laboratory to determine that a process is in control.
- ➤ **Accuracy** is the degree of agreement of a measured value with the true or expected value.
- ➤ **Calibration Standards** are a set of solutions containing the analytes of interest at a specified concentration.
- > Calibration Verification Standard consists of a calibration standard solution of intermediate concentration (mid-point initial calibration level) used to access whether the initial calibration is still valid
- Certified Reference Material is a stable homogenous material that is certified by repetitive analysis from a supplier who is certified to generate said materials.

- > Internal Standard a deuterated or <sup>13</sup>C-labelled analyte that is added to a sample extract prior to instrumental analysis to compensate for injection variability.
- > **Isomer** is a member of a group of compounds that differ from each other only in the locations of a specific number of common substituent atoms or groups of atoms on the parent compound.
- > **Method Blank** is a laboratory control sample using reagents that are known to be free of contamination.
- > **Precision** is the degree of agreement between the data generated from repetitive measurements under specific conditions.
- Quality Assurance is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality.
- > **Quality Control** is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of the end user.
- > **RSD** is the relative standard deviation.
- > **Blank Spike** is a laboratory control sample that has been fortified with native analytes of interest.
- ➤ **Window Defining Mixture** is a solution containing only the earliest and latest eluting congeners within each homologous group of target analytes on a specified GC column.
- > **RPD** or Relative Percent Difference. A measure used to compare duplicate sample analysis.
- EMPC/NDR Peak detected does not meet ratio criteria and has resulted in a higher detection limit.

#### Maxxam Job: B8J4786

# Sample Analysis

Aqueous samples were analyzed on QC batches 5660879 (2018/08/03) and 5660880 (2018/08/03). Soil samples were analyzed on QC batch 5661601 (2018/08/04). No analytical difficulties were encountered.

### Quantitation of PFAS

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

## **Data Qualifiers**

**U** – Analyte was not detected and is reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.

**J** – The reported result is an estimated value (e.g., matrix interference was observed, or the analyte was detected at a concentration outside the calibration range).

#### **Adam Robinson**

Arobinson@maxxam.ca
Office 905 817 5700, ext. 4057

### **PROJECT NARRATIVE**

**Maxxam Analytics** 

Client Project #: M2027.003 (OMAHA)



Client: Aerostar SES LLC

Client Project: M2027.003 (OMAHA)

# I. SAMPLE RECEIPT/ANALYSIS

# a) Sample Listing

| Maxxam      | Client                  | Date       | Date       | Date       | Date       | Initial     |
|-------------|-------------------------|------------|------------|------------|------------|-------------|
| ID          | Sample ID               | Sampled    | Received   | Prepped    | Run        | Calibration |
| PFOS and PF | OA in soil by SPE/LCMS  |            |            |            |            |             |
| HJG659      | ELSWH02-004-SD-001A     | 2018/07/31 | 2018/08/01 | 2018/08/02 | 2018/08/04 | 2018/08/04  |
| HJG660      | ELSWH02-004-SD-901A     | 2018/07/31 | 2018/08/01 | 2018/08/02 | 2018/08/04 | 2018/08/04  |
| PFOS and PF | OA in water by SPE/LCMS |            |            |            |            |             |
| HJG658      | ELSWH-RS-001A           | 2018/07/31 | 2018/08/01 | 2018/08/02 | 2018/08/03 | 2018/08/03  |
| HJG661      | ELSWH02-004-SW-001A     | 2018/07/31 | 2018/08/01 | 2018/08/02 | 2018/08/03 | 2018/08/03  |
| HJG662      | ELSWH02-004-SW-901A     | 2018/07/31 | 2018/08/01 | 2018/08/02 | 2018/08/03 | 2018/08/03  |

Run Date is defined as the date of injection of the last calibration standard (12 hours or less) prior to the samples analyzed within that run sequence. Therefore the time of calibration injection that defines the run date is always within 12 hours of the time of sample injection.

b) Shipping Problems: Samples were received with temperature less than 10 degrees celsius. Cooler custody seal was present and intact.

c) Documentation Problems: none encountered

# II. SAMPLE PREP:

No problems encountered

# III. SAMPLE ANALYSIS:

See also comments within the appropriate Certificate of Analysis

- a) Hold Times: all within recommended hold times
- b) Instrument Calibration: all within control limits
- c) Quality Control: All applicable QC meets control criteria, except where otherwise noted.
- d) All analytes requiring manual intergration(s) are noted on the sample chromatograms

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for other than the conditions detailed above.

In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. Release of the data contained in this data package has been authorized by the cognizant laboratory official or his/her designee, as verified by this signature.

Project Manager- Site Assessment and Remediation/ Ultra Trace

2018/08/09

Date





Your Project #: M2027.003 (OMAHA) Site Location: ELLSWORTH AFB

Your C.O.C. #: n/a

# **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/08/09

Report #: R5349363 Version: 2 - Revision

# **CERTIFICATE OF ANALYSIS – REVISED REPORT**

MAXXAM JOB #: B8J4786
Received: 2018/08/01, 13:50

Sample Matrix: SEDIMENT # Samples Received: 2

|                                       |          | Date       | Date       |                          |                      |
|---------------------------------------|----------|------------|------------|--------------------------|----------------------|
| Analyses                              | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference            |
| Moisture                              | 2        | N/A        | 2018/08/02 | CAM SOP-00445            | Carter 2nd ed 51.2 m |
| PFOS and PFOA in soil by SPE/LCMS (1) | 2        | 2018/08/02 | 2018/08/04 | CAM SOP-00894            | EPA537 m             |

Sample Matrix: Surface Water # Samples Received: 2

|                                        | Date                      | Date         |                   |           |  |
|----------------------------------------|---------------------------|--------------|-------------------|-----------|--|
| Analyses                               | <b>Quantity Extracted</b> | Analyzed     | Laboratory Method | Reference |  |
| PFOS and PFOA in water by SPE/LCMS (1) | 2 2018/08/02              | 2 2018/08/03 | 3 CAM SOP-00894   | EPA 537 m |  |

Sample Matrix: Water # Samples Received: 1

|                                        | Date               | Date        |                   |           |  |
|----------------------------------------|--------------------|-------------|-------------------|-----------|--|
| Analyses                               | Quantity Extracted | Analyzed    | Laboratory Method | Reference |  |
| PFOS and PFOA in water by SPE/LCMS (1) | 1 2018/08/0        | 2 2018/08/0 | 3 CAM SOP-00894   | EPA 537 m |  |

# Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.



Your Project #: M2027.003 (OMAHA) Site Location: ELLSWORTH AFB

Your C.O.C. #: n/a

### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/08/09

Report #: R5349363 Version: 2 - Revision

# **CERTIFICATE OF ANALYSIS – REVISED REPORT**

MAXXAM JOB #: B8J4786 Received: 2018/08/01, 13:50

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.

**Encryption Key** 

Patricia Legette Project Manager 09 Aug 2018 12:40:46

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Stephanie Pollen, Project Manager Email: SPollen@maxxam.ca

Phone# (905) 817-5700

\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Prepared for: Aerostar SES LLC

<u>Project</u>: M2027.0003 (OMAHA) ELLSWORTH AFB

# Analytical Data Package (Level IV)

Analysis: PFOS and PFOA in water and soil (Method 537 mod.)

Maxxam Job #: B894616

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639



I hereby certify that to the best of my knowledge all analytical data presented in this report:

- > Has been checked for completeness.
- Is accurate, legible and error free.
- ➤ Has been conducted in accordance with approved SOP's and that all deviations are clearly listed in the Case Narrative.
- > This report has been generated in .pdf format.

Review Performed By:

Steph, Vallen
Project Manager
Maxxam
A Bureau Veritas Group Company

Stephanie Pollen 2018.05.17 16:29:12 -04'00'

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

# **Glossary of Terms**

- ➤ Detection Limit (DL) this can also be called Method Detection Limit (MDL): The lowest concentration or amount of the target analyte that can be identified, measured, and reported with confidence that the analyte concentration is not a false positive value. (Clarification): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- ➤ Limit of Detection (LOD): An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrix-specific and may be laboratory-dependent. (Clarification): The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%.
- ➤ Limits of Quantitation (LOQ) this can also be called Reporting Detection Limit (RDL): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. (Clarification): The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Acceptance Criteria are values used by the laboratory to determine that a process is in control.
- Accuracy is the degree of agreement of a measured value with the true or expected value.
- ➤ **Calibration Standards** are a set of solutions containing the analytes of interest at a specified concentration.
- > Calibration Verification Standard consists of a calibration standard solution of intermediate concentration (mid-point initial calibration level) used to access whether the initial calibration is still valid
- ➤ **Certified Reference Material** is a stable homogenous material that is certified by repetitive analysis from a supplier who is certified to generate said materials.

- ➤ **Internal Standard** a deuterated or <sup>13</sup>C-labelled analyte that is added to a sample extract prior to instrumental analysis to compensate for injection variability.
- > **Isomer** is a member of a group of compounds that differ from each other only in the locations of a specific number of common substituent atoms or groups of atoms on the parent compound.
- > **Method Blank** is a laboratory control sample using reagents that are known to be free of contamination.
- > **Precision** is the degree of agreement between the data generated from repetitive measurements under specific conditions.
- Quality Assurance is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality.
- > **Quality Control** is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of the end user.
- > **RSD** is the relative standard deviation.
- > **Blank Spike** is a laboratory control sample that has been fortified with native analytes of interest.
- ➤ **Window Defining Mixture** is a solution containing only the earliest and latest eluting congeners within each homologous group of target analytes on a specified GC column.
- > **RPD** or Relative Percent Difference. A measure used to compare duplicate sample analysis.
- EMPC/NDR Peak detected does not meet ratio criteria and has resulted in a higher detection limit.

# Maxxam Job: B894616 - Soil Analysis

# Sample Analysis

Soil extracts were initially pre-screened and estimated concentrations were obtained so that samples could be appropriately diluted for analysis on QC batch 5507325 (2018/05/01-02). Due to exceedance of control chart limits, all samples were re-extracted and re-analyzed on QC batch 5513877 (2018/05/05). Dilutions were required for selected analytes in the following samples:

| GNR557 | ELSWH12-002-SS-001 | Perfluorooctanesulfonate (PFOS) |
|--------|--------------------|---------------------------------|
| GNR559 | ELSWH12-001-SS-001 | Perfluorooctanesulfonate (PFOS) |
| GNR560 | ELSWH12-001-SS-901 | All analytes                    |
| GNR564 | ELSWH12-003-SO-006 | Perfluorooctanesulfonate (PFOS) |
| GNR565 | ELSWH12-003-SS-001 | Perfluorooctanesulfonate (PFOS) |

Detection limits were adjusted accordingly.

# **Extracted Internal Standard Analytes**

The extracted internal standard analytes  $^{13}C_2$ -Perfluorododecanoic acid ( $^{13}C_2$ -PFDoA) and  $^{13}C_2$ -Perfluorotetradecanoic acid ( $^{13}C_2$ -PFTeDA) are used to quantify native Perfluorododecanoic acid (PFDoA) and Perfluorotridecanoic acid (PFTrDA) & Perfluorotetradecanoic acid (PFTeDA) respectively. The recoveries observed for these internal standard analytes were below the defined lower control limit (LCL) for the following sample:

GNR546 ELSWH08-002-SS-001

These recoveries were confirmed by re-extraction and re-analysis of the sample on QC batch 5518131 (2018/05/08). Results for the associated native analytes were reported from a 10x diluted sample where acceptable extracted internal standard analyte recoveries were obtained.

### **Quantitation of PFAS**

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

# **Data Qualifiers**

**U** – Analyte was not detected and is reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.

**J** – The reported result is an estimated value (e.g., matrix interference was observed, or the analyte was detected at a concentration outside the calibration range).

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

# Maxxam Job: B894616 - Water Analysis

# Sample Analysis

Samples were initially pre-screened and estimated concentrations were obtained so that appropriate sample volumes could be extracted on QC batch 5509182 (2018/05/02). Due to high concentrations, the following samples were analyzed using reduced sample extraction volumes:

GNR554 *ELSWH12-003-GW-016* GNR556 *ELSWH12-004-SW-001* 

Detection limits were adjusted accordingly.

The extracted internal standard analyte  $^{13}$ C<sub>4</sub>-Perfluorobutanoic acid ( $^{13}$ C<sub>4</sub>-PFBA) is used to quantify native Perfluorobutanoic acid (PFBA). The recovery observed for this extracted internal standard analyte was below the defined lower control limit (LCL) for the Spike Duplicate (LCS Dup) on QC batch 5509182 (2018/05/02). All samples were re-extracted and re-analyzed for Perfluorobutanoic acid (PFBA) on QC batch 5514083 (2018/05/08).

# **Quantitation of PFAS**

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

# **Data Qualifiers**

**U** – Analyte was not detected and is reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.

**J** – The reported result is an estimated value (e.g., matrix interference was observed, or the analyte was detected at a concentration outside the calibration range).

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

#### **PROJECT NARRATIVE**

Maxxam Analytics

Client Project #: M2027.0003 (OMAHA)

Client: Aerostar SES LLC

Client Project: M2027.0003 (OMAHA)

#### I. SAMPLE RECEIPT/ANALYSIS

# a) Sample Listing

| Maxxam       | Client                  | Date       | Date       | Date       | Date       | Initial                 |
|--------------|-------------------------|------------|------------|------------|------------|-------------------------|
| ID           | Sample ID               | Sampled    | Received   | Prepped    | Run        | Calibration             |
| PFOS and PFO | OA in soil by SPE/LCMS  |            |            |            |            |                         |
| GNR546       | ELSWH08-002-SS-001      | 2018/04/22 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05 & 2018/05/08 |
| GNR548       | ELSWH08-002-SO-040      | 2018/04/23 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR549       | ELSWH08-002-SO-940      | 2018/04/23 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR550       | ELSWH08-001-SS-001      | 2018/04/23 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR551       | ELSWH08-001-SO-030      | 2018/04/23 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR552       | ELSWH10-001-SS-001      | 2018/04/24 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR555       | ELSWH12-004-SD-001      | 2018/04/22 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR557       | ELSWH12-002-SS-001      | 2018/04/19 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR558       | ELSWH12-002-SO-036      | 2018/04/19 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR559       | ELSWH12-001-SS-001      | 2018/04/19 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR560       | ELSWH12-001-SS-901      | 2018/04/19 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR561       | ELSWH12-001-SO-023      | 2018/04/19 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR564       | ELSWH12-003-SO-006      | 2018/04/20 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR565       | ELSWH12-003-SS-001      | 2018/04/20 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR566       | ELSWH08-004-SS-001      | 2018/04/21 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR568       | ELSWH08-003-SS-001      | 2018/04/21 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR569       | ELSWH08-003-SO-046      | 2018/04/22 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| GNR571       | ELSWH08-004-SO-051      | 2018/04/22 | 2018/04/25 | 2018/05/03 | 2018/05/05 | 2018/05/05              |
| PFOS and PFO | OA in water by SPE/LCMS |            |            |            |            |                         |
| GNR547       | ELSWH-RS-005            | 2018/04/23 | 2018/04/25 | 2018/05/01 | 2018/05/02 | 2018/05/02 & 2018/05/08 |
| GNR553       | ELSWH12-002-GW-045      | 2018/04/22 | 2018/04/25 | 2018/05/01 | 2018/05/02 | 2018/05/02 & 2018/05/08 |
| GNR554       | ELSWH12-003-GW-016      | 2018/04/22 | 2018/04/25 | 2018/05/01 | 2018/05/02 | 2018/05/02 & 2018/05/08 |
| GNR556       | ELSWH12-004-SW-001      | 2018/04/22 | 2018/04/25 | 2018/05/01 | 2018/05/02 | 2018/05/02 & 2018/05/08 |
| GNR562       | ELSWH-RS-001            | 2018/04/19 | 2018/04/25 | 2018/05/01 | 2018/05/02 | 2018/05/02 & 2018/05/08 |
| GNR563       | ELSWH-RS-002            | 2018/04/20 | 2018/04/25 | 2018/05/01 | 2018/05/02 | 2018/05/02 & 2018/05/08 |
| GNR567       | ELSWH-RS-003            | 2018/04/21 | 2018/04/25 | 2018/05/01 | 2018/05/02 | 2018/05/02 & 2018/05/08 |
| GNR570       | ELSWH-RS-004            | 2018/04/22 | 2018/04/25 | 2018/05/01 | 2018/05/02 | 2018/05/02 & 2018/05/08 |

Maxxam

Run Date is defined as the date of injection of the last calibration standard (12 hours or less) prior to the samples analyzed within that run sequence. Therefore the time of calibration injection that defines the run date is always within 12 hours of the time of sample injection.

b) Shipping Problems: Samples were received with temperature less than 10 degrees Celsius. Cooler custody seal was present and intact.

c) Documentation Problems: none encountered

#### **II. SAMPLE PREP:**

No problems encountered

# III. SAMPLE ANALYSIS:

See also comments within the appropriate Certificate of Analysis

a) Hold Times: all within recommended hold times

b) Instrument Calibration: all within control limits

c) Quality Control: All applicable QC meets control criteria, except where otherwise noted.

d) All analytes requiring manual intergration(s) are noted on the sample chromatograms

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for other than the conditions detailed above.

In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. Release of the data contained in this data package has been authorized by the cognizant laboratory official or his/her designee, as verified by this signature.

Project Manager- Site Assessment

2018/05/17

Date



| Aerosta                                                                                                    | SES                                                                                                                                         | 1006 Floyd Cull<br>Oak Ridge, TN<br>865-481-78 | 37830                      | Chain          | of Custo    | ody Re<br>est Nur        | cord/<br>nber:  |                   |                                                      |                                 | Pi                      | z <sup>226</sup> of Z                                                                                         |                    |             |     | ,  | 1900 |   |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------|----------------|-------------|--------------------------|-----------------|-------------------|------------------------------------------------------|---------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------|--------------------|-------------|-----|----|------|---|
| Project Name: Site Inspection                                                                              | of Aqueous Film Forming Foam Areas,                                                                                                         |                                                | Job No.: M20               |                |             | AB.                      |                 | A                 | NALYSIS                                              |                                 |                         | 3.15                                                                                                          |                    | 1           |     |    |      |   |
| Aerostar Project Manager:                                                                                  | Brian Odom. BOdom@specproenv.com (4                                                                                                         | 78) 397-4906<br>865) 483-7904                  |                            |                |             |                          | 1               |                   |                                                      |                                 |                         | Sample Types:<br>N = Normal<br>FD = Field Duplicate<br>AB = Ambient Blank, or Fi                              | ald Basecot Blank  |             |     |    |      |   |
| Sampler(s): L. U. Jail                                                                                     |                                                                                                                                             |                                                |                            | 3              |             | -                        | 1               |                   |                                                      |                                 |                         | EB = Equipment Rinsate                                                                                        | ald Reagani Dimini |             |     |    |      |   |
| Laboratory Name/Address:<br>Maxxam Analytics, Inc<br>6740 Campobello Rd.<br>Mississauga, Ontario<br>L5N2L8 | Laboratory Shipping Addre<br>Maxxam Analytics<br>c/o FedEx Depot<br>299 Cayuga Rd.<br>Cheektowaga, NY 14225<br>Please Indicate "HOLD FOR Pl |                                                | Phone: (905<br>email: MDir | 817-5700,      | ext. 5784   | sst of 18 analytes below |                 |                   |                                                      |                                 |                         | Matrix: WG = Groundwater SO = Soll WP = Potable Water SE = Sediment WS = Surface Water WQ = Field QC (AB, EB) |                    |             | - 4 |    |      |   |
| MAXXAM use only                                                                                            | Sample ID                                                                                                                                   | Date Collected                                 | Time<br>Collected          | Sample<br>Type | Matrix      | PEAS (see                |                 | 1                 |                                                      |                                 |                         | N                                                                                                             | OTES               |             |     |    |      |   |
| ,                                                                                                          | ELSWH12-002-55-001                                                                                                                          | 04/14/18                                       | 0157                       | N              | 50          | 1                        |                 |                   | 1                                                    |                                 |                         | - 7                                                                                                           | 4                  |             |     |    |      |   |
| ,                                                                                                          | ELSWHIZ-007-50-036                                                                                                                          | 04/19/18                                       | 1135                       | N              | SO          | 1                        |                 |                   | 1                                                    |                                 |                         |                                                                                                               |                    | _           |     |    |      |   |
|                                                                                                            | ELSWH12-001-55-001                                                                                                                          | 04/15/19                                       | 1505                       | N              | 30          | 3                        |                 |                   | 1                                                    | 1                               |                         | MSIMSO INC.                                                                                                   |                    |             |     |    |      |   |
|                                                                                                            | ELSWH 12-001-55-01                                                                                                                          | 04/14/18                                       | 1505                       | FO             | 50          | 1                        |                 |                   | 1                                                    | 1                               |                         |                                                                                                               |                    |             |     |    |      | * |
|                                                                                                            | ELSWH 12-001-50-023                                                                                                                         | 04/19/18                                       | 1710                       | N              | 50          | 1                        |                 |                   | X                                                    | 1                               |                         |                                                                                                               |                    | 7           |     | 1  |      |   |
|                                                                                                            | ELS44-165-001                                                                                                                               | 04/19/18                                       | 1645                       | EB             | wa          | 2                        |                 | ,                 |                                                      | 1                               |                         | Off spain ina                                                                                                 | isc of ELSWHI      | 2-001-20-00 | t . |    |      |   |
| -                                                                                                          | ELSUH-15-002                                                                                                                                | 04/20118                                       | 1425                       | EB             | wa          | 2                        |                 | -                 |                                                      | 1/                              |                         | off spoon in asse                                                                                             | w/ Econtil-ous     | -50-606     |     |    |      |   |
| 1                                                                                                          | ELSWH 12-003-50-006                                                                                                                         | 04/20/18                                       | 1430                       | N              | 50          | 1                        |                 |                   |                                                      | V                               |                         |                                                                                                               |                    | -           |     |    |      |   |
|                                                                                                            | ELSUH12-003-55-001                                                                                                                          | 04/20/19                                       | 0157                       | N              | SO          | 1                        |                 |                   |                                                      | 1                               |                         | >                                                                                                             | <del>20</del>      |             |     |    |      |   |
|                                                                                                            |                                                                                                                                             | 04121/18                                       | 1140                       | N              | 50          | (                        |                 |                   | _                                                    | 1                               |                         |                                                                                                               |                    |             |     |    |      |   |
| 10                                                                                                         | ESWH-KS-003                                                                                                                                 | 24/21/18                                       | 1420                       | ES             | WQ          | 2                        |                 |                   |                                                      | 1 2                             | -                       | Off spoon I was w                                                                                             | / ELSW408-05       | 3-55-00     |     |    |      |   |
| ,                                                                                                          | ELSW 408-003-55-001                                                                                                                         | 04/21/18                                       | 1425                       | N              | 50          | V                        |                 |                   |                                                      | 1                               | 1                       | -                                                                                                             | 1                  |             |     |    |      |   |
|                                                                                                            | ELSW#08-003-50-046                                                                                                                          |                                                |                            | N              | 50          | - 1                      |                 |                   | 4.                                                   |                                 | 1                       | 1                                                                                                             |                    |             |     |    |      |   |
|                                                                                                            | FLSUH-RS-004                                                                                                                                | 64/22/18                                       | 1422                       | ED             | wa          | 2                        |                 |                   |                                                      |                                 | 1                       | off sour in ass                                                                                               | U- ELLUHUS-0       | 4-30-051    |     |    |      |   |
|                                                                                                            | ELSW408-004-50-051                                                                                                                          | 04/22/18                                       | 1425                       | N              | 50          | ors 7                    |                 |                   | -                                                    | 1                               |                         | 1                                                                                                             |                    |             |     |    |      |   |
| RELINQUISHED BY: Signature Printed Name                                                                    | Darius 17/27/18 (800)                                                                                                                       | RECEIVED BY: Signature SEE PAGE                | <u> </u>                   | Total #        | of Contains | ers X                    | Analyte<br>List | Section to do     | ADALY                                                | inn = ut                        | DIESS<br>FAR CO         | 10E 1.25 (MARIANA)                                                                                            | EN EN PRES STEEL   | CA6         |     |    |      |   |
| Signature                                                                                                  | Date/Time:                                                                                                                                  | Signature.                                     |                            | Dwte/Time      |             |                          |                 | Pretion<br>Tealin | activa alesid<br>mangrotum<br>activated<br>activated | tions +10<br># 10<br>those + 21 | PEYES<br>PTRES<br>19234 | Perilanda Perilanda                                                                                           | and street         | 10 stor     |     | 24 |      |   |
| Finded Name                                                                                                | Flore                                                                                                                                       | Printed Name                                   | d.                         | Entri          |             |                          |                 |                   | A PROPERTY.                                          |                                 | 1994                    |                                                                                                               | And Prints &       | ~ ]         |     | do |      |   |



Your Project #: M2027.0003 (OMAHA) Site Location: ELLSWORTH AFB

Your C.O.C. #: na

#### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/05/09

Report #: R5116443 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B894616 Received: 2018/04/25, 13:58 Sample Matrix: Ground Water

Sample Matrix: Ground Water # Samples Received: 2

|                                        | Date               | Date         |                          |           |  |
|----------------------------------------|--------------------|--------------|--------------------------|-----------|--|
| Analyses                               | Quantity Extracted | Analyzed     | <b>Laboratory Method</b> | Reference |  |
| PFOS and PFOA in water by SPE/LCMS (1) | 2 2018/05/         | 01 2018/05/0 | 2 CAM SOP-00894          | EPA 537 m |  |

Sample Matrix: Soil # Samples Received: 17

|                                       |          | Date       | Date       |                          |                      |
|---------------------------------------|----------|------------|------------|--------------------------|----------------------|
| Analyses                              | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference            |
| Moisture                              | 17       | N/A        | 2018/04/26 | CAM SOP-00445            | Carter 2nd ed 51.2 m |
| PFOS and PFOA in soil by SPE/LCMS (1) | 17       | 2018/05/03 | 2018/05/05 | CAM SOP-00894            | EPA537 m             |

Sample Matrix: SEDIMENT # Samples Received: 1

|                                       |          | Date       | Date       |                   |                      |
|---------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                              | Quantity | Extracted  | Analyzed   | Laboratory Method | Reference            |
| Moisture                              | 1        | N/A        | 2018/04/26 | CAM SOP-00445     | Carter 2nd ed 51.2 m |
| PFOS and PFOA in soil by SPE/LCMS (1) | 1        | 2018/05/03 | 2018/05/05 | CAM SOP-00894     | EPA537 m             |

Sample Matrix: Surface Water # Samples Received: 1

|                                        | Date               | Date      |                          |           |  |
|----------------------------------------|--------------------|-----------|--------------------------|-----------|--|
| Analyses                               | Quantity Extracted | Analyzed  | <b>Laboratory Method</b> | Reference |  |
| PFOS and PFOA in water by SPE/LCMS (1) | 1 2018/05/01       | 2018/05/0 | 2 CAM SOP-00894          | EPA 537 m |  |

Sample Matrix: Water # Samples Received: 5

|                                        | Date               | Date         |                          |           |  |
|----------------------------------------|--------------------|--------------|--------------------------|-----------|--|
| Analyses                               | Quantity Extracted | Analyzed     | <b>Laboratory Method</b> | Reference |  |
| PFOS and PFOA in water by SPE/LCMS (1) | 5 2018/05/         | 01 2018/05/0 | 2 CAM SOP-00894          | EPA 537 m |  |

## Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.



Your Project #: M2027.0003 (OMAHA) Site Location: ELLSWORTH AFB

Your C.O.C. #: na

#### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/05/09

Report #: R5116443 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B894616 Received: 2018/04/25, 13:58

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.

**Encryption Key** 

Stephanie Pollen Project Manager 09 May 2018 16:13:28

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Stephanie Pollen, Project Manager

Email: SPollen@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Prepared for: Aerostar SES LLC

<u>Project</u>: M2027.0003 (OMAHA) ELLSWORTH AFB

# Analytical Data Package (Level IV)

Analysis: PFOS and PFOA in water and soil (Method 537 mod.)

Maxxam Job #: B897127

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639



I hereby certify that to the best of my knowledge all analytical data presented in this report:

- > Has been checked for completeness.
- Is accurate, legible and error free.
- ➤ Has been conducted in accordance with approved SOP's and that all deviations are clearly listed in the Case Narrative.
- This report has been generated in .pdf format.

**Review Performed By:** 

Atrich Valle Project Manager MaxXam A Bureau Veritas Group Company Stephanie Pollen 2018.05.17 14:33:26 -04'00'

Maxxam Analytics International 6740 Campobello Rd. Mississauga, Ontario, Canada L5N 2L8 1-800-668-0639

# **Glossary of Terms**

- ➤ Detection Limit (DL) this can also be called Method Detection Limit (MDL): The lowest concentration or amount of the target analyte that can be identified, measured, and reported with confidence that the analyte concentration is not a false positive value. (Clarification): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. At the DL, the false positive rate (Type I error) is 1%.
- Limit of Detection (LOD): An estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrix-specific and may be laboratory-dependent. (Clarification): The smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%.
- ➤ Limits of Quantitation (LOQ) this can also be called Reporting Detection Limit (RDL): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. (Clarification): The lowest concentration that produces a quantitative result within specified limits of precision and bias. For DoD projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard.
- Acceptance Criteria are values used by the laboratory to determine that a process is in control.
- Accuracy is the degree of agreement of a measured value with the true or expected value.
- ➤ **Calibration Standards** are a set of solutions containing the analytes of interest at a specified concentration.
- > Calibration Verification Standard consists of a calibration standard solution of intermediate concentration (mid-point initial calibration level) used to access whether the initial calibration is still valid
- Certified Reference Material is a stable homogenous material that is certified by repetitive analysis from a supplier who is certified to generate said materials.

- ➤ **Internal Standard** a deuterated or <sup>13</sup>C-labelled analyte that is added to a sample extract prior to instrumental analysis to compensate for injection variability.
- > **Isomer** is a member of a group of compounds that differ from each other only in the locations of a specific number of common substituent atoms or groups of atoms on the parent compound.
- > **Method Blank** is a laboratory control sample using reagents that are known to be free of contamination.
- > **Precision** is the degree of agreement between the data generated from repetitive measurements under specific conditions.
- Quality Assurance is a system of activities whose purpose is to provide the producer or user of a product with the assurance that the product meets a defined standard of quality.
- > Quality Control is the overall system of activities whose purpose is to control the quality of a product so that it meets the needs of the end user.
- > **RSD** is the relative standard deviation.
- > **Blank Spike** is a laboratory control sample that has been fortified with native analytes of interest.
- ➤ **Window Defining Mixture** is a solution containing only the earliest and latest eluting congeners within each homologous group of target analytes on a specified GC column.
- > **RPD** or Relative Percent Difference. A measure used to compare duplicate sample analysis.
- EMPC/NDR Peak detected does not meet ratio criteria and has resulted in a higher detection limit.

# Maxxam Job: B897127 - Soil Analysis

# Sample Analysis

Samples were initially analyzed on QC batches 5518131 (2018/05/08) and 5518141 (2018/05/08). The extracted internal standard analytes  $^{13}$ C<sub>2</sub>-Perfluoroundecanoic acid ( $^{13}$ C<sub>2</sub>-PFUnA),  $^{13}$ C<sub>2</sub>-Perfluorododecanoic acid ( $^{13}$ C<sub>2</sub>-PFDoA) and  $^{13}$ C<sub>2</sub>-Perfluorotetradecanoic acid ( $^{13}$ C<sub>2</sub>-PFTeDA) are used to quantify native Perfluoroundecanoic acid (PFUnA), Perfluorododecanoic acid (PFDoA) and Perfluorotridecanoic acid (PFTrDA) & Perfluorotetradecanoic acid (PFTeDA) respectively. The recoveries observed for selected extracted internal standard analytes were below the defined lower control limit (LCL) for the following samples:

GOF444 *ELSWH02-004-SD-001* (<sup>13</sup>C<sub>2</sub>-PFUnA, <sup>13</sup>C<sub>2</sub>-PFDoA, <sup>13</sup>C<sub>2</sub>-PFTeDA) GOF445 *ELSWH02-004-SD-901* (<sup>13</sup>C<sub>2</sub>-PFTeDA)

These recoveries were confirmed by re-extraction and re-analysis of GOF444 (*ELSWH02-004-SD-001*) on QC batch 5522080 (2018/05/10-14) and GOF445 (*ELSWH02-004-SD-901*) on QC batch 5522046 (2018/05/10-14). Results for the associated native analytes were reported from 10x dilutions of these samples where acceptable extracted internal standard recoveries were obtained. Detection limits were adjusted accordingly.

## **Quantitation of PFAS**

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

# **Data Qualifiers**

**U** – Analyte was not detected and is reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.

**J** – The reported result is an estimated value (e.g., matrix interference was observed, or the analyte was detected at a concentration outside the calibration range).

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

# Maxxam Job: B897127 - Water Analysis

# Sample Analysis

Samples were initially analyzed on QC batch 5520643 (2018/05/09-10). The extracted internal standard analyte  $^{13}C_2$ -Perfluorotetradecanoic acid ( $^{13}C_2$ -PFTeDA) is used to quantify native Perfluorotridecanoic acid (PFTrDA) & Perfluorotetradecanoic acid (PFTeDA). The recovery observed for this extracted internal standard analyte was below the defined lower control limit (LCL) for the following sample:

GOF446 ELSWH02-004-SW-001

The recovery was confirmed by re-extraction and re-analysis of the sample on QC batch 5525844 (2018/05/11).

# **Quantitation of PFAS**

Many PFAS (e.g. PFOS) have several isomeric forms that may show up as separate or partially-merged peaks in the analytical chromatograms. These peaks will be integrated and the areas summed such that the result represents the concentration of the sum of the linear and branched isomers, per USEPA (2009). Instrumentation is calibrated using certified quantitative standards containing only the linear isomer for all target analytes, except Perfluorooctane sulfonate (PFOS) and Perfluorohexane sulfonate (PFHxS), which are calibrated using certified branched and linear isomer mixtures. As additional certified reference materials containing branched and linear isomers become commercially available, they will be incorporated into the analytical method.

#### **Data Qualifiers**

**U** – Analyte was not detected and is reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.

**J** – The reported result is an estimated value (e.g., matrix interference was observed, or the analyte was detected at a concentration outside the calibration range).

Sin Chii Chia, B.Sc. schia@maxxam.ca Office 905 817 5700

#### **PROJECT NARRATIVE**

**Maxxam Analytics** 

Client Project #: M2027.0003 (OMAHA)



Client: Aerostar SES LLC

Client Project: M2027.0003 (OMAHA)

#### I. SAMPLE RECEIPT/ANALYSIS

a) Sample Listing

| Maxxam<br>ID | Client<br>Sample ID     | Date<br>Sampled | Date<br>Received | Date<br>Prepped | Date<br>Run | Initial<br>Calibration     |
|--------------|-------------------------|-----------------|------------------|-----------------|-------------|----------------------------|
|              | OA in soil by SPE/LCMS  | Jampica         | Received         | Перрец          |             | Cambration                 |
| GOF435       | ELSWH10-001-SO-040      | 2018/04/24      | 2018/04/27       | 2018/05/07      | 2018/05/08  | 2018/05/08                 |
| GOF437       | ELSWH02-003-SO-004      | 2018/04/25      | 2018/04/27       | 2018/05/07      | 2018/05/08  | 2018/05/08                 |
| GOF438       | ELSWH02-002-SO-031      | 2018/04/25      | 2018/04/27       | 2018/05/07      | 2018/05/08  | 2018/05/08                 |
| GOF439       | ELSWH02-001-SO-030      | 2018/04/26      | 2018/04/27       | 2018/05/07      | 2018/05/08  | 2018/05/08                 |
| GOF444       | ELSWH02-004-SD-001      | 2018/04/26      | 2018/04/27       | 2018/05/07      | 2018/05/08  | 2018/05/08 & 2018/05/10-14 |
| GOF445       | ELSWH02-004-SD-901      | 2018/04/26      | 2018/04/27       | 2018/05/07      | 2018/05/08  | 2018/05/08 & 2018/05/10-14 |
| PFOS and PF  | OA in water by SPE/LCMS |                 |                  |                 |             |                            |
| GOF434       | ELSWH-RS-006            | 2018/04/24      | 2018/04/27       | 2018/05/08      | 2018/05/09  | 2018/05/09-10              |
| GOF436       | ELSWH-RS-007            | 2018/04/25      | 2018/04/27       | 2018/05/08      | 2018/05/09  | 2018/05/09-10              |
| GOF440       | ELSWH-RS-008            | 2018/04/26      | 2018/04/27       | 2018/05/08      | 2018/05/09  | 2018/05/09-10              |
| GOF441       | ELSWH12-001-GW-032      | 2018/04/25      | 2018/04/27       | 2018/05/08      | 2018/05/09  | 2018/05/09-10              |
| GOF442       | ELSWH08-003-GW-045      | 2018/04/26      | 2018/04/27       | 2018/05/08      | 2018/05/09  | 2018/05/09-10              |
| GOF443       | ELSWH08-002-GW-045      | 2018/04/26      | 2018/04/27       | 2018/05/08      | 2018/05/09  | 2018/05/09-10              |
| GOF446       | ELSWH02-004-SW-001      | 2018/04/26      | 2018/04/27       | 2018/05/08      | 2018/05/09  | 2018/05/09-10 & 2018/05/11 |
| GOF447       | ELSWH02-004-SW-901      | 2018/04/26      | 2018/04/27       | 2018/05/08      | 2018/05/09  | 2018/05/09-10              |
| GOF448       | ELSWH02-003-GW-013      | 2018/04/26      | 2018/04/27       | 2018/05/08      | 2018/05/09  | 2018/05/09-10              |

Run Date is defined as the date of injection of the last calibration standard (12 hours or less) prior to the samples analyzed within that run sequence. Therefore the time of calibration injection that defines the run date is always within 12 hours of the time of sample injection.

b) Shipping Problems: Samples were received with temperature less than 10 degrees Celsius. Cooler custody seal was present and intact.

c) Documentation Problems: none encountered

#### **II. SAMPLE PREP:**

No problems encountered

#### III. SAMPLE ANALYSIS:

See also comments within the appropriate Certificate of Analysis

- a) Hold Times: all within recommended hold times
- b) Instrument Calibration: all within control limits
- c) Quality Control: All applicable QC meets control criteria, except where otherwise noted.
- d) All analytes requiring manual intergration(s) are noted on the sample chromatograms

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for other than the conditions detailed above.

In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. Release of the data contained in this data package has been authorized by the cognizant laboratory official or his/her designee, as verified by this signature.

Project Manager- Site Assessment

2018/05/17 Date





Your Project #: M2027.0003 (OMAHA) Site Location: ELLSWORTH AFB

Your C.O.C. #: 229

#### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/05/14

Report #: R5142082 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B897127 Received: 2018/04/27, 14:05 Sample Matrix: Ground Water # Samples Received: 4

|                                        | Date               | Date        |                          |           |
|----------------------------------------|--------------------|-------------|--------------------------|-----------|
| Analyses                               | Quantity Extracted | Analyzed    | <b>Laboratory Method</b> | Reference |
| PFOS and PFOA in water by SPE/LCMS (1) | 4 2018/05/08       | 3 2018/05/0 | 9 CAM SOP-00894          | EPA 537 m |

Sample Matrix: Soil # Samples Received: 4

|                                       |          | Date       | Date       |                          |                      |
|---------------------------------------|----------|------------|------------|--------------------------|----------------------|
| Analyses                              | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference            |
| Moisture                              | 4        | N/A        | 2018/04/30 | CAM SOP-00445            | Carter 2nd ed 51.2 m |
| PFOS and PFOA in soil by SPE/LCMS (1) | 4        | 2018/05/07 | 2018/05/08 | CAM SOP-00894            | EPA537 m             |

Sample Matrix: SEDIMENT # Samples Received: 2

|                                       |          | Date       | Date       |                   |                      |
|---------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                              | Quantity | Extracted  | Analyzed   | Laboratory Method | Reference            |
| Moisture                              | 2        | N/A        | 2018/04/30 | CAM SOP-00445     | Carter 2nd ed 51.2 m |
| PFOS and PFOA in soil by SPE/LCMS (1) | 2        | 2018/05/07 | 2018/05/08 | CAM SOP-00894     | EPA537 m             |

Sample Matrix: Surface Water # Samples Received: 2

|                                        | Date               | Date        |                          |           |  |
|----------------------------------------|--------------------|-------------|--------------------------|-----------|--|
| Analyses                               | Quantity Extracted | Analyzed    | <b>Laboratory Method</b> | Reference |  |
| PFOS and PFOA in water by SPE/LCMS (1) | 2 2018/05/0        | 8 2018/05/0 | 9 CAM SOP-00894          | EPA 537 m |  |

Sample Matrix: Water # Samples Received: 3

|                                        | Date               | Date         |                          |           |
|----------------------------------------|--------------------|--------------|--------------------------|-----------|
| Analyses                               | Quantity Extracted | Analyzed     | <b>Laboratory Method</b> | Reference |
| PFOS and PFOA in water by SPE/LCMS (1) | 3 2018/05/         | 08 2018/05/0 | 9 CAM SOP-00894          | EPA 537 m |

#### Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.



Your Project #: M2027.0003 (OMAHA) Site Location: ELLSWORTH AFB

Your C.O.C. #: 229

#### **Attention: Jenny Vance**

Aerostar SES LLC SES Construction and Fuel Serv 1006 Floyd Culler Court Oak Ridge, TN USA 37830

Report Date: 2018/05/14

Report #: R5142082 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B897127 Received: 2018/04/27, 14:05

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.

**Encryption Key** 

Stephanie Pollen Project Manager 14 May 2018 17:07:58

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Stephanie Pollen, Project Manager

Email: SPollen@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

# Validated Sample Result Forms: B8A6782

*Analysis Method*: EPA 537 m

| Sample Name ELSWH02-001     | -GW-035     | Ŋ               | Matrix T | Гуре:  | R     | Result Typ      | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|--------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI097     | Sample      | Date/Time:      | 2018-    | -05-04 | 12:31 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.015         | 0.0054   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.021           | 0.0055   | 0.015  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.015         | 0.0074   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.015         | 0.0056   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.023           | 0.0035   | 0.010  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.010         | 0.0033   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.017           | 0.0075   | 0.018  | 0.020 | ug/L            | J                | J                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |

Friday, June 22, 2018 Page 1 of 33

| Sample Name ELSWH02-002     | e-GW-035    | N               | Aatrix T | Гуре: | R     | esult Typ       | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|-------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI096     | Sample      | Date/Time:      | 2018-    | 05-04 | 09:31 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD   | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 0.026           | 0.0066   | 0.015 | 0.020 | ug/L            |                  |                         |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | 0.63            | 0.0054   | 0.015 | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.32            | 0.0055   | 0.015 | 0.020 | ug/L            |                  |                         |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.14            | 0.0074   | 0.015 | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.96            | 0.0056   | 0.015 | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 1.3             | 0.035    | 0.10  | 0.20  | ug/L            |                  |                         |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | 0.0079          | 0.0034   | 0.010 | 0.020 | ug/L            | J                | J                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 0.28            | 0.0060   | 0.015 | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.78            | 0.0033   | 0.010 | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.44            | 0.0075   | 0.018 | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |

Friday, June 22, 2018 Page 2 of 33

| Sample Name ELSWH02-006-    | -GW-030     | N               | Aatrix T | ype:  | R     | Result Typ      | e: TRG           |                           |                           |  |
|-----------------------------|-------------|-----------------|----------|-------|-------|-----------------|------------------|---------------------------|---------------------------|--|
| Lab Sample Name: GQI099     | Sample      | e Date/Time:    | 2018-    | 05-04 | 13:50 |                 | Validati         | Validation Level: Stage 4 |                           |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD   | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier   | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066   | 0.015 | 0.020 | ug/L            | U                | U                         |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015 | 0.020 | ug/L            | U                | U                         |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | 0.011           | 0.0054   | 0.015 | 0.020 | ug/L            | J                | J                         |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.019           | 0.0055   | 0.015 | 0.020 | ug/L            | J                | J                         |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015 | 0.020 | ug/L            | U                | U                         |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015 | 0.020 | ug/L            | U                | U                         |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010 | 0.020 | ug/L            | U                | U                         |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.022           | 0.0074   | 0.015 | 0.020 | ug/L            |                  |                           |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.093           | 0.0056   | 0.015 | 0.020 | ug/L            |                  |                           |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.046           | 0.0035   | 0.010 | 0.020 | ug/L            |                  |                           |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018 | 0.020 | ug/L            | U                | U                         |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010 | 0.020 | ug/L            | U                | U                         |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 0.074           | 0.0060   | 0.015 | 0.020 | ug/L            |                  |                           |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.030           | 0.0033   | 0.010 | 0.020 | ug/L            |                  |                           |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.053           | 0.0075   | 0.018 | 0.020 | ug/L            |                  |                           |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010 | 0.020 | ug/L            | U                | U                         |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010 | 0.020 | ug/L            | U                | U                         |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010 | 0.020 | ug/L            | U                | U                         |                           |  |

Friday, June 22, 2018 Page 3 of 33

| Sample Name ELSWH02-006-    | -SO-024     |                 | Matrix 1 | Гуре: Ѕ | R     | Result Typ      | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI081     | Sampl       | e Date/Time     | 2018     | -05-01  | 11:50 |                 | Validati         | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | <0.88           | 0.29     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | <0.88           | 0.36     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.55          | 0.19     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.55          | 0.25     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.88          | 0.43     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.88          | 0.31     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.88          | 0.31     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.55          | 0.21     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.55          | 0.26     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.48            | 0.15     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.55          | 0.24     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.55          | 0.15     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 1.1             | 0.29     | 0.88    | 1.1   | ug/kg           | J                | J                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.88          | 0.28     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.88          | 0.28     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.88          | 0.34     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.88          | 0.36     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.88          | 0.37     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |

Friday, June 22, 2018 Page 4 of 33

| Sample Name ELSWH02-006-    | -SS-001     |                 | Matrix 1 | Гуре: Ѕ | R     | Result Typ      | e: TRG           |                           |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|---------------------------|---------------------------|--|
| Lab Sample Name: GQI079     | Sampl       | e Date/Time     | 2018     | -05-01  | 09:20 |                 | Validati         | Validation Level: Stage 4 |                           |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier   | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | <1.0            | 0.34     | 1.0     | 1.3   | ug/kg           | U                | U                         |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | <1.0            | 0.43     | 1.0     | 1.3   | ug/kg           | U                | U                         |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.65          | 0.22     | 0.65    | 1.3   | ug/kg           | U                | U                         |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.60            | 0.30     | 0.65    | 1.3   | ug/kg           | J                | J                         |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | <1.0            | 0.51     | 1.0     | 1.3   | ug/kg           | U                | U                         |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | 0.58            | 0.36     | 1.0     | 1.3   | ug/kg           | J                | J                         |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | <1.0            | 0.36     | 1.0     | 1.3   | ug/kg           | U                | U                         |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.66            | 0.25     | 0.65    | 1.3   | ug/kg           | J                | J                         |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 1.1             | 0.31     | 0.65    | 1.3   | ug/kg           | J                | J                         |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.65            | 0.18     | 0.65    | 1.3   | ug/kg           | J                | J                         |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.93            | 0.29     | 0.65    | 1.3   | ug/kg           | J                | J                         |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | 0.42            | 0.18     | 0.65    | 1.3   | ug/kg           | J                | J                         |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 47              | 0.34     | 1.0     | 1.3   | ug/kg           |                  |                           |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 1.4             | 0.33     | 1.0     | 1.3   | ug/kg           |                  |                           |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.73            | 0.33     | 1.0     | 1.3   | ug/kg           | J                | J                         |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | <1.0            | 0.40     | 1.0     | 1.3   | ug/kg           | U                | U                         |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | <1.0            | 0.43     | 1.0     | 1.3   | ug/kg           | U                | U                         |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | <1.0            | 0.44     | 1.0     | 1.3   | ug/kg           | U                | U                         |                           |  |

Friday, June 22, 2018 Page 5 of 33

| Sample Name ELSWH02-007-    | -SS-001     |                 | Matrix I | Гуре: Ѕ | R     | esult Typ       | pe: TRG                    |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|----------------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GQI092     | Sampl       | e Date/Time     | 2018     | -05-03  | 10:40 |                 | Validation Level: Stage 2B |                         |                           |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier           | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 0.35            | 0.29     | 0.88    | 1.1   | ug/kg           | J                          | J                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.88          | 0.36     | 0.88    | 1.1   | ug/kg           | U                          | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.55          | 0.19     | 0.55    | 1.1   | ug/kg           | U                          | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.69            | 0.25     | 0.55    | 1.1   | ug/kg           | J                          | J                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.88          | 0.43     | 0.88    | 1.1   | ug/kg           | U                          | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | 0.72            | 0.31     | 0.88    | 1.1   | ug/kg           | J                          | J                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | 0.44            | 0.31     | 0.88    | 1.1   | ug/kg           | J                          | J                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.65            | 0.21     | 0.55    | 1.1   | ug/kg           | J                          | J                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.59            | 0.26     | 0.55    | 1.1   | ug/kg           | J                          | J                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.77            | 0.15     | 0.55    | 1.1   | ug/kg           | J                          | J                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.67            | 0.24     | 0.55    | 1.1   | ug/kg           | J                          | J                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.55          | 0.15     | 0.55    | 1.1   | ug/kg           | U                          | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 9.1             | 0.29     | 0.88    | 1.1   | ug/kg           |                            |                         |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 1.4             | 0.28     | 0.88    | 1.1   | ug/kg           |                            |                         |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.88            | 0.28     | 0.88    | 1.1   | ug/kg           | J                          | J                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | 0.40            | 0.34     | 0.88    | 1.1   | ug/kg           | J                          | J                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.88          | 0.36     | 0.88    | 1.1   | ug/kg           | U                          | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.88          | 0.37     | 0.88    | 1.1   | ug/kg           | U                          | U                       |                           |  |

Friday, June 22, 2018 Page 6 of 33

| Sample Name ELSWH02-008     | -SS-001     |                 | Matrix 1 | Гуре: Ѕ | R     | esult Typ       | e: TRG           |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GQI090     | Sampl       | e Date/Time     | 2018     | -05-02  | 14:19 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.88          | 0.29     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | <0.88           | 0.36     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.55          | 0.19     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.51            | 0.25     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | <0.88           | 0.43     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | 0.55            | 0.31     | 0.88    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.88          | 0.31     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.49            | 0.21     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.56            | 0.26     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.54            | 0.15     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.51            | 0.24     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.55          | 0.15     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 4.6             | 0.29     | 0.88    | 1.1   | ug/kg           |                  |                         |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.83            | 0.28     | 0.88    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.60            | 0.28     | 0.88    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | <0.88           | 0.34     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | <0.88           | 0.36     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.88          | 0.37     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |

Friday, June 22, 2018 Page 7 of 33

| Sample Name ELSWH05-001-    | -GW-030     | Ŋ               | Matrix T | ype:  | R     | e: TRG          |                  |                         |                           |
|-----------------------------|-------------|-----------------|----------|-------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI098     | Sample      | e Date/Time:    | 2018-    | 05-04 | 15:26 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD   | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | 0.015           | 0.0054   | 0.015 | 0.020 | ug/L            | J                | J                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.041           | 0.0055   | 0.015 | 0.020 | ug/L            |                  |                         |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.050           | 0.0074   | 0.015 | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.23            | 0.0056   | 0.015 | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.090           | 0.0035   | 0.010 | 0.020 | ug/L            |                  |                         |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.0097          | 0.0087   | 0.018 | 0.020 | ug/L            | J                | J                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | 0.012           | 0.0034   | 0.010 | 0.020 | ug/L            | J                | J                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 0.34            | 0.0060   | 0.015 | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.095           | 0.0033   | 0.010 | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.095           | 0.0075   | 0.018 | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |

Friday, June 22, 2018 Page 8 of 33

| Sample Name ELSWH05-001-    | -SO-028     | -               | Matrix [ | Гуре: Ѕ | R     | pe: TRG         |                  |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI086     | Sampl       | e Date/Time     | : 2018   | -05-02  | 09:45 |                 | Validati         | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.77          | 0.25     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | <0.77           | 0.32     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | <0.48           | 0.16     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.48          | 0.22     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | <0.77           | 0.37     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | <0.77           | 0.27     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.77          | 0.27     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.48          | 0.18     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.48          | 0.23     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.48          | 0.13     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.48          | 0.21     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.48          | 0.13     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 0.37            | 0.25     | 0.77    | 0.96  | ug/kg           | J                | J                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | <0.77           | 0.24     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | <0.77           | 0.24     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | <0.77           | 0.30     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | <0.77           | 0.32     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | <0.77           | 0.33     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |

Friday, June 22, 2018 Page 9 of 33

| Sample Name ELSWH05-001-    | -SS-001     |                 | Matrix 1 | Гуре: Ѕ | R     | pe: TRG         |                  |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI084     | Sampl       | e Date/Time     | 2018     | -05-02  | 07:42 |                 | Validati         | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 0.40            | 0.26     | 0.80    | 1.0   | ug/kg           | J                | J                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.80          | 0.33     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.50          | 0.17     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.67            | 0.23     | 0.50    | 1.0   | ug/kg           | J                | J                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.80          | 0.39     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | 0.93            | 0.28     | 0.80    | 1.0   | ug/kg           | J                | J                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | 0.41            | 0.28     | 0.80    | 1.0   | ug/kg           | J                | J                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.66            | 0.19     | 0.50    | 1.0   | ug/kg           | J                | J                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 1.2             | 0.24     | 0.50    | 1.0   | ug/kg           |                  |                         |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.78            | 0.14     | 0.50    | 1.0   | ug/kg           | J                | J                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | 1.2             | 0.22     | 0.50    | 1.0   | ug/kg           |                  |                         |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | 0.44            | 0.14     | 0.50    | 1.0   | ug/kg           | J                | J                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 68              | 2.6      | 8.0     | 10    | ug/kg           |                  |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 1.8             | 0.25     | 0.80    | 1.0   | ug/kg           |                  |                         |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.88            | 0.25     | 0.80    | 1.0   | ug/kg           | J                | J                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.80          | 0.31     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.80          | 0.33     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | 0.44            | 0.34     | 0.80    | 1.0   | ug/kg           | J                | J                       |                           |

Friday, June 22, 2018 Page 10 of 33

| Sample Name ELSWH05-002     | 2-GW-025    | N               | Matrix T | Гуре:  | R     | Result Typ      | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|--------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI095     | Sampl       | e Date/Time:    | 2018     | -05-03 | 16:30 |                 | Validati         | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | 0.014           | 0.0054   | 0.015  | 0.020 | ug/L            | J                | J                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.033           | 0.0055   | 0.015  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.051           | 0.0074   | 0.015  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.23            | 0.0056   | 0.015  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.12            | 0.0035   | 0.010  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDI | E 754-91-6  | 0.018           | 0.0034   | 0.010  | 0.020 | ug/L            | J                | J                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 0.24            | 0.0060   | 0.015  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.088           | 0.0033   | 0.010  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.12            | 0.0075   | 0.018  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |

Friday, June 22, 2018 Page 11 of 33

| Sample Name ELSWH05-002     | -SO-020     | Matrix Type: S Result Type: TRG |        |        |       |                 |                  |                         |                           |  |
|-----------------------------|-------------|---------------------------------|--------|--------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GQI083     | Sampl       | e Date/Time                     | : 2018 | -05-01 | 15:32 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value                 | DL     | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.73                          | 0.24   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.73                          | 0.30   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.46                          | 0.15   | 0.46   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.46                          | 0.21   | 0.46   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.73                          | 0.35   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.73                          | 0.25   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.73                          | 0.25   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.46                          | 0.17   | 0.46   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.46                          | 0.22   | 0.46   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.46                          | 0.13   | 0.46   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.46                          | 0.20   | 0.46   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.46                          | 0.13   | 0.46   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.73                          | 0.24   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.73                          | 0.23   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.73                          | 0.23   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.73                          | 0.28   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.73                          | 0.30   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.73                          | 0.31   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |  |

Friday, June 22, 2018 Page 12 of 33

| Sample Name ELSWH05-002-    | -SS-001     |                 | Matrix 7 | Гуре: Ѕ | R     | Result Typ      | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GQI082     | Sampl       | e Date/Time     | 2018     | -05-01  | 13:35 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.96          | 0.31     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.96          | 0.40     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.60          | 0.20     | 0.60    | 1.2   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.53            | 0.28     | 0.60    | 1.2   | ug/kg           | J                | J                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.96          | 0.47     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.96          | 0.34     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.96          | 0.34     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.50            | 0.23     | 0.60    | 1.2   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.69            | 0.29     | 0.60    | 1.2   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.55            | 0.17     | 0.60    | 1.2   | ug/kg           | J                | J                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.60          | 0.26     | 0.60    | 1.2   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | 0.41            | 0.17     | 0.60    | 1.2   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 11              | 0.31     | 0.96    | 1.2   | ug/kg           |                  |                         |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.62            | 0.30     | 0.96    | 1.2   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.61            | 0.30     | 0.96    | 1.2   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.96          | 0.37     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.96          | 0.40     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.96          | 0.41     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |  |

Friday, June 22, 2018 Page 13 of 33

| Sample Name ELSWH05-003-    | -SO-009     |                 | Matrix ' | Гуре: Ѕ | R     | esult Typ       | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GQI088     | Sampl       | e Date/Time:    | 2018     | -05-02  | 11:45 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.80          | 0.26     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.80          | 0.33     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.50          | 0.17     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.50          | 0.23     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.80          | 0.39     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.80          | 0.28     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.80          | 0.28     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.50          | 0.19     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.50          | 0.24     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.50          | 0.14     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.50          | 0.22     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.50          | 0.14     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 0.90            | 0.26     | 0.80    | 1.0   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.80          | 0.25     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.80          | 0.25     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.80          | 0.31     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.80          | 0.33     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.80          | 0.34     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |

Friday, June 22, 2018 Page 14 of 33

| Sample Name ELSWH05-003     | -SO-909     | ]               | Matrix ' | Гуре: Ѕ | R     | esult Typ       | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GQI089     | Sampl       | e Date/Time     | : 2018   | -05-02  | 11:45 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 0.30            | 0.24     | 0.75    | 0.94  | ug/kg           | J                | J                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.75          | 0.31     | 0.75    | 0.94  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.47          | 0.16     | 0.47    | 0.94  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.37            | 0.22     | 0.47    | 0.94  | ug/kg           | J                | J                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.75          | 0.37     | 0.75    | 0.94  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | 0.38            | 0.26     | 0.75    | 0.94  | ug/kg           | J                | J                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | 0.35            | 0.26     | 0.75    | 0.94  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.47          | 0.18     | 0.47    | 0.94  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.50            | 0.23     | 0.47    | 0.94  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.34            | 0.13     | 0.47    | 0.94  | ug/kg           | J                | J                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.47          | 0.21     | 0.47    | 0.94  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.47          | 0.13     | 0.47    | 0.94  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 1.4             | 0.24     | 0.75    | 0.94  | ug/kg           |                  |                         |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.37            | 0.24     | 0.75    | 0.94  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.36            | 0.24     | 0.75    | 0.94  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | 0.35            | 0.29     | 0.75    | 0.94  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.75          | 0.31     | 0.75    | 0.94  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | 0.36            | 0.32     | 0.75    | 0.94  | ug/kg           | J                | J                       |                           |  |

Friday, June 22, 2018 Page 15 of 33

| Sample Name ELSWH05-003-    | -SS-001     |                 | Matrix [ | Гуре: Ѕ | R     | oe: TRG         |                  |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI087     | Sampl       | e Date/Time     | 2018     | -05-02  | 10:49 |                 | Validati         | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 5:2 FLUOROTELOMER SULFONATE | 27619-97-2  | <0.88           | 0.29     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | <0.88           | 0.36     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.55          | 0.19     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.79            | 0.25     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | <0.88           | 0.43     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | 0.70            | 0.31     | 0.88    | 1.1   | ug/kg           | J                | J                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | 0.37            | 0.31     | 0.88    | 1.1   | ug/kg           | J                | J                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 1.2             | 0.21     | 0.55    | 1.1   | ug/kg           |                  |                         |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 1.6             | 0.26     | 0.55    | 1.1   | ug/kg           |                  |                         |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 1.3             | 0.15     | 0.55    | 1.1   | ug/kg           |                  |                         |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.99            | 0.24     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | 0.45            | 0.15     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 75              | 2.9      | 8.8     | 11    | ug/kg           |                  |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 3.1             | 0.28     | 0.88    | 1.1   | ug/kg           |                  |                         |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 1.2             | 0.28     | 0.88    | 1.1   | ug/kg           |                  |                         |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | <0.88           | 0.34     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.88          | 0.36     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | 0.40            | 0.37     | 0.88    | 1.1   | ug/kg           | J                | J                       |                           |

Friday, June 22, 2018 Page 16 of 33

| Sample Name ELSWH06-002-    | -SO-010     | Ī               | Matrix ' | Гуре: Ѕ | R     | esult Typ       | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GQI111     | Sampl       | e Date/Time:    | 2018     | -05-05  | 14:15 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.76          | 0.25     | 0.76    | 0.95  | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.76          | 0.31     | 0.76    | 0.95  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.48          | 0.16     | 0.48    | 0.95  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.48          | 0.22     | 0.48    | 0.95  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.76          | 0.37     | 0.76    | 0.95  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.76          | 0.27     | 0.76    | 0.95  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.76          | 0.27     | 0.76    | 0.95  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.48          | 0.18     | 0.48    | 0.95  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.48          | 0.23     | 0.48    | 0.95  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.48          | 0.13     | 0.48    | 0.95  | ug/kg           | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.48          | 0.21     | 0.48    | 0.95  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.48          | 0.13     | 0.48    | 0.95  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 0.51            | 0.25     | 0.76    | 0.95  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.76          | 0.24     | 0.76    | 0.95  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.76          | 0.24     | 0.76    | 0.95  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.76          | 0.29     | 0.76    | 0.95  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.76          | 0.31     | 0.76    | 0.95  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.76          | 0.32     | 0.76    | 0.95  | ug/kg           | U                | U                       |                           |  |

Friday, June 22, 2018 Page 17 of 33

| Sample Name ELSWH06-002     | -SS-001     |                 | Matrix 1 | Гуре: Ѕ | R     | esult Typ       | oe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GQI110     | Sampl       | e Date/Time     | 2018     | -05-05  | 13:15 |                 | Validati         | on Level: St            | age 4                     |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 5:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.80          | 0.26     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | <0.88           | 0.36     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.55          | 0.19     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.75            | 0.25     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | <0.88           | 0.43     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | <0.88           | 0.31     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | <0.88           | 0.31     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.48            | 0.21     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.55          | 0.26     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.55          | 0.15     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | 1.0             | 0.24     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.55          | 0.15     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 6.8             | 0.29     | 0.88    | 1.1   | ug/kg           |                  |                         |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.73            | 0.28     | 0.88    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.78            | 0.28     | 0.88    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | <0.88           | 0.34     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | <0.88           | 0.36     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.88          | 0.37     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |

Friday, June 22, 2018 Page 18 of 33

| Sample Name ELSWH06-003-    | -SO-054     | -               | Matrix [ | Гуре: Ѕ | R     | esult Typ       | e: TRG           |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GQI109     | Sampl       | e Date/Time     | : 2018   | -05-05  | 11:40 |                 | Validatio        | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.73          | 0.24     | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.73          | 0.30     | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.46          | 0.15     | 0.46    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.46          | 0.21     | 0.46    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.73          | 0.35     | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.73          | 0.25     | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.73          | 0.25     | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.46          | 0.17     | 0.46    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.46          | 0.22     | 0.46    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.46          | 0.13     | 0.46    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.46          | 0.20     | 0.46    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.46          | 0.13     | 0.46    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.73          | 0.24     | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.73          | 0.23     | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.73          | 0.23     | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.73          | 0.28     | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.73          | 0.30     | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.73          | 0.31     | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |

Friday, June 22, 2018 Page 19 of 33

| Sample Name ELSWH06-003-    | -SS-001     |                          | Matrix 1 | Гуре: Ѕ | R    | pe: TRG         |                  |                         |                           |
|-----------------------------|-------------|--------------------------|----------|---------|------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI107     | Sampl       | le Date/Time: 2018-05-05 |          | 08:08   |      | Validati        | on Level: St     | age 2B                  |                           |
| Analyte                     | CAS No      | Result<br>Value          | DL       | LOD     | LOQ  | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | <0.78                    | 0.25     | 0.78    | 0.98 | ug/kg           | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | <0.78                    | 0.32     | 0.78    | 0.98 | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.49                   | 0.17     | 0.49    | 0.98 | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.51                     | 0.23     | 0.49    | 0.98 | ug/kg           | J                | J                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | <0.78                    | 0.38     | 0.78    | 0.98 | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | <0.78                    | 0.27     | 0.78    | 0.98 | ug/kg           | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.78                   | 0.27     | 0.78    | 0.98 | ug/kg           | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.44                     | 0.19     | 0.49    | 0.98 | ug/kg           | J                | J                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.46                     | 0.24     | 0.49    | 0.98 | ug/kg           | J                | J                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.38                     | 0.14     | 0.49    | 0.98 | ug/kg           | J                | J                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.52                     | 0.22     | 0.49    | 0.98 | ug/kg           | J                | J                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.49                   | 0.14     | 0.49    | 0.98 | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 4.6                      | 0.25     | 0.78    | 0.98 | ug/kg           |                  |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.57                     | 0.25     | 0.78    | 0.98 | ug/kg           | J                | J                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.46                     | 0.25     | 0.78    | 0.98 | ug/kg           | J                | J                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.78                   | 0.30     | 0.78    | 0.98 | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | <0.78                    | 0.32     | 0.78    | 0.98 | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | <0.78                    | 0.33     | 0.78    | 0.98 | ug/kg           | U                | U                       |                           |

Friday, June 22, 2018 Page 20 of 33

| Sample Name ELSWH08-00      | 1-GW-044    | N               | Aatrix T | Гуре: | R     |                 |                  |                         |                           |
|-----------------------------|-------------|-----------------|----------|-------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI094     | Sampl       | e Date/Time:    | 2018-    | 05-01 | 11:41 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD   | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.015         | 0.0054   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.015         | 0.0055   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.015         | 0.0074   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.015         | 0.0056   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.010         | 0.0035   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDI | E 754-91-6  | < 0.010         | 0.0034   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.015         | 0.0060   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.010         | 0.0033   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.018         | 0.0075   | 0.018 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |

Friday, June 22, 2018 Page 21 of 33

| Sample Name ELSWH09-003-    | -SO-028     | -               | Matrix [ | Гуре: Ѕ | R     | e: TRG          |                  |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI101     | Sampl       | e Date/Time     | : 2018   | -05-04  | 09:57 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.67          | 0.22     | 0.67    | 0.84  | ug/kg           | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.67          | 0.28     | 0.67    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.42          | 0.14     | 0.42    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.42          | 0.19     | 0.42    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.67          | 0.33     | 0.67    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.67          | 0.24     | 0.67    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.67          | 0.24     | 0.67    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.42          | 0.16     | 0.42    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.42          | 0.20     | 0.42    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.42          | 0.12     | 0.42    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.42          | 0.18     | 0.42    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.42          | 0.12     | 0.42    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.67          | 0.22     | 0.67    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.67          | 0.21     | 0.67    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.67          | 0.21     | 0.67    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.67          | 0.26     | 0.67    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.67          | 0.28     | 0.67    | 0.84  | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.67          | 0.29     | 0.67    | 0.84  | ug/kg           | U                | U                       |                           |

Friday, June 22, 2018 Page 22 of 33

| Sample Name ELSWH09-003     | -SS-001     |                 | Matrix 1 | Гуре: Ѕ | R     | oe: TRG         |                  |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI093     | Sampl       | e Date/Time     | 2018     | -05-04  | 08:00 |                 | Validati         | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.96          | 0.31     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.96          | 0.40     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.60          | 0.20     | 0.60    | 1.2   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.60          | 0.28     | 0.60    | 1.2   | ug/kg           | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.96          | 0.47     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | 2.3             | 0.34     | 0.96    | 1.2   | ug/kg           |                  |                         |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | 0.78            | 0.34     | 0.96    | 1.2   | ug/kg           | J                | J                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.60          | 0.23     | 0.60    | 1.2   | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.60          | 0.29     | 0.60    | 1.2   | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.45            | 0.17     | 0.60    | 1.2   | ug/kg           | J                | J                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.60            | 0.26     | 0.60    | 1.2   | ug/kg           | J                | J                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | 0.41            | 0.17     | 0.60    | 1.2   | ug/kg           | J                | J                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 3.0             | 0.31     | 0.96    | 1.2   | ug/kg           |                  |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 1.1             | 0.30     | 0.96    | 1.2   | ug/kg           | J                | J                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.48            | 0.30     | 0.96    | 1.2   | ug/kg           | J                | J                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | 0.48            | 0.37     | 0.96    | 1.2   | ug/kg           | J                | J                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.96          | 0.40     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | 0.51            | 0.41     | 0.96    | 1.2   | ug/kg           | J                | J                       |                           |

Friday, June 22, 2018 Page 23 of 33

| Sample Name ELSWH10-002-    | -SO-029     |                 | Matrix 1 | Гуре: Ѕ | R     | e: TRG          |                  |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI106     | Sampl       | e Date/Time     | : 2018   | -05-04  | 17:10 |                 | Validati         | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.88          | 0.29     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.88          | 0.36     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.55          | 0.19     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.55          | 0.25     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.88          | 0.43     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.88          | 0.31     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.88          | 0.31     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.55          | 0.21     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.55          | 0.26     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.55          | 0.15     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.55          | 0.24     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.55          | 0.15     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.88          | 0.29     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.88          | 0.28     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.88          | 0.28     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.88          | 0.34     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.88          | 0.36     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.88          | 0.37     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |

Friday, June 22, 2018 Page 24 of 33

| Sample Name ELSWH10-002     | -SS-001     | I               | Matrix T | Гуре: Ѕ | R     | esult Typ       | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI105     | Sample      | e Date/Time     | : 2018-  | -05-04  | 15:22 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.96          | 0.31     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.96          | 0.40     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.60          | 0.20     | 0.60    | 1.2   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.81            | 0.28     | 0.60    | 1.2   | ug/kg           | J                | J                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.96          | 0.47     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.96          | 0.34     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.96          | 0.34     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.91            | 0.23     | 0.60    | 1.2   | ug/kg           | J                | J                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 3.2             | 0.29     | 0.60    | 1.2   | ug/kg           |                  |                         |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.73            | 0.17     | 0.60    | 1.2   | ug/kg           | J                | J                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.75            | 0.26     | 0.60    | 1.2   | ug/kg           | J                | J                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.60          | 0.17     | 0.60    | 1.2   | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 5.2             | 0.31     | 0.96    | 1.2   | ug/kg           |                  |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 1.5             | 0.30     | 0.96    | 1.2   | ug/kg           |                  |                         |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 1.3             | 0.30     | 0.96    | 1.2   | ug/kg           |                  |                         |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.96          | 0.37     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.96          | 0.40     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.96          | 0.41     | 0.96    | 1.2   | ug/kg           | U                | U                       |                           |

Friday, June 22, 2018 Page 25 of 33

| Sample Name ELSWH11-003-    | -SO-015     |                 | Matrix '                | Гуре: Ѕ | R     | esult Typ       | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|-------------------------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GQI103     | Sampl       | e Date/Time:    | e Date/Time: 2018-05-04 |         | 13:00 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL                      | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.73          | 0.24                    | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.73          | 0.30                    | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.46          | 0.15                    | 0.46    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.46          | 0.21                    | 0.46    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.73          | 0.35                    | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.73          | 0.25                    | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.73          | 0.25                    | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.46          | 0.17                    | 0.46    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.69            | 0.22                    | 0.46    | 0.91  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.34            | 0.13                    | 0.46    | 0.91  | ug/kg           | J                | J                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.46          | 0.20                    | 0.46    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | 0.49            | 0.13                    | 0.46    | 0.91  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 1.0             | 0.24                    | 0.73    | 0.91  | ug/kg           |                  |                         |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.42            | 0.23                    | 0.73    | 0.91  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.73          | 0.23                    | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.73          | 0.28                    | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.73          | 0.30                    | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.73          | 0.31                    | 0.73    | 0.91  | ug/kg           | U                | U                       |                           |  |

Friday, June 22, 2018 Page 26 of 33

| Sample Name ELSWH11-003-    | SS-001      |                 | Matrix 7 | Гуре: Ѕ | R     | Result Typ      | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GQI102     | Sampl       | e Date/Time     | 2018     | -05-04  | 11:00 |                 | Validatio        | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.80          | 0.26     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | <0.80           | 0.33     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.50          | 0.17     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.51            | 0.23     | 0.50    | 1.0   | ug/kg           | J                | J                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.80          | 0.39     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.80          | 0.28     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.80          | 0.28     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.50          | 0.19     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.44            | 0.24     | 0.50    | 1.0   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.38            | 0.14     | 0.50    | 1.0   | ug/kg           | J                | J                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.50          | 0.22     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.50          | 0.14     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 0.46            | 0.26     | 0.80    | 1.0   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.80          | 0.25     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.37            | 0.25     | 0.80    | 1.0   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.80          | 0.31     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.80          | 0.33     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.80          | 0.34     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |

Friday, June 22, 2018 Page 27 of 33

| Sample Name ELSWH11-005-    | -SS-001     |                          | Matrix [ | Гуре: Ѕ | R    | esult Typ       | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|--------------------------|----------|---------|------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GQI104     | Sample      | le Date/Time: 2018-05-04 |          | 13:15   |      | Validati        | on Level: St     | age 2B                  |                           |  |
| Analyte                     | CAS No      | Result<br>Value          | DL       | LOD     | LOQ  | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 0.29                     | 0.25     | 0.77    | 0.96 | ug/kg           | J                | J                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.77                   | 0.32     | 0.77    | 0.96 | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.48                   | 0.16     | 0.48    | 0.96 | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.37                     | 0.22     | 0.48    | 0.96 | ug/kg           | J                | J                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.77                   | 0.37     | 0.77    | 0.96 | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.77                   | 0.27     | 0.77    | 0.96 | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.77                   | 0.27     | 0.77    | 0.96 | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.43                     | 0.18     | 0.48    | 0.96 | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.44                     | 0.23     | 0.48    | 0.96 | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.38                     | 0.13     | 0.48    | 0.96 | ug/kg           | J                | J                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.54                     | 0.21     | 0.48    | 0.96 | ug/kg           | J                | J                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | 0.34                     | 0.13     | 0.48    | 0.96 | ug/kg           | J                | J                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 9.6                      | 0.25     | 0.77    | 0.96 | ug/kg           |                  |                         |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.59                     | 0.24     | 0.77    | 0.96 | ug/kg           | J                | J                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.38                     | 0.24     | 0.77    | 0.96 | ug/kg           | J                | J                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.77                   | 0.30     | 0.77    | 0.96 | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.77                   | 0.32     | 0.77    | 0.96 | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.77                   | 0.33     | 0.77    | 0.96 | ug/kg           | U                | U                       |                           |  |

Friday, June 22, 2018 Page 28 of 33

| Sample Name ELSWH-RS-009    | 9           | ľ               | Matrix T | ype:  | R     | esult Typ       | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|-------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GQI080     | Sampl       | e Date/Time:    | 2018     | 05-01 | 11:40 |                 | Validatio        | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD   | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.015         | 0.0054   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.015         | 0.0055   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.015         | 0.0074   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.015         | 0.0056   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.010         | 0.0035   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.015         | 0.0060   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.010         | 0.0033   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.018         | 0.0075   | 0.018 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |

Friday, June 22, 2018 Page 29 of 33

| Sample Name ELSWH-RS-010    | 0           | ľ               | Matrix T | Гуре: | R     | esult Typ       | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|-------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GQI085     | Sampl       | e Date/Time:    | 2018-    | 05-02 | 08:00 |                 | Validatio        | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD   | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.015         | 0.0054   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.015         | 0.0055   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.015         | 0.0074   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.015         | 0.0056   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.010         | 0.0035   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.015         | 0.0060   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.010         | 0.0033   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.018         | 0.0075   | 0.018 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |

Friday, June 22, 2018 Page 30 of 33

| <b>Sample Name</b> ELSWH-RS-01 | 1           | N               | Aatrix T | ype:  | R     | esult Typ       | pe: TRG          |                         |                           |  |
|--------------------------------|-------------|-----------------|----------|-------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GQI091        | Sample      | Date/Time:      | 2018-    | 05-03 | 09:32 |                 | Validatio        | on Level: St            | age 2B                    |  |
| Analyte                        | CAS No      | Result<br>Value | DL       | LOD   | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 5:2 FLUOROTELOMER SULFONATE    | 27619-97-2  | < 0.015         | 0.0066   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| 3:2 FLUOROTELOMER SULFONATE    | 39108-34-4  | < 0.015         | 0.0066   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE      | 29420-43-3  | < 0.015         | 0.0054   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID         | 375-22-4    | < 0.015         | 0.0055   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE      | 335-77-3    | < 0.015         | 0.0060   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID         | 335-76-2    | < 0.015         | 0.0061   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID       | 307-55-1    | < 0.010         | 0.0050   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID        | 375-85-9    | < 0.015         | 0.0074   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE      | 108427-53-8 | < 0.015         | 0.0056   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID         | 307-24-4    | < 0.010         | 0.0035   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID         | 375-95-1    | < 0.018         | 0.0087   | 0.018 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE    | 754-91-6    | < 0.010         | 0.0034   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE      | 1763-23-1   | < 0.015         | 0.0060   | 0.015 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROOCTANOIC ACID         | 335-67-1    | < 0.010         | 0.0033   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID        | 2706-90-3   | < 0.018         | 0.0075   | 0.018 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID    | 376-06-7    | < 0.010         | 0.0027   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID      | 72629-94-8  | < 0.010         | 0.0038   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID       | 2058-94-8   | < 0.010         | 0.0025   | 0.010 | 0.020 | ug/L            | U                | U                       |                           |  |

Friday, June 22, 2018 Page 31 of 33

| Sample Name ELSWH-RS-01     | 2           | I               | Matrix Type: |       |       | Result Type: TRG |                            |                         |                           |
|-----------------------------|-------------|-----------------|--------------|-------|-------|------------------|----------------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI100     | Sample      | Date/Time:      | 2018-        | 05-04 | 09:52 |                  | Validation Level: Stage 2B |                         |                           |
| Analyte                     | CAS No      | Result<br>Value | DL           | LOD   | LOQ   | Result<br>Units  | Lab<br>Qualifier           | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066       | 0.015 | 0.020 | ug/L             | U                          | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066       | 0.015 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.015         | 0.0054       | 0.015 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.015         | 0.0055       | 0.015 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060       | 0.015 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061       | 0.015 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050       | 0.010 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.015         | 0.0074       | 0.015 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.015         | 0.0056       | 0.015 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.010         | 0.0035       | 0.010 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087       | 0.018 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034       | 0.010 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.015         | 0.0060       | 0.015 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.010         | 0.0033       | 0.010 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.018         | 0.0075       | 0.018 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027       | 0.010 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038       | 0.010 | 0.020 | ug/L             | U                          | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025       | 0.010 | 0.020 | ug/L             | U                          | U                       |                           |

Friday, June 22, 2018 Page 32 of 33

| Sample Name ELSWH-RS-013    | 3           | N               | Matrix T   | ype:  | R     | esult Typ       | e: TRG                     |                         |                           |
|-----------------------------|-------------|-----------------|------------|-------|-------|-----------------|----------------------------|-------------------------|---------------------------|
| Lab Sample Name: GQI108     | Sample      | Date/Time:      | 2018-05-05 |       | 11:35 |                 | Validation Level: Stage 2B |                         |                           |
| Analyte                     | CAS No      | Result<br>Value | DL         | LOD   | LOQ   | Result<br>Units | Lab<br>Qualifier           | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066     | 0.015 | 0.020 | ug/L            | U                          | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066     | 0.015 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.015         | 0.0054     | 0.015 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.015         | 0.0055     | 0.015 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060     | 0.015 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061     | 0.015 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050     | 0.010 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.015         | 0.0074     | 0.015 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.015         | 0.0056     | 0.015 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.010         | 0.0035     | 0.010 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087     | 0.018 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034     | 0.010 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.015         | 0.0060     | 0.015 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.010         | 0.0033     | 0.010 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.018         | 0.0075     | 0.018 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027     | 0.010 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038     | 0.010 | 0.020 | ug/L            | U                          | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025     | 0.010 | 0.020 | ug/L            | U                          | U                       |                           |

Friday, June 22, 2018 Page 33 of 33

# Validated Sample Result Forms: B8B1135

Analysis Method: EPA 537 m

| Sample Name ELSWH02-005     | -SO-034     | ľ               | Matrix T | ype: S         | R     | Result Typ      | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|----------------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF770     | Sample      | Date/Time       | : 2018-  | 05 <b>-</b> 07 | 13:05 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD            | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 5:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 0.81            | 0.21     | 0.66           | 0.82  | ug/kg           | J                | J                       | 10A                       |
| 3:2 FLUOROTELOMER SULFONATE | 39108-34-4  | 1.8             | 0.27     | 0.66           | 0.82  | ug/kg           |                  | J                       | 10A                       |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.41          | 0.14     | 0.41           | 0.82  | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.41          | 0.19     | 0.41           | 0.82  | ug/kg           | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.66          | 0.32     | 0.66           | 0.82  | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.66          | 0.23     | 0.66           | 0.82  | ug/kg           | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.66          | 0.23     | 0.66           | 0.82  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.52            | 0.16     | 0.41           | 0.82  | ug/kg           | J                | J                       | 10A                       |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.95            | 0.20     | 0.41           | 0.82  | ug/kg           |                  | J                       | 10A                       |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.57            | 0.11     | 0.41           | 0.82  | ug/kg           | J                | J                       | 10A                       |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.41          | 0.18     | 0.41           | 0.82  | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.41          | 0.11     | 0.41           | 0.82  | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 27              | 0.21     | 0.66           | 0.82  | ug/kg           |                  | J                       | 10A                       |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.66          | 0.21     | 0.66           | 0.82  | ug/kg           | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.30            | 0.21     | 0.66           | 0.82  | ug/kg           | J                | J                       | 10A                       |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.66          | 0.25     | 0.66           | 0.82  | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.66          | 0.27     | 0.66           | 0.82  | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.66          | 0.28     | 0.66           | 0.82  | ug/kg           | U                | U                       |                           |

Thursday, July 12, 2018 Page 1 of 35

| Sample Name ELSWH03-002     | -GW-017     | I               | Matrix T | ype: W | R     | esult Typ       | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|--------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF780     | Sampl       | e Date/Time     | 2018-    | 05-10  | 14:21 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 0.042           | 0.0066   | 0.015  | 0.020 | ug/L            |                  |                         |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | 0.024           | 0.0066   | 0.015  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | 0.059           | 0.0054   | 0.015  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.068           | 0.0055   | 0.015  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.12            | 0.0074   | 0.015  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 1.2             | 0.056    | 0.15   | 0.20  | ug/L            |                  |                         |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.27            | 0.0035   | 0.010  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.016           | 0.0087   | 0.018  | 0.020 | ug/L            | J                | J                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 1.4             | 0.060    | 0.15   | 0.20  | ug/L            |                  |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.12            | 0.0033   | 0.010  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.19            | 0.0075   | 0.018  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |

Thursday, July 12, 2018 Page 2 of 35

| Sample Name ELSWH03-002-    | -SO-011     |                 | Matrix [ | Гуре: Ѕ | R     | esult Typ       | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GRF766     | Sampl       | e Date/Time     | 2018     | -05-06  | 13:50 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.80          | 0.26     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.80          | 0.33     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.50          | 0.17     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.50          | 0.23     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.80          | 0.39     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.80          | 0.28     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.80          | 0.28     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.50          | 0.19     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 1.4             | 0.24     | 0.50    | 1.0   | ug/kg           |                  | J                       | 17                        |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.49            | 0.14     | 0.50    | 1.0   | ug/kg           | J                | J                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.50          | 0.22     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.50          | 0.14     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.80          | 0.26     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.80          | 0.25     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.80          | 0.25     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.80          | 0.31     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.80          | 0.33     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.80          | 0.34     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |

Thursday, July 12, 2018 Page 3 of 35

| Sample Name ELSWH03-002-    | -SO-911     |                 | Matrix [ | Гуре: Ѕ | R     | Result Typ      | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF767     | Sampl       | e Date/Time     | : 2018   | -05-06  | 13:50 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.78          | 0.25     | 0.78    | 0.98  | ug/kg           | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | <0.78           | 0.32     | 0.78    | 0.98  | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.49          | 0.17     | 0.49    | 0.98  | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.49          | 0.23     | 0.49    | 0.98  | ug/kg           | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | <0.78           | 0.38     | 0.78    | 0.98  | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | <0.78           | 0.27     | 0.78    | 0.98  | ug/kg           | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.78          | 0.27     | 0.78    | 0.98  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.58            | 0.19     | 0.49    | 0.98  | ug/kg           | J                | J                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 2.3             | 0.24     | 0.49    | 0.98  | ug/kg           |                  | J                       | 17                        |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.57            | 0.14     | 0.49    | 0.98  | ug/kg           | J                | J                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.49          | 0.22     | 0.49    | 0.98  | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.49          | 0.14     | 0.49    | 0.98  | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 0.47            | 0.25     | 0.78    | 0.98  | ug/kg           | J                | J                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.78          | 0.25     | 0.78    | 0.98  | ug/kg           | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.38            | 0.25     | 0.78    | 0.98  | ug/kg           | J                | J                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.78          | 0.30     | 0.78    | 0.98  | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.78          | 0.32     | 0.78    | 0.98  | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.78          | 0.33     | 0.78    | 0.98  | ug/kg           | U                | U                       |                           |

Thursday, July 12, 2018 Page 4 of 35

| Sample Name ELSWH03-003-    | -GW-016     | I               | Matrix T | ype: W | R     | esult Typ       | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|--------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF779     | Sampl       | e Date/Time     | 2018-    | 05-10  | 13:21 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 0.047           | 0.0066   | 0.015  | 0.020 | ug/L            |                  |                         |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | 0.086           | 0.0054   | 0.015  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.039           | 0.0055   | 0.015  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.081           | 0.0074   | 0.015  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 1.3             | 0.056    | 0.15   | 0.20  | ug/L            |                  |                         |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.31            | 0.0035   | 0.010  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.012           | 0.0087   | 0.018  | 0.020 | ug/L            | J                | J                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 1.3             | 0.060    | 0.15   | 0.20  | ug/L            |                  |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.10            | 0.0033   | 0.010  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.17            | 0.0075   | 0.018  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |

Thursday, July 12, 2018 Page 5 of 35

| Sample Name ELSWH03-003-    | -SO-011     | I               | Matrix ' | Гуре: Ѕ | R     | e: TRG          |                  |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GRF768     | Sampl       | e Date/Time:    | 2018     | -05-06  | 15:03 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.74          | 0.24     | 0.74    | 0.93  | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.74          | 0.31     | 0.74    | 0.93  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.47          | 0.16     | 0.47    | 0.93  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.47          | 0.21     | 0.47    | 0.93  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.74          | 0.36     | 0.74    | 0.93  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.74          | 0.26     | 0.74    | 0.93  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.74          | 0.26     | 0.74    | 0.93  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.47          | 0.18     | 0.47    | 0.93  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.84            | 0.22     | 0.47    | 0.93  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.47          | 0.13     | 0.47    | 0.93  | ug/kg           | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.47          | 0.20     | 0.47    | 0.93  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.47          | 0.13     | 0.47    | 0.93  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 8.5             | 0.24     | 0.74    | 0.93  | ug/kg           |                  |                         |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.74          | 0.23     | 0.74    | 0.93  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.74          | 0.23     | 0.74    | 0.93  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.74          | 0.29     | 0.74    | 0.93  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.74          | 0.31     | 0.74    | 0.93  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.74          | 0.32     | 0.74    | 0.93  | ug/kg           | U                | U                       |                           |  |

Thursday, July 12, 2018 Page 6 of 35

| Sample Name ELSWH03-004-    | -SO-011     |                 | Matrix 1 | Гуре: Ѕ | R     | pe: TRG         |                  |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF771     | Sampl       | e Date/Time     | : 2018   | -05-07  | 16:05 |                 | Validatio        | on Level: St            | age 4                     |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.72          | 0.23     | 0.72    | 0.90  | ug/kg           | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | <0.72           | 0.30     | 0.72    | 0.90  | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.45          | 0.15     | 0.45    | 0.90  | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.45          | 0.21     | 0.45    | 0.90  | ug/kg           | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | <0.72           | 0.35     | 0.72    | 0.90  | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | <0.72           | 0.25     | 0.72    | 0.90  | ug/kg           | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.72          | 0.25     | 0.72    | 0.90  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.45          | 0.17     | 0.45    | 0.90  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.41            | 0.22     | 0.45    | 0.90  | ug/kg           | J                | J                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.45          | 0.13     | 0.45    | 0.90  | ug/kg           | U                | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.45          | 0.20     | 0.45    | 0.90  | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.45          | 0.13     | 0.45    | 0.90  | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 5.6             | 0.23     | 0.72    | 0.90  | ug/kg           |                  |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.72          | 0.23     | 0.72    | 0.90  | ug/kg           | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.72          | 0.23     | 0.72    | 0.90  | ug/kg           | U                | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.72          | 0.28     | 0.72    | 0.90  | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.72          | 0.30     | 0.72    | 0.90  | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.72          | 0.31     | 0.72    | 0.90  | ug/kg           | U                | U                       |                           |

Thursday, July 12, 2018 Page 7 of 35

| Sample Name ELSWH06-001     | -GW-018     | N               | Matrix T | Г <b>уре:</b> W | R     | Result Typ      | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|-----------------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GRF778     | Sampl       | e Date/Time:    | 2018-    | 05-09           | 11:33 |                 | Validatio        | on Level: St            | age 4                     |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD             | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 0.090           | 0.0066   | 0.015           | 0.020 | ug/L            |                  |                         |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | 0.018           | 0.0066   | 0.015           | 0.020 | ug/L            | J                | J                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | 0.022           | 0.0054   | 0.015           | 0.020 | ug/L            |                  |                         |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.21            | 0.0055   | 0.015           | 0.020 | ug/L            |                  |                         |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015           | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015           | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010           | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.70            | 0.0074   | 0.015           | 0.020 | ug/L            |                  |                         |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.33            | 0.0056   | 0.015           | 0.020 | ug/L            |                  |                         |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.46            | 0.0035   | 0.010           | 0.020 | ug/L            |                  |                         |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.030           | 0.0087   | 0.018           | 0.020 | ug/L            |                  |                         |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010           | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 0.40            | 0.0060   | 0.015           | 0.020 | ug/L            |                  |                         |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.19            | 0.0033   | 0.010           | 0.020 | ug/L            |                  |                         |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.71            | 0.0075   | 0.018           | 0.020 | ug/L            |                  |                         |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010           | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010           | 0.020 | ug/L            | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010           | 0.020 | ug/L            | U                | U                       |                           |  |

Thursday, July 12, 2018 Page 8 of 35

| Sample Name ELSWH06-001     | Sample Name ELSWH06-001-SO-012 |                 |                         |      |       | esult Typ       | pe: TRG                    |                         |                           |  |  |
|-----------------------------|--------------------------------|-----------------|-------------------------|------|-------|-----------------|----------------------------|-------------------------|---------------------------|--|--|
| Lab Sample Name: GRF765     | Sampl                          | e Date/Time     | e Date/Time: 2018-05-06 |      | 10:40 |                 | Validation Level: Stage 2B |                         |                           |  |  |
| Analyte                     | CAS No                         | Result<br>Value | DL                      | LOD  | LOQ   | Result<br>Units | Lab<br>Qualifier           | Validation<br>Qualifier | Validation<br>Reason Code |  |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2                     | < 0.68          | 0.22                    | 0.68 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4                     | < 0.68          | 0.28                    | 0.68 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3                     | < 0.43          | 0.14                    | 0.43 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4                       | < 0.43          | 0.20                    | 0.43 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| PERFLUORODECANE SULFONATE   | 335-77-3                       | < 0.68          | 0.33                    | 0.68 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| PERFLUORODECANOIC ACID      | 335-76-2                       | < 0.68          | 0.24                    | 0.68 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| PERFLUORODODECANOIC ACID    | 307-55-1                       | < 0.68          | 0.24                    | 0.68 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9                       | < 0.43          | 0.16                    | 0.43 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8                    | < 0.43          | 0.20                    | 0.43 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4                       | < 0.43          | 0.12                    | 0.43 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| PERFLUORONONANOIC ACID      | 375-95-1                       | < 0.43          | 0.19                    | 0.43 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6                       | < 0.43          | 0.12                    | 0.43 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1                      | 0.77            | 0.22                    | 0.68 | 0.85  | ug/kg           | J                          | J                       |                           |  |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1                       | < 0.68          | 0.21                    | 0.68 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3                      | < 0.68          | 0.21                    | 0.68 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7                       | < 0.68          | 0.26                    | 0.68 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8                     | < 0.68          | 0.28                    | 0.68 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8                      | < 0.68          | 0.29                    | 0.68 | 0.85  | ug/kg           | U                          | U                       |                           |  |  |

Thursday, July 12, 2018 Page 9 of 35

| Sample Name ELSWH06-001     | -SS-001     | Matrix Type: S Result Type: TRG |        |        |       |                 |                  |                         |                           |  |
|-----------------------------|-------------|---------------------------------|--------|--------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GRF764     | Sampl       | e Date/Time                     | : 2018 | -05-06 | 10:13 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value                 | DL     | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 0.31                            | 0.23   | 0.72   | 0.90  | ug/kg           | J                | J                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.72                          | 0.30   | 0.72   | 0.90  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.45                          | 0.15   | 0.45   | 0.90  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.99                            | 0.21   | 0.45   | 0.90  | ug/kg           |                  |                         |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | <0.72                           | 0.35   | 0.72   | 0.90  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | 0.50                            | 0.25   | 0.72   | 0.90  | ug/kg           | J                | J                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | <0.72                           | 0.25   | 0.72   | 0.90  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.52                            | 0.17   | 0.45   | 0.90  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.65                            | 0.22   | 0.45   | 0.90  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.40                            | 0.13   | 0.45   | 0.90  | ug/kg           | J                | J                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.93                            | 0.20   | 0.45   | 0.90  | ug/kg           |                  |                         |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.45                          | 0.13   | 0.45   | 0.90  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 61                              | 2.3    | 7.2    | 9.0   | ug/kg           |                  |                         |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.79                            | 0.23   | 0.72   | 0.90  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.82                            | 0.23   | 0.72   | 0.90  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | <0.72                           | 0.28   | 0.72   | 0.90  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | <0.72                           | 0.30   | 0.72   | 0.90  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.72                          | 0.31   | 0.72   | 0.90  | ug/kg           | U                | U                       |                           |  |

Thursday, July 12, 2018 Page 10 of 35

| Sample Name ELSWH06-002-    | -GW-018     | Ŋ               | Matrix T | ype: W | R     | esult Typ       | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|--------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF776     | Sampl       | e Date/Time:    | 2018-    | 05-09  | 10:35 |                 | Validati         | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | 0.016           | 0.0054   | 0.015  | 0.020 | ug/L            | J                | J                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.015         | 0.0055   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | UJ                      | 08B                       |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.015           | 0.0074   | 0.015  | 0.020 | ug/L            | J                | J                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.015           | 0.0056   | 0.015  | 0.020 | ug/L            | J                | J                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.042           | 0.0035   | 0.010  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.010         | 0.0033   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.060           | 0.0075   | 0.018  | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |

Thursday, July 12, 2018 Page 11 of 35

| Sample Name ELSWH06-002-    | -GW-918     | N               | Aatrix T | Type: W | R     | esult Typ       | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF777     | Sample      | e Date/Time:    | 2018-    | 05-09   | 10:35 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066   | 0.015   | 0.020 | ug/L            | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | 0.015           | 0.0054   | 0.015   | 0.020 | ug/L            | J                | J                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.015         | 0.0055   | 0.015   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.014           | 0.0074   | 0.015   | 0.020 | ug/L            | J                | J                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.017           | 0.0056   | 0.015   | 0.020 | ug/L            | J                | J                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.039           | 0.0035   | 0.010   | 0.020 | ug/L            |                  |                         |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.015         | 0.0060   | 0.015   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.010         | 0.0033   | 0.010   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.060           | 0.0075   | 0.018   | 0.020 | ug/L            |                  |                         |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010   | 0.020 | ug/L            | U                | U                       |                           |

Thursday, July 12, 2018 Page 12 of 35

| Sample Name ELSWH06-003-    | -GW-055     | Ŋ               | Matrix T | Type: W | R     | esult Typ       | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF775     | Sampl       | e Date/Time:    | 2018-    | 05-07   | 16:21 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 5:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 0.0092          | 0.0066   | 0.015   | 0.020 | ug/L            | J                | J                       |                           |
| 3:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.015         | 0.0054   | 0.015   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.015         | 0.0055   | 0.015   | 0.020 | ug/L            | U                | UJ                      | 10A                       |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.015         | 0.0074   | 0.015   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.015         | 0.0056   | 0.015   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.010         | 0.0035   | 0.010   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.015         | 0.0060   | 0.015   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.010         | 0.0033   | 0.010   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.018         | 0.0075   | 0.018   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010   | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010   | 0.020 | ug/L            | U                | U                       |                           |

Thursday, July 12, 2018 Page 13 of 35

| Sample Name ELSWH06-004-    | -SO-035     |                 | Matrix 1 | Гуре: Ѕ | R     | Result Typ      | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GRF762     | Sampl       | e Date/Time     | 2018     | -05-06  | 09:10 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 5:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.80          | 0.26     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| 3:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.80          | 0.33     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.50          | 0.17     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.50          | 0.23     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.80          | 0.39     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.80          | 0.28     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.80          | 0.28     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.50          | 0.19     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.50          | 0.24     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.50          | 0.14     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.50          | 0.22     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.50          | 0.14     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.80          | 0.26     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.80          | 0.25     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.80          | 0.25     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.80          | 0.31     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.80          | 0.33     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.80          | 0.34     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |

Thursday, July 12, 2018 Page 14 of 35

| Sample Name ELSWH06-004-    | -SS-001     | -               |        |        |       |                 |                  |                         |                           |
|-----------------------------|-------------|-----------------|--------|--------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF760     | Sampl       | e Date/Time     | : 2018 | -05-06 | 07:45 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL     | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 5:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.73          | 0.24   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |
| 3:2 FLUOROTELOMER SULFONATE | 39108-34-4  | <0.73           | 0.30   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.46          | 0.15   | 0.46   | 0.91  | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.62            | 0.21   | 0.46   | 0.91  | ug/kg           | J                | J                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.73          | 0.35   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.73          | 0.25   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.73          | 0.25   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.46          | 0.17   | 0.46   | 0.91  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.59            | 0.22   | 0.46   | 0.91  | ug/kg           | J                | J                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.46          | 0.13   | 0.46   | 0.91  | ug/kg           | U                | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | 2.3             | 0.20   | 0.46   | 0.91  | ug/kg           |                  |                         |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.46          | 0.13   | 0.46   | 0.91  | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 29              | 0.24   | 0.73   | 0.91  | ug/kg           |                  | J                       | 08A                       |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 1.2             | 0.23   | 0.73   | 0.91  | ug/kg           |                  | J                       | 17                        |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.80            | 0.23   | 0.73   | 0.91  | ug/kg           | J                | J                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.73          | 0.28   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.73          | 0.30   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.73          | 0.31   | 0.73   | 0.91  | ug/kg           | U                | U                       |                           |

Thursday, July 12, 2018 Page 15 of 35

| Sample Name ELSWH06-004     | -SS-901     |                 | Matrix 7 | Type: S | R     | esult Typ       | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF761     | Sample      | e Date/Time     | 2018     | 05-06   | 07:45 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.78          | 0.25     | 0.78    | 0.97  | ug/kg           | U                | U                       |                           |
| 3:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.78          | 0.32     | 0.78    | 0.97  | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.49          | 0.16     | 0.49    | 0.97  | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.79            | 0.22     | 0.49    | 0.97  | ug/kg           | J                | J                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.78          | 0.38     | 0.78    | 0.97  | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.78          | 0.27     | 0.78    | 0.97  | ug/kg           | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.78          | 0.27     | 0.78    | 0.97  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.58            | 0.18     | 0.49    | 0.97  | ug/kg           | J                | J                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.71            | 0.23     | 0.49    | 0.97  | ug/kg           | J                | J                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.45            | 0.14     | 0.49    | 0.97  | ug/kg           | J                | J                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | 2.6             | 0.21     | 0.49    | 0.97  | ug/kg           |                  |                         |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.49          | 0.14     | 0.49    | 0.97  | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 22              | 0.25     | 0.78    | 0.97  | ug/kg           |                  |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 1.8             | 0.24     | 0.78    | 0.97  | ug/kg           |                  | J                       | 17                        |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 1.3             | 0.24     | 0.78    | 0.97  | ug/kg           |                  |                         |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.78          | 0.30     | 0.78    | 0.97  | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.78          | 0.32     | 0.78    | 0.97  | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.78          | 0.33     | 0.78    | 0.97  | ug/kg           | U                | U                       |                           |

Thursday, July 12, 2018 Page 16 of 35

| Sample Name ELSWH07-001-    | -SO-029     | N               | Matrix '                | Гуре: Ѕ | R     | esult Typ       | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|-------------------------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GRF773     | Sampl       | e Date/Time:    | e Date/Time: 2018-05-08 |         | 12:56 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL                      | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.80          | 0.26                    | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.80          | 0.33                    | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.50          | 0.17                    | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.50          | 0.23                    | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.80          | 0.39                    | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.80          | 0.28                    | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.80          | 0.28                    | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.50          | 0.19                    | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.50          | 0.24                    | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.50          | 0.14                    | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.50          | 0.22                    | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.50          | 0.14                    | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.80          | 0.26                    | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.80          | 0.25                    | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.80          | 0.25                    | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.80          | 0.31                    | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.80          | 0.33                    | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.80          | 0.34                    | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |  |

Thursday, July 12, 2018 Page 17 of 35

| Sample Name ELSWH07-001-    | -SS-001     | Ī               | Matrix ' | Гуре: Ѕ | R     | esult Typ       | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GRF772     | Sampl       | e Date/Time     | 2018     | -05-08  | 08:50 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.88          | 0.29     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.88          | 0.36     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.55          | 0.19     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 0.61            | 0.25     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.88          | 0.43     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | <0.88           | 0.31     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.88          | 0.31     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.73            | 0.21     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 1.2             | 0.26     | 0.55    | 1.1   | ug/kg           |                  |                         |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.61            | 0.15     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.66            | 0.24     | 0.55    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.55          | 0.15     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 18              | 0.29     | 0.88    | 1.1   | ug/kg           |                  |                         |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 2.6             | 0.28     | 0.88    | 1.1   | ug/kg           |                  |                         |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.80            | 0.28     | 0.88    | 1.1   | ug/kg           | J                | J                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.88          | 0.34     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.88          | 0.36     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.88          | 0.37     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |

Thursday, July 12, 2018 Page 18 of 35

| Sample Name ELSWH07-002-    | -SS-001     |                 | Matrix ' | Гуре: S | R     | Result Typ      | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF759     | Sampl       | e Date/Time     | 2018     | -05-09  | 14:10 |                 | Validatio        | on Level: St            | age 4                     |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.71          | 0.23     | 0.71    | 0.89  | ug/kg           | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.71          | 0.29     | 0.71    | 0.89  | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.45          | 0.15     | 0.45    | 0.89  | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.45          | 0.20     | 0.45    | 0.89  | ug/kg           | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.71          | 0.35     | 0.71    | 0.89  | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.71          | 0.25     | 0.71    | 0.89  | ug/kg           | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.71          | 0.25     | 0.71    | 0.89  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.45          | 0.17     | 0.45    | 0.89  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.45          | 0.21     | 0.45    | 0.89  | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.45          | 0.12     | 0.45    | 0.89  | ug/kg           | U                | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.41            | 0.20     | 0.45    | 0.89  | ug/kg           | J                | J                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.45          | 0.12     | 0.45    | 0.89  | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 18              | 0.23     | 0.71    | 0.89  | ug/kg           |                  |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.36            | 0.22     | 0.71    | 0.89  | ug/kg           | J                | J                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.71          | 0.22     | 0.71    | 0.89  | ug/kg           | U                | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.71          | 0.28     | 0.71    | 0.89  | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.71          | 0.29     | 0.71    | 0.89  | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.71          | 0.30     | 0.71    | 0.89  | ug/kg           | U                | U                       |                           |

Thursday, July 12, 2018 Page 19 of 35

| Sample Name ELSWH07-004     | -SO-013     | Matrix Type: S Result Type: TRG |         |        |       |                 |                  |                         |                           |  |
|-----------------------------|-------------|---------------------------------|---------|--------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GRF747     | Sampl       | e Date/Time                     | : 2018- | -05-08 | 14:00 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value                 | DL      | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.65                          | 0.21    | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.65                          | 0.27    | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.41                          | 0.14    | 0.41   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.41                          | 0.19    | 0.41   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.65                          | 0.32    | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.65                          | 0.23    | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.65                          | 0.23    | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.41                          | 0.15    | 0.41   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.41                          | 0.19    | 0.41   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.41                          | 0.11    | 0.41   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.41                          | 0.18    | 0.41   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.41                          | 0.11    | 0.41   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.65                          | 0.21    | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.65                          | 0.20    | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.65                          | 0.20    | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.65                          | 0.25    | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.65                          | 0.27    | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.65                          | 0.28    | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |

Thursday, July 12, 2018 Page 20 of 35

| Sample Name ELSWH07-004-    | -SS-001     | -               | Matrix [ | Гуре: Ѕ | R     | e: TRG          |                  |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF774     | Sampl       | e Date/Time     | : 2018   | -05-08  | 13:20 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.80          | 0.26     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.80          | 0.33     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.50          | 0.17     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.50          | 0.23     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.80          | 0.39     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.80          | 0.28     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.80          | 0.28     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.50          | 0.19     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.50          | 0.24     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.50          | 0.14     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.50          | 0.22     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.50          | 0.14     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 5.9             | 0.26     | 0.80    | 1.0   | ug/kg           |                  |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.60            | 0.25     | 0.80    | 1.0   | ug/kg           | J                | J                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.80          | 0.25     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.80          | 0.31     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.80          | 0.33     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.80          | 0.34     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |

Thursday, July 12, 2018 Page 21 of 35

| Sample Name ELSWH11-001     | -SO-012     | Matrix Type: S Result Type: TRG |      |        |       |                 |                  |                         |                           |  |
|-----------------------------|-------------|---------------------------------|------|--------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GRF755     | Sampl       | e Date/Time                     | 2018 | -05-09 | 10:48 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value                 | DL   | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.65                          | 0.21 | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.65                          | 0.27 | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.41                          | 0.14 | 0.41   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.41                          | 0.19 | 0.41   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.65                          | 0.32 | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.65                          | 0.23 | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.65                          | 0.23 | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.41                          | 0.15 | 0.41   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.41                          | 0.19 | 0.41   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.41                          | 0.11 | 0.41   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.41                          | 0.18 | 0.41   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.41                          | 0.11 | 0.41   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 0.51                            | 0.21 | 0.65   | 0.81  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.65                          | 0.20 | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.65                          | 0.20 | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.65                          | 0.25 | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.65                          | 0.27 | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.65                          | 0.28 | 0.65   | 0.81  | ug/kg           | U                | U                       |                           |  |

Thursday, July 12, 2018 Page 22 of 35

| Sample Name ELSWH11-001     | -SS-001     |                 | Matrix 7 | Гуре: Ѕ | esult Typ | pe: TRG         |                  |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-----------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF754     | Sampl       | e Date/Time     | 2018     | -05-09  | 10:00     |                 | Validati         | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 5:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.68          | 0.22     | 0.68    | 0.85      | ug/kg           | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | <0.68           | 0.28     | 0.68    | 0.85      | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.43          | 0.14     | 0.43    | 0.85      | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.43          | 0.20     | 0.43    | 0.85      | ug/kg           | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.68          | 0.33     | 0.68    | 0.85      | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.68          | 0.24     | 0.68    | 0.85      | ug/kg           | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.68          | 0.24     | 0.68    | 0.85      | ug/kg           | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.43          | 0.16     | 0.43    | 0.85      | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.31            | 0.20     | 0.43    | 0.85      | ug/kg           | J                | J                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 0.54            | 0.12     | 0.43    | 0.85      | ug/kg           | J                | J                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.43          | 0.19     | 0.43    | 0.85      | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.43          | 0.12     | 0.43    | 0.85      | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 5.9             | 0.22     | 0.68    | 0.85      | ug/kg           |                  |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 1.1             | 0.21     | 0.68    | 0.85      | ug/kg           |                  |                         |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 0.37            | 0.21     | 0.68    | 0.85      | ug/kg           | J                | J                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.68          | 0.26     | 0.68    | 0.85      | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.68          | 0.28     | 0.68    | 0.85      | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.68          | 0.29     | 0.68    | 0.85      | ug/kg           | U                | U                       |                           |

Thursday, July 12, 2018 Page 23 of 35

| Sample Name ELSWH11-002-    | -SO-010     |                 | Matrix 7 | Гуре: Ѕ | R     | esult Typ       | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GRF751     | Sampl       | e Date/Time     | : 2018   | -05-09  | 09:35 |                 | Validatio        | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.79          | 0.26     | 0.79    | 0.99  | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.79          | 0.33     | 0.79    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.50          | 0.17     | 0.50    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.50          | 0.23     | 0.50    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.79          | 0.39     | 0.79    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.79          | 0.28     | 0.79    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.79          | 0.28     | 0.79    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.50          | 0.19     | 0.50    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.50          | 0.24     | 0.50    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.50          | 0.14     | 0.50    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.50          | 0.22     | 0.50    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.50          | 0.14     | 0.50    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.79          | 0.26     | 0.79    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.79          | 0.25     | 0.79    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.79          | 0.25     | 0.79    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.79          | 0.31     | 0.79    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.79          | 0.33     | 0.79    | 0.99  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.79          | 0.34     | 0.79    | 0.99  | ug/kg           | U                | U                       |                           |  |

Thursday, July 12, 2018 Page 24 of 35

| Sample Name ELSWH11-002-    | -SS-001     | I               | Matrix ' | Гуре: Ѕ | R     | e: TRG          |                  |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GRF750     | Sampl       | e Date/Time     | 2018     | -05-09  | 08:42 |                 | Validatio        | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.66          | 0.22     | 0.66    | 0.83  | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.66          | 0.27     | 0.66    | 0.83  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.42          | 0.14     | 0.42    | 0.83  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.42          | 0.19     | 0.42    | 0.83  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.66          | 0.32     | 0.66    | 0.83  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.66          | 0.23     | 0.66    | 0.83  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.66          | 0.23     | 0.66    | 0.83  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.42          | 0.16     | 0.42    | 0.83  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.47            | 0.20     | 0.42    | 0.83  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.42          | 0.12     | 0.42    | 0.83  | ug/kg           | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.42          | 0.18     | 0.42    | 0.83  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.42          | 0.12     | 0.42    | 0.83  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 6.7             | 0.22     | 0.66    | 0.83  | ug/kg           |                  |                         |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.34            | 0.21     | 0.66    | 0.83  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.66          | 0.21     | 0.66    | 0.83  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.66          | 0.26     | 0.66    | 0.83  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.66          | 0.27     | 0.66    | 0.83  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.66          | 0.28     | 0.66    | 0.83  | ug/kg           | U                | U                       |                           |  |

Thursday, July 12, 2018 Page 25 of 35

| Sample Name ELSWH11-004-    | -SO-012     |                 | Matrix 1 | Гуре: Ѕ | R     | esult Typ       | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GRF757     | Sampl       | e Date/Time     | 2018     | -05-09  | 11:25 |                 | Validatio        | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 5:2 FLUOROTELOMER SULFONATE | 27619-97-2  | <0.88           | 0.29     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | <0.88           | 0.36     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.55          | 0.19     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.55          | 0.25     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | <0.88           | 0.43     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | <0.88           | 0.31     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | <0.88           | 0.31     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.55          | 0.21     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.55          | 0.26     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.55          | 0.15     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.55          | 0.24     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.55          | 0.15     | 0.55    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | <0.88           | 0.29     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | <0.88           | 0.28     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | <0.88           | 0.28     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | <0.88           | 0.34     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.88          | 0.36     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.88          | 0.37     | 0.88    | 1.1   | ug/kg           | U                | U                       |                           |  |

Thursday, July 12, 2018 Page 26 of 35

| Sample Name ELSWH11-004-    | -SS-001     |                 | Matrix [ | Гуре: Ѕ | R     | esult Typ       | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GRF756     | Sampl       | e Date/Time     | 2018     | -05-09  | 11:11 |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.77          | 0.25     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.77          | 0.32     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.48          | 0.16     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.48          | 0.22     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | <0.77           | 0.37     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.77          | 0.27     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.77          | 0.27     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.48          | 0.18     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 0.40            | 0.23     | 0.48    | 0.96  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.48          | 0.13     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.44            | 0.21     | 0.48    | 0.96  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.48          | 0.13     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 15              | 0.25     | 0.77    | 0.96  | ug/kg           |                  |                         |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 0.59            | 0.24     | 0.77    | 0.96  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.77          | 0.24     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.77          | 0.30     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.77          | 0.32     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.77          | 0.33     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |

Thursday, July 12, 2018 Page 27 of 35

| Sample Name ELSWH11-005-    | -SO-013     |                 | Matrix [ | Гуре: Ѕ | R     | esult Typ       | pe: TRG          |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GRF758     | Sampl       | e Date/Time     | 2018     | -05-09  | 12:45 |                 | Validatio        | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.77          | 0.25     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.77          | 0.32     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.48          | 0.16     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.48          | 0.22     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.77          | 0.37     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.77          | 0.27     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.77          | 0.27     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.48          | 0.18     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.48          | 0.23     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.48          | 0.13     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.48          | 0.21     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.48          | 0.13     | 0.48    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 0.31            | 0.25     | 0.77    | 0.96  | ug/kg           | J                | J                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.77          | 0.24     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.77          | 0.24     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.77          | 0.30     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.77          | 0.32     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.77          | 0.33     | 0.77    | 0.96  | ug/kg           | U                | U                       |                           |  |

Thursday, July 12, 2018 Page 28 of 35

| Sample Name ELSWH11H-00     | 2-SO-910    | 1               | Matrix T | Type: S | R     | esult Typ       | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF752     | Sample      | e Date/Time     | 2018-    | 05-09   | 09:35 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.80          | 0.26     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.80          | 0.33     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.50          | 0.17     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.50          | 0.23     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.80          | 0.39     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.80          | 0.28     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.80          | 0.28     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.50          | 0.19     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.50          | 0.24     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.50          | 0.14     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.50          | 0.22     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.50          | 0.14     | 0.50    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.80          | 0.26     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.80          | 0.25     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.80          | 0.25     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.80          | 0.31     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.80          | 0.33     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.80          | 0.34     | 0.80    | 1.0   | ug/kg           | U                | U                       |                           |

Thursday, July 12, 2018 Page 29 of 35

| Sample Name ELSWH-RS-01     | 4           | I               | Matrix T | ype: W | R     | esult Typ       | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|--------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF763     | Sample      | e Date/Time     | 2018-    | 05-06  | 09:05 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 5:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| 3:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.015         | 0.0054   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.015         | 0.0055   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.015         | 0.0074   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.015         | 0.0056   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.010         | 0.0035   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.010         | 0.0033   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.018         | 0.0075   | 0.018  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |

Thursday, July 12, 2018 Page 30 of 35

| Sample Name ELSWH-RS-01:    | 5           | N               | Matrix T | ype: W | R     | esult Typ       | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|--------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF769     | Sample      | Date/Time:      | 2018-    | 05-07  | 13:01 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.015         | 0.0054   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.015         | 0.0055   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.015         | 0.0074   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.015         | 0.0056   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.010         | 0.0035   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.010         | 0.0033   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.018         | 0.0075   | 0.018  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |

Thursday, July 12, 2018 Page 31 of 35

| Sample Name ELSWH-RS-01     | 6           | ľ               | Matrix T | ype: W | Result Type: TRG |                 |                  |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|--------|------------------|-----------------|------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GRF749     | Sampl       | e Date/Time:    | 2018-    | 05-08  | 13:55            |                 | Validati         | on Level: St            | age 2B                    |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD    | LOQ              | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 5:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066   | 0.015  | 0.020            | ug/L            | U                | U                       |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.015         | 0.0054   | 0.015  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.015         | 0.0055   | 0.015  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.015         | 0.0074   | 0.015  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.015         | 0.0056   | 0.015  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.010         | 0.0035   | 0.010  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.015         | 0.0060   | 0.015  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.010         | 0.0033   | 0.010  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.018         | 0.0075   | 0.018  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010  | 0.020            | ug/L            | U                | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010  | 0.020            | ug/L            | U                | U                       |                           |  |

Thursday, July 12, 2018 Page 32 of 35

| Sample Name ELSWH-RS-01     | 7           | N               | Matrix T | ype: W | R     | esult Typ       | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|--------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF753     | Sample      | Date/Time:      | 2018-    | 05-09  | 09:30 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.015         | 0.0054   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.015         | 0.0055   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.015         | 0.0074   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.015         | 0.0056   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.010         | 0.0035   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.010         | 0.0033   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.018         | 0.0075   | 0.018  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |

Thursday, July 12, 2018 Page 33 of 35

| Sample Name ELSWH-RS-01     | 8           | Ŋ               | Matrix T | ype: W | R     | esult Typ       | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|--------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF781     | Sample      | e Date/Time:    | 2018-    | 05-10  | 12:15 |                 | Validati         | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.015         | 0.0054   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.015         | 0.0055   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.015         | 0.0074   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.015         | 0.0056   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.010         | 0.0035   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.010         | 0.0033   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.018         | 0.0075   | 0.018  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |

Thursday, July 12, 2018 Page 34 of 35

| Sample Name ELSWH-SB-00     | 1           | Ι               | Matrix T | ype: W | R     | esult Typ       | e: TRG           |                         |                           |
|-----------------------------|-------------|-----------------|----------|--------|-------|-----------------|------------------|-------------------------|---------------------------|
| Lab Sample Name: GRF748     | Sample      | e Date/Time     | : 2018-  | 05-08  | 14:15 |                 | Validatio        | on Level: St            | age 2B                    |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | < 0.015         | 0.0066   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | < 0.015         | 0.0054   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | < 0.015         | 0.0055   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | < 0.015         | 0.0061   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.010         | 0.0050   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | < 0.015         | 0.0074   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | < 0.015         | 0.0056   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | < 0.010         | 0.0035   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.018         | 0.0087   | 0.018  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | < 0.010         | 0.0034   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | < 0.015         | 0.0060   | 0.015  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | < 0.010         | 0.0033   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | < 0.018         | 0.0075   | 0.018  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.010         | 0.0027   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.010         | 0.0038   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.010         | 0.0025   | 0.010  | 0.020 | ug/L            | U                | U                       |                           |

Thursday, July 12, 2018 Page 35 of 35

## Validated Sample Result Forms: B8C0381

EPA 537 m

108427-53-8

307-24-4

375-95-1

754-91-6

1763-23-1

335-67-1

2706-90-3

376-06-7

72629-94-8

2058-94-8

86

99

0.56

0.10

41

9.7

29

< 0.10

< 0.10

< 0.10

Analysis Method:

PERFLUOROHEXANE SULFONATE

PERFLUOROOCTANE SULFONAMIDE

PERFLUOROOCTANE SULFONATE

PERFLUOROTETRADECANOIC ACID

PERFLUOROTRIDECANOIC ACID

PERFLUOROUNDECANOIC ACID

PERFLUOROHEXANOIC ACID

PERFLUORONONANOIC ACID

PERFLUOROOCTANOIC ACID

PERFLUOROPENTANOIC ACID

Sample Name ELSWH01-001-GW-015 Matrix Type: Result Type: TRG GTF558 2018-05-20 09:25 Lab Sample Name: Sample Date/Time: Validation Level: Stage 2B Analyte CAS No Result DLLOD LOQ Result Lab Validation Validation Units Qualifier Qualifier Value Reason Code 6:2 FLUOROTELOMER SULFONATE 27619-97-2 63 0.66 1.5 2.0 ug/L 8:2 FLUOROTELOMER SULFONATE 39108-34-4 0.68 0.066 0.15 0.20 ug/L PERFLUOROBUTANE SULFONATE 0.54 1.5 29420-43-3 13 2.0 ug/L PERFLUOROBUTANOIC ACID 375-22-4 14 0.55 1.5 2.0 ug/L PERFLUORODECANE SULFONATE 335-77-3 < 0.15 0.060 0.15 0.20 U U ug/L PERFLUORODECANOIC ACID 335-76-2 0.12 0.061 0.15 0.20 ug/L J J U PERFLUORODODECANOIC ACID 307-55-1 < 0.10 0.050 0.10 0.20 U ug/L PERFLUOROHEPTANOIC ACID 375-85-9 7.1 0.074 0.15 0.20 ug/L

0.56

0.35

0.087

0.034

0.60

0.033

0.75

0.027

0.038

0.025

1.5

1.0

0.18

0.10

1.5

0.10

1.8

0.10

0.10

0.10

2.0

2.0

0.20

0.20

2.0

0.20

2.0

0.20

0.20

0.20

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

U

U

U

17

17

J

U

U

U

| Sample Name ELSWH01-001-    | -GW <b>-</b> 915 | I               | Matrix ' | Гуре:  | R     | Result Typ      | e: TRG           |                            |                           |  |
|-----------------------------|------------------|-----------------|----------|--------|-------|-----------------|------------------|----------------------------|---------------------------|--|
| Lab Sample Name: GTF559     | Sampl            | e Date/Time     | 2018     | -05-20 | 09:25 |                 | Validatio        | Validation Level: Stage 2B |                           |  |
| Analyte                     | CAS No           | Result<br>Value | DL       | LOD    | LOQ   | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier    | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2       | 52              | 0.66     | 1.5    | 2.0   | ug/L            |                  |                            |                           |  |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4       | 0.77            | 0.066    | 0.15   | 0.20  | ug/L            |                  |                            |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3       | 9.9             | 0.054    | 0.15   | 0.20  | ug/L            |                  |                            |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4         | 11              | 0.55     | 1.5    | 2.0   | ug/L            |                  |                            |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3         | < 0.15          | 0.060    | 0.15   | 0.20  | ug/L            | U                | U                          |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2         | 0.12            | 0.061    | 0.15   | 0.20  | ug/L            | J                | J                          |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1         | < 0.10          | 0.050    | 0.10   | 0.20  | ug/L            | U                | U                          |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9         | 5.4             | 0.074    | 0.15   | 0.20  | ug/L            |                  |                            |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8      | 73              | 0.56     | 1.5    | 2.0   | ug/L            |                  |                            |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4         | 70              | 0.35     | 1.0    | 2.0   | ug/L            |                  | J                          | 17                        |  |
| PERFLUORONONANOIC ACID      | 375-95-1         | 0.52            | 0.087    | 0.18   | 0.20  | ug/L            |                  |                            |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6         | 0.096           | 0.034    | 0.10   | 0.20  | ug/L            | J                | J                          |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1        | 44              | 0.60     | 1.5    | 2.0   | ug/L            |                  |                            |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1         | 8.3             | 0.033    | 0.10   | 0.20  | ug/L            |                  |                            |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3        | 21              | 0.75     | 1.8    | 2.0   | ug/L            |                  | J                          | 17                        |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7         | < 0.10          | 0.027    | 0.10   | 0.20  | ug/L            | U                | U                          |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8       | < 0.10          | 0.038    | 0.10   | 0.20  | ug/L            | U                | U                          |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8        | < 0.10          | 0.025    | 0.10   | 0.20  | ug/L            | U                | U                          |                           |  |

Friday, July 13, 2018 Page 2 of 39

| Sample Name ELSWH01-001     | -SO-013     | ]               | Matrix [ | Гуре: Ѕ | R     | esult Typ       | e: TRG                    |                         |                           |  |
|-----------------------------|-------------|-----------------|----------|---------|-------|-----------------|---------------------------|-------------------------|---------------------------|--|
| Lab Sample Name: GTF550     | Sampl       | e Date/Time     | : 2018   | -05-17  | 09:47 |                 | Validation Level: Stage 4 |                         |                           |  |
| Analyte                     | CAS No      | Result<br>Value | DL       | LOD     | LOQ   | Result<br>Units | Lab<br>Qualifier          | Validation<br>Qualifier | Validation<br>Reason Code |  |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 93              | 2.2      | 6.7     | 8.4   | ug/kg           |                           |                         |                           |  |
| 3:2 FLUOROTELOMER SULFONATE | 39108-34-4  | 8.0             | 0.28     | 0.67    | 0.84  | ug/kg           |                           |                         |                           |  |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | 0.71            | 0.14     | 0.42    | 0.84  | ug/kg           | J                         | J                       |                           |  |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 1.3             | 0.19     | 0.42    | 0.84  | ug/kg           |                           |                         |                           |  |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.67          | 0.33     | 0.67    | 0.84  | ug/kg           | U                         | U                       |                           |  |
| PERFLUORODECANOIC ACID      | 335-76-2    | 0.41            | 0.24     | 0.67    | 0.84  | ug/kg           | J                         | J                       |                           |  |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.67          | 0.24     | 0.67    | 0.84  | ug/kg           | U                         | U                       |                           |  |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.80            | 0.16     | 0.42    | 0.84  | ug/kg           | J                         | J                       |                           |  |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 4.0             | 0.20     | 0.42    | 0.84  | ug/kg           |                           |                         |                           |  |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 8.8             | 0.12     | 0.42    | 0.84  | ug/kg           |                           |                         |                           |  |
| PERFLUORONONANOIC ACID      | 375-95-1    | 0.31            | 0.18     | 0.42    | 0.84  | ug/kg           | J                         | J                       |                           |  |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | 0.28            | 0.12     | 0.42    | 0.84  | ug/kg           | J                         | J                       |                           |  |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 72              | 2.2      | 6.7     | 8.4   | ug/kg           |                           |                         |                           |  |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 1.4             | 0.21     | 0.67    | 0.84  | ug/kg           |                           |                         |                           |  |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 3.0             | 0.21     | 0.67    | 0.84  | ug/kg           |                           |                         |                           |  |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.67          | 0.26     | 0.67    | 0.84  | ug/kg           | U                         | U                       |                           |  |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.67          | 0.28     | 0.67    | 0.84  | ug/kg           | U                         | U                       |                           |  |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.67          | 0.29     | 0.67    | 0.84  | ug/kg           | U                         | U                       |                           |  |

Friday, July 13, 2018 Page 3 of 39

| Sample Name ELSWH01-001-    |             | Matrix 7        | Гуре: Ѕ | R      | Result Typ | e: TRG          |                            |                         |                           |
|-----------------------------|-------------|-----------------|---------|--------|------------|-----------------|----------------------------|-------------------------|---------------------------|
| Lab Sample Name: GTF551     | Sampl       | e Date/Time     | 2018    | -05-17 | 09:47      |                 | Validation Level: Stage 2B |                         |                           |
| Analyte                     | CAS No      | Result<br>Value | DL      | LOD    | LOQ        | Result<br>Units | Lab<br>Qualifier           | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 100             | 2.2     | 6.7    | 8.4        | ug/kg           |                            | J                       | 10A                       |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | 7.9             | 0.28    | 0.67   | 0.84       | ug/kg           |                            |                         |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | 0.82            | 0.14    | 0.42   | 0.84       | ug/kg           | J                          | J                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 1.1             | 0.19    | 0.42   | 0.84       | ug/kg           |                            |                         |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | < 0.67          | 0.33    | 0.67   | 0.84       | ug/kg           | U                          | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | 0.52            | 0.24    | 0.67   | 0.84       | ug/kg           | J                          | J                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | < 0.67          | 0.24    | 0.67   | 0.84       | ug/kg           | U                          | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 0.77            | 0.16    | 0.42   | 0.84       | ug/kg           | J                          | J                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 4.4             | 0.20    | 0.42   | 0.84       | ug/kg           |                            |                         |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 7.1             | 0.12    | 0.42   | 0.84       | ug/kg           |                            |                         |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | < 0.42          | 0.18    | 0.42   | 0.84       | ug/kg           | U                          | U                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | 0.35            | 0.12    | 0.42   | 0.84       | ug/kg           | J                          | J                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 70              | 2.2     | 6.7    | 8.4        | ug/kg           |                            | J                       | 10A                       |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 1.2             | 0.21    | 0.67   | 0.84       | ug/kg           |                            |                         |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 2.2             | 0.21    | 0.67   | 0.84       | ug/kg           |                            |                         |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | < 0.67          | 0.26    | 0.67   | 0.84       | ug/kg           | U                          | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | < 0.67          | 0.28    | 0.67   | 0.84       | ug/kg           | U                          | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | < 0.67          | 0.29    | 0.67   | 0.84       | ug/kg           | U                          | U                       |                           |

Friday, July 13, 2018 Page 4 of 39

| Sample Name ELSWH01-001-    |             | Matrix 7        | Гуре: Ѕ | R      | esult Typ | oe: TRG         |                            |                         |                           |
|-----------------------------|-------------|-----------------|---------|--------|-----------|-----------------|----------------------------|-------------------------|---------------------------|
| Lab Sample Name: GTF547     | Sampl       | e Date/Time     | 2018    | -05-17 | 08:33     |                 | Validation Level: Stage 2B |                         |                           |
| Analyte                     | CAS No      | Result<br>Value | DL      | LOD    | LOQ       | Result<br>Units | Lab<br>Qualifier           | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 14              | 2.5     | 7.8    | 9.7       | ug/kg           |                            | J                       | 17                        |
| 3:2 FLUOROTELOMER SULFONATE | 39108-34-4  | 16              | 3.2     | 7.8    | 9.7       | ug/kg           |                            | J                       | 17                        |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | 4.9             | 1.6     | 4.9    | 9.7       | ug/kg           | J                          | J                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 8.2             | 2.2     | 4.9    | 9.7       | ug/kg           | J                          | J                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | <7.8            | 3.8     | 7.8    | 9.7       | ug/kg           | U                          | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | 4.8             | 2.7     | 7.8    | 9.7       | ug/kg           | J                          | J                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | <7.8            | 2.7     | 7.8    | 9.7       | ug/kg           | U                          | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | <4.9            | 1.8     | 4.9    | 9.7       | ug/kg           | U                          | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 18              | 2.3     | 4.9    | 9.7       | ug/kg           |                            | J                       | 17                        |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 5.4             | 1.4     | 4.9    | 9.7       | ug/kg           | J                          | J                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | 5.0             | 2.1     | 4.9    | 9.7       | ug/kg           | J                          | J                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | 3.5             | 1.4     | 4.9    | 9.7       | ug/kg           | J                          | J                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 1900            | 25      | 78     | 97        | ug/kg           |                            | J                       | 10A;17                    |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 4.1             | 2.4     | 7.8    | 9.7       | ug/kg           | J                          | J                       | 17                        |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 6.7             | 2.4     | 7.8    | 9.7       | ug/kg           | J                          | J                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | <7.8            | 3.0     | 7.8    | 9.7       | ug/kg           | U                          | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | <7.8            | 3.2     | 7.8    | 9.7       | ug/kg           | U                          | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | <7.8            | 3.3     | 7.8    | 9.7       | ug/kg           | U                          | U                       |                           |

Friday, July 13, 2018 Page 5 of 39

| Sample Name ELSWH01-001-    |             | Matrix 7        | Гуре: Ѕ | R      | Result Typ | e: TRG          |                            |                         |                           |
|-----------------------------|-------------|-----------------|---------|--------|------------|-----------------|----------------------------|-------------------------|---------------------------|
| Lab Sample Name: GTF548     | Sampl       | e Date/Time     | 2018    | -05-17 | 08:33      |                 | Validation Level: Stage 2B |                         |                           |
| Analyte                     | CAS No      | Result<br>Value | DL      | LOD    | LOQ        | Result<br>Units | Lab<br>Qualifier           | Validation<br>Qualifier | Validation<br>Reason Code |
| 5:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 150             | 2.5     | 7.8    | 9.7        | ug/kg           |                            | J                       | 10A;17                    |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | 28              | 3.2     | 7.8    | 9.7        | ug/kg           |                            | J                       | 10A;17                    |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | 4.1             | 1.6     | 4.9    | 9.7        | ug/kg           | J                          | J                       | 10A                       |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | 5.8             | 2.2     | 4.9    | 9.7        | ug/kg           | J                          | J                       | 10A                       |
| PERFLUORODECANE SULFONATE   | 335-77-3    | <7.8            | 3.8     | 7.8    | 9.7        | ug/kg           | U                          | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | 3.8             | 2.7     | 7.8    | 9.7        | ug/kg           | J                          | J                       | 10A                       |
| PERFLUORODODECANOIC ACID    | 307-55-1    | <7.8            | 2.7     | 7.8    | 9.7        | ug/kg           | U                          | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | <4.9            | 1.8     | 4.9    | 9.7        | ug/kg           | U                          | U                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 85              | 2.3     | 4.9    | 9.7        | ug/kg           |                            | J                       | 10A;17                    |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 4.4             | 1.4     | 4.9    | 9.7        | ug/kg           | J                          | J                       | 10A                       |
| PERFLUORONONANOIC ACID      | 375-95-1    | 8.1             | 2.1     | 4.9    | 9.7        | ug/kg           | J                          | J                       | 10A                       |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | 4.3             | 1.4     | 4.9    | 9.7        | ug/kg           | J                          | J                       | 10A                       |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 3300            | 25      | 78     | 97         | ug/kg           |                            | J                       | 10A;17                    |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 15              | 2.4     | 7.8    | 9.7        | ug/kg           |                            | J                       | 10A;17                    |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 5.5             | 2.4     | 7.8    | 9.7        | ug/kg           | J                          | J                       | 10A                       |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | <7.8            | 3.0     | 7.8    | 9.7        | ug/kg           | U                          | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | <7.8            | 3.2     | 7.8    | 9.7        | ug/kg           | U                          | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | <7.8            | 3.3     | 7.8    | 9.7        | ug/kg           | U                          | U                       |                           |

Friday, July 13, 2018 Page 6 of 39

| Sample Name ELSWH01-002-    |             | Matrix '        | Гуре: Ѕ | R      | Result Typ | e: TRG          |                            |                         |                           |
|-----------------------------|-------------|-----------------|---------|--------|------------|-----------------|----------------------------|-------------------------|---------------------------|
| Lab Sample Name: GTF543     | Sampl       | e Date/Time     | 2018    | -05-16 | 13:30      |                 | Validation Level: Stage 2B |                         |                           |
| Analyte                     | CAS No      | Result<br>Value | DL      | LOD    | LOQ        | Result<br>Units | Lab<br>Qualifier           | Validation<br>Qualifier | Validation<br>Reason Code |
| 6:2 FLUOROTELOMER SULFONATE | 27619-97-2  | 29              | 2.1     | 6.6    | 8.2        | ug/kg           |                            |                         |                           |
| 8:2 FLUOROTELOMER SULFONATE | 39108-34-4  | 4.0             | 2.7     | 6.6    | 8.2        | ug/kg           | J                          | J                       |                           |
| PERFLUOROBUTANE SULFONATE   | 29420-43-3  | 2.5             | 1.4     | 4.1    | 8.2        | ug/kg           | J                          | J                       |                           |
| PERFLUOROBUTANOIC ACID      | 375-22-4    | <4.1            | 1.9     | 4.1    | 8.2        | ug/kg           | U                          | U                       |                           |
| PERFLUORODECANE SULFONATE   | 335-77-3    | <6.6            | 3.2     | 6.6    | 8.2        | ug/kg           | U                          | U                       |                           |
| PERFLUORODECANOIC ACID      | 335-76-2    | 2.7             | 2.3     | 6.6    | 8.2        | ug/kg           | J                          | J                       |                           |
| PERFLUORODODECANOIC ACID    | 307-55-1    | <6.6            | 2.3     | 6.6    | 8.2        | ug/kg           | U                          | U                       |                           |
| PERFLUOROHEPTANOIC ACID     | 375-85-9    | 2.9             | 1.6     | 4.1    | 8.2        | ug/kg           | J                          | J                       |                           |
| PERFLUOROHEXANE SULFONATE   | 108427-53-8 | 12              | 2.0     | 4.1    | 8.2        | ug/kg           |                            |                         |                           |
| PERFLUOROHEXANOIC ACID      | 307-24-4    | 7.4             | 1.1     | 4.1    | 8.2        | ug/kg           | J                          | J                       |                           |
| PERFLUORONONANOIC ACID      | 375-95-1    | 5.0             | 1.8     | 4.1    | 8.2        | ug/kg           | J                          | J                       |                           |
| PERFLUOROOCTANE SULFONAMIDE | 754-91-6    | 1.9             | 1.1     | 4.1    | 8.2        | ug/kg           | J                          | J                       |                           |
| PERFLUOROOCTANE SULFONATE   | 1763-23-1   | 630             | 21      | 66     | 82         | ug/kg           |                            |                         |                           |
| PERFLUOROOCTANOIC ACID      | 335-67-1    | 4.1             | 2.1     | 6.6    | 8.2        | ug/kg           | J                          | J                       |                           |
| PERFLUOROPENTANOIC ACID     | 2706-90-3   | 6.6             | 2.1     | 6.6    | 8.2        | ug/kg           | J                          | J                       |                           |
| PERFLUOROTETRADECANOIC ACID | 376-06-7    | <6.6            | 2.5     | 6.6    | 8.2        | ug/kg           | U                          | U                       |                           |
| PERFLUOROTRIDECANOIC ACID   | 72629-94-8  | <6.6            | 2.7     | 6.6    | 8.2        | ug/kg           | U                          | U                       |                           |
| PERFLUOROUNDECANOIC ACID    | 2058-94-8   | <6.6            | 2.8     | 6.6    | 8.2        | ug/kg           | U                          | U                       |                           |

Friday, July 13, 2018 Page 7 of 39